Synergistic Effect of Chitosan and Selenium Nanoparticles on Biodegradation and Antibacterial Properties of Collagenous Scaffolds Designed for Infected Burn Wounds
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
AZV 17-29874A
Agentura Pro Zdravotnický Výzkum České Republiky
CZ.02.1.01/0.0/0.0/16_025/0007314
European Regional Development Fund
CEITEC VUT-J-19-6086
Specific Research Project of the Brno University of Technology
LQ1601
National Sustainability Program II, Ministry of Education, Youth and Sports
PubMed
33027935
PubMed Central
PMC7601368
DOI
10.3390/nano10101971
PII: nano10101971
Knihovny.cz E-zdroje
- Klíčová slova
- Staphylococcus, bacteria, chitosan, collagen, drug release, freeze-drying, infected burn injuries, selenium nanoparticles, tissue engineering,
- Publikační typ
- časopisecké články MeSH
A highly porous scaffold is a desirable outcome in the field of tissue engineering. The porous structure mediates water-retaining properties that ensure good nutrient transportation as well as creates a suitable environment for cells. In this study, porous antibacterial collagenous scaffolds containing chitosan and selenium nanoparticles (SeNPs) as antibacterial agents were studied. The addition of antibacterial agents increased the application potential of the material for infected and chronic wounds. The morphology, swelling, biodegradation, and antibacterial activity of collagen-based scaffolds were characterized systematically to investigate the overall impact of the antibacterial additives. The additives visibly influenced the morphology, water‑retaining properties as well as the stability of the materials in the presence of collagenase enzymes. Even at concentrations as low as 5 ppm of SeNPs, modified polymeric scaffolds showed considerable inhibition activity towards Gram-positive bacterial strains such as Staphylococcus aureus and methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis in a dose-dependent manner.
Department of Inorganic Chemistry Faculty of Science Palacky University 17 Listopadu 12
Faculty of Chemistry Brno University of Technology Purkyňova 118 612 00 Brno Czech Republic
Zobrazit více v PubMed
Mayet N., Choonara Y.E., Chellappan D.K., Tomar L.K., Tyagi C., Du Toit L.C., Pillay V. A Comprehensive Review of Advanced Biopolymeric Wound Healing Systems. J. Pharm. Sci. 2014;103:2211–2230. doi: 10.1002/jps.24068. PubMed DOI
Gonzalez A.C.D.O., Freire T.F.C., Andrade Z.D.A., Medrado A.P. Wound healing—A literature review. An. Bras. Dermatol. 2016;91:614–620. doi: 10.1590/abd1806-4841.20164741. PubMed DOI PMC
Malone C.H., McLaughlin J.M., Ross L.S., Phillips L.G., Wagner J.R.F. Progressive Tightening of Pulley Sutures for Primary Repair of Large Scalp Wounds. Plast. Reconstr. Surg. Glob. Open. 2017;5:e1592. doi: 10.1097/GOX.0000000000001592. PubMed DOI PMC
Yang J.D., Choi D.S., Cho Y.K., Kim T.K., Lee J.W., Choi K.Y., Chung H.Y., Cho B.C., Byun J.S. Effect of Amniotic Fluid Stem Cells and Amniotic Fluid Cells on the Wound Healing Process in a White Rat Model. Arch. Plast. Surg. 2013;40:496–504. doi: 10.5999/aps.2013.40.5.496. PubMed DOI PMC
Chang P., Guo B., Hui Q., Liu X., Tao K. A bioartificial dermal regeneration template promotes skin cell proliferation in vitro and enhances large skin wound healing in vivo. Oncotarget. 2017;8:25226–25241. doi: 10.18632/oncotarget.16005. PubMed DOI PMC
Bessa L.J., Fazii P., Di Giulio M., Cellini L. Bacterial isolates from infected wounds and their antibiotic susceptibility pattern: Some remarks about wound infection. Int. Wound J. 2013;12:47–52. doi: 10.1111/iwj.12049. PubMed DOI PMC
Méric G., Mageiros L., Pensar J., Laabei M., Yahara K., Pascoe B., Kittiwan N., Tadee P., Post V., Lamble S., et al. Disease-associated genotypes of the commensal skin bacterium Staphylococcus epidermidis. Nat. Commun. 2018;9:5034. doi: 10.1038/s41467-018-07368-7. PubMed DOI PMC
Tsige Y., Tadesse S., G/Eyesus T., Tefera M.M., Amsalu A., Menberu M.A., Gelaw B. Prevalence of Methicillin-Resistant Staphylococcus aureus and Associated Risk Factors among Patients with Wound Infection at Referral Hospital, Northeast Ethiopia. J. Pathog. 2020;2020:3168325. doi: 10.1155/2020/3168325. PubMed DOI PMC
Murray R.Z., West Z., Cowin A.J., Farrugia B.L. Development and use of biomaterials as wound healing therapies. Burn. Trauma. 2019;7:2. doi: 10.1186/s41038-018-0139-7. PubMed DOI PMC
Park S.-B., Lih E., Park K.-S., Joung Y.K., Han D.K. Biopolymer-based functional composites for medical applications. Prog. Polym. Sci. 2017;68:77–105. doi: 10.1016/j.progpolymsci.2016.12.003. DOI
Rajabi M., Ali A., McConnell M., Cabral J. Keratinous materials: Structures and functions in biomedical applications. Mater. Sci. Eng. C. 2020;110:110612. doi: 10.1016/j.msec.2019.110612. PubMed DOI
Chouhan D., Mandal B.B. Silk biomaterials in wound healing and skin regeneration therapeutics: From bench to bedside. Acta Biomater. 2020;103:24–51. doi: 10.1016/j.actbio.2019.11.050. PubMed DOI
Goh K.L., Holmes D.F. Collagenous Extracellular Matrix Biomaterials for Tissue Engineering: Lessons from the Common Sea Urchin Tissue. Int. J. Mol. Sci. 2017;18:901. doi: 10.3390/ijms18050901. PubMed DOI PMC
Hussey G.S., Dziki J.L., Badylak S.F. Extracellular matrix-based materials for regenerative medicine. Nat. Rev. Mater. 2018;3:159–173. doi: 10.1038/s41578-018-0023-x. DOI
Carson A.E., Barker T.H. Emerging concepts in engineering extracellular matrix variants for directing cell phenotype. Regen. Med. 2009;4:593–600. doi: 10.2217/rme.09.30. PubMed DOI PMC
Vogel S., Ullm F., Müller C.D., Pompe T., Hempel U. Remodeling of 3D collagen I matrices by human bone marrow stromal cells during osteogenic differentiation in vitro. ACS Appl. Bio Mater. 2020 doi: 10.1021/acsabm.0c00856. PubMed DOI
Nečas A., Plánka L., Srnec R., Crha M., Hlučilová J., Klíma J., Starý D., Křen L., Amler E., Vojtová L., et al. Quality of newly formed cartilaginous tissue in defects of articular surface after transplantation of mesenchymal stem cells in a composite scaffold based on collagen I with chitosan micro- and nanofibres. Physiol. Res. 2009;59:605–614. PubMed
Jančář J., Vojtová L., Nečas A., Srnec R., Urbanová L., Crha M. Stability of Collagen Scaffold Implants for Animals with Iatrogenic Articular Cartilage Defects. Acta Veter-Brno. 2009;78:643–648. doi: 10.2754/avb200978040643. DOI
Prosecká E., Rampichová M., Litvinec A., Tonar Z., Králíčková M., Vojtová L., Kochová P., Plencner M., Buzgo M., Míčková A., et al. Collagen/hydroxyapatite scaffold enriched with polycaprolactone nanofibers, thrombocyte-rich solution and mesenchymal stem cells promotes regeneration in large bone defect in vivo. J. Biomed. Mater. Res. Part. A. 2014;103:671–682. doi: 10.1002/jbm.a.35216. PubMed DOI
Prosecká E., Rampichová M., Vojtová L., Tvrdík D., Melčáková Š., Juhasová J., Plencner M., Jakubová R., Jančář J., Nečas A., et al. Optimized conditions for mesenchymal stem cells to differentiate into osteoblasts on a collagen/hydroxyapatite matrix. J. Biomed. Mater. Res. Part. A. 2011;99:307–315. doi: 10.1002/jbm.a.33189. PubMed DOI
Selvakumar G., Suguna L. Fabrication and characterization of collagen-oxidized pullulan scaffold for biomedical applications. Int. J. Biol. Macromol. 2020;164:1592–1599. doi: 10.1016/j.ijbiomac.2020.07.264. PubMed DOI
El-Fiqi A., Kim J.-H., Kim H.-W. Novel bone-mimetic nanohydroxyapatite/collagen porous scaffolds biomimetically mineralized from surface silanized mesoporous nanobioglass/collagen hybrid scaffold: Physicochemical, mechanical and in vivo evaluations. Mater. Sci. Eng. C. 2020;110:110660. doi: 10.1016/j.msec.2020.110660. PubMed DOI
Si J., Yang Y., Xing X., Yang F., Shan P. Controlled degradable chitosan/collagen composite scaffolds for application in nerve tissue regeneration. Polym. Degrad. Stab. 2019;166:73–85. doi: 10.1016/j.polymdegradstab.2019.05.023. DOI
Berdichevski A., Birch M., Markaki A.E. Collagen scaffolds with tailored pore geometry for building three-dimensional vascular networks. Mater. Lett. 2019;248:93–96. doi: 10.1016/j.matlet.2019.03.137. DOI
Ge L., Xu Y., Li X., Yuan L., Tan H., Li D., Mu C. Fabrication of Antibacterial Collagen-Based Composite Wound Dressing. ACS Sustain. Chem. Eng. 2018;6:9153–9166. doi: 10.1021/acssuschemeng.8b01482. DOI
Oryan A., Sahvieh S. Effectiveness of chitosan scaffold in skin, bone and cartilage healing. Int. J. Biol. Macromol. 2017;104:1003–1011. doi: 10.1016/j.ijbiomac.2017.06.124. PubMed DOI
Freier T., Koh H.S., Kazazian K., Shoichet M.S. Controlling cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials. 2005;26:5872–5878. doi: 10.1016/j.biomaterials.2005.02.033. PubMed DOI
Chatelet C. Influence of the degree of acetylation on some biological properties of chitosan films. Biomaterials. 2001;22:261–268. doi: 10.1016/S0142-9612(00)00183-6. PubMed DOI
Li J., Wu Y., Zhao L. Antibacterial activity and mechanism of chitosan with ultra high molecular weight. Carbohydr. Polym. 2016;148:200–205. doi: 10.1016/j.carbpol.2016.04.025. PubMed DOI
Li B., Wang J., Gui Q., Yang H. Continuous production of uniform chitosan beads as hemostatic dressings by a facile flow injection method. J. Mater. Chem. B. 2020;8:7941–7946. doi: 10.1039/D0TB01462A. PubMed DOI
Li B., Wang J., Gui Q., Yang H. Drug-loaded chitosan film prepared via facile solution casting and air-drying of plain water-based chitosan solution for ocular drug delivery. Bioact. Mater. 2020;5:577–583. doi: 10.1016/j.bioactmat.2020.04.013. PubMed DOI PMC
Fairweather-Tait S., Bao Y., Broadley M.R., Collings R., Ford D., Hesketh J.E., Hurst R. Selenium in Human Health and Disease. Antioxidants Redox Signal. 2011;14:1337–1383. doi: 10.1089/ars.2010.3275. PubMed DOI
Wadhwani S.A., Shedbalkar U.U., Singh R., Chopade B.A. Biogenic selenium nanoparticles: Current status and future prospects. Appl. Microbiol. Biotechnol. 2016;100:2555–2566. doi: 10.1007/s00253-016-7300-7. PubMed DOI
Chudobova D., Cihalova K., Dostalova S., Ruttkay-Nedecky B., Rodrigo M.A.M., Tmejova K., Kopel P., Nejdl L., Kudr J., Gumulec J., et al. Comparison of the effects of silver phosphate and selenium nanoparticles onStaphylococcus aureusgrowth reveals potential for selenium particles to prevent infection. FEMS Microbiol. Lett. 2013;351:195–201. doi: 10.1111/1574-6968.12353. PubMed DOI
Mulla N.A., Otari S.V., Bohara R.A., Yadav H.M., Pawar S. Rapid and size-controlled biosynthesis of cytocompatible selenium nanoparticles by Azadirachta indica leaves extract for antibacterial activity. Mater. Lett. 2020;264:127353. doi: 10.1016/j.matlet.2020.127353. DOI
Shakibaie M., Forootanfar H., Golkari Y., Mohammadi-Khorsand T., Shakibaie M.R. Anti-biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis. J. Trace Elements Med. Biol. 2015;29:235–241. doi: 10.1016/j.jtemb.2014.07.020. PubMed DOI
Huang X., Chen X., Chen Q., Yu Q., Sun N., Liu J. Investigation of functional selenium nanoparticles as potent antimicrobial agents against superbugs. Acta Biomater. 2016;30:397–407. doi: 10.1016/j.actbio.2015.10.041. PubMed DOI
Guisbiers G., Lara H.H., Mendoza-Cruz R., Naranjo G., Vincent B.A., Peralta X.G., Nash K.L. Inhibition of Candida albicans biofilm by pure selenium nanoparticles synthesized by pulsed laser ablation in liquids. Nanomed. Nanotechnol. Biol. Med. 2017;13:1095–1103. doi: 10.1016/j.nano.2016.10.011. PubMed DOI PMC
Yip J., Liu L., Wong K.-H., Leung P.H.M., Yuen C.-W.M., Cheung M.-C. Investigation of antifungal and antibacterial effects of fabric padded with highly stable selenium nanoparticles. J. Appl. Polym. Sci. 2014;131:131. doi: 10.1002/app.40728. DOI
Sloviková A., Vojtova L., Jančař J. Preparation and modification of collagen-based porous scaffold for tissue engineering. Chem. Pap. 2008;62:417–422. doi: 10.2478/s11696-008-0045-8. DOI
Cihalova K., Chudobova D., Michálek P., Moulick A., Guran R., Kopel P., Adam V., Kizek R. Staphylococcus aureus and MRSA Growth and Biofilm Formation after Treatment with Antibiotics and SeNPs. Int. J. Mol. Sci. 2015;16:24656–24672. doi: 10.3390/ijms161024656. PubMed DOI PMC
Heger Z., Vesely R., Cihalova K., Kopel P., Milosavljevic V., Heger Z., Hynek D., Guran R., Vaculovicova M., Sedlacek P., et al. Antimicrobial Agent Based on Selenium Nanoparticles and Carboxymethyl Cellulose for the Treatment of Bacterial Infections. J. Biomed. Nanotechnol. 2017;13:767–777. doi: 10.1166/jbn.2017.2384. DOI
Sendrea C., Carsote C., Badea E., Buda A.A., Niculescu M., Iovu H. Non-Invasive Characterisation of Collagen-Based Materials by NMR-Mouse and ATR-FTIR. Sci. Bull. B Chem. Mater. Sci. UPB. 2016;78:27–38.
Bauer E.A., Cooper T.W., Huang J.S., Altman J., Deuel T.F. Stimulation of in vitro human skin collagenase expression by platelet-derived growth factor. Proc. Natl. Acad. Sci. USA. 1985;82:4132–4136. doi: 10.1073/pnas.82.12.4132. PubMed DOI PMC
Zhang X., Xu S., Shen L., Li G. Factors affecting thermal stability of collagen from the aspects of extraction, processing and modification. J. Leather Sci. Eng. 2020;2:1–29. doi: 10.1186/s42825-020-00033-0. DOI
Davidenko N., Schuster C., Bax D., Raynal N., Farndale R., Best S., Cameron R.E. Control of cross-linking for tailoring collagen-based scaffolds stability and mechanics. Acta Biomater. 2015;25:131–142. doi: 10.1016/j.actbio.2015.07.034. PubMed DOI PMC
Grabarek Z., Gergely J. Zero-length cross-linking procedure with the use of active esters. Anal. Biochem. 1990;185:131–135. doi: 10.1016/0003-2697(90)90267-D. PubMed DOI
Yang C. Enhanced physicochemical properties of collagen by using EDC/NHS-cross-linking. Bull. Mater. Sci. 2012;35:913–918. doi: 10.1007/s12034-012-0376-5. DOI
Babrnáková J., Pavliňáková V., Brtníková J., Sedlacek P., Prosecká E., Rampichová M., Filová E., Hearnden V., Vojtová L. Synergistic effect of bovine platelet lysate and various polysaccharides on the biological properties of collagen-based scaffolds for tissue engineering: Scaffold preparation, chemo-physical characterization, in vitro and ex ovo evaluation. Mater. Sci. Eng. C. 2019;100:236–246. doi: 10.1016/j.msec.2019.02.092. PubMed DOI
McHale M.K., Bergmann N.M., West J.L. Handbook of Stem Cells. Elsevier BV; London, UK: 2013. Histogenesis in Three-Dimensional Scaffolds; pp. 951–963.
Murphy C.M., Haugh M.G., O’Brien F.J. The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials. 2010;31:461–466. doi: 10.1016/j.biomaterials.2009.09.063. PubMed DOI
Loh Q.L., Choong C. Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size. Tissue Eng. Part. B Rev. 2013;19:485–502. doi: 10.1089/ten.teb.2012.0437. PubMed DOI PMC
George J., Onodera J., Miyata T. Biodegradable honeycomb collagen scaffold for dermal tissue engineering. J. Biomed. Mater. Res. Part A. 2008;87:1103–1111. doi: 10.1002/jbm.a.32277. PubMed DOI
Shoulders M.D., Raines R.T. Collagen Structure and Stability. Annu. Rev. Biochem. 2009;78:929–958. doi: 10.1146/annurev.biochem.77.032207.120833. PubMed DOI PMC
Nagai T., Suzuki N., Tanoue Y., Kai N., Takeshi N., Nobutaka S., Yasuhiro T., Norihisa K. Collagen from Tendon of Yezo Sika Deer (Cervus nippon yesoensis) as By-Product. Food Nutr. Sci. 2012;3:72–79. doi: 10.4236/fns.2012.31012. DOI
Stani C., Vaccari L., Mitri E., Giovanni B. FTIR investigation of the secondary structure of type I collagen: New insight into the amide III band. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020;229:118006. doi: 10.1016/j.saa.2019.118006. PubMed DOI
Nikonenko N.A., Buslov D.K., Sushko N.I., Zhbankov R.G. Investigation of stretching vibrations of glycosidic linkages in disaccharides and polysaccarides with use of IR spectra deconvolution. Biopolymers. 2000;57:257–262. doi: 10.1002/1097-0282(2000)57:4<257::AID-BIP7>3.0.CO;2-3. PubMed DOI
Queiroz M.F., Melo K.R.T., Sabry D.A., Sassaki G.L., Rocha H.A.O. Does the Use of Chitosan Contribute to Oxalate Kidney Stone Formation? Mar. Drugs. 2014;13:141–158. doi: 10.3390/md13010141. PubMed DOI PMC
Soubhagya A., Moorthi A., Prabaharan M. Preparation and characterization of chitosan/pectin/ZnO porous films for wound healing. Int. J. Biol. Macromol. 2020;157:135–145. doi: 10.1016/j.ijbiomac.2020.04.156. PubMed DOI
Muta H., Miwa M., Satoh M. Ion-specific swelling of hydrophilic polymer gels. Polymer. 2001;42:6313–6316. doi: 10.1016/S0032-3861(01)00098-2. DOI
Egawa M., Arimoto H., Hirao T., Takahashi M., Ozaki Y. Regional Difference of Water Content in Human Skin Studied by Diffuse-Reflectance Near-Infrared Spectroscopy: Consideration of Measurement Depth. Appl. Spectrosc. 2006;60:24–28. doi: 10.1366/000370206775382866. PubMed DOI
Postlethwaite A.E., Seyer J.M., Kang A.H. Chemotactic attraction of human fibroblasts to type I, II, and III collagens and collagen-derived peptides. Proc. Natl. Acad. Sci. USA. 1978;75:871–875. doi: 10.1073/pnas.75.2.871. PubMed DOI PMC
Lauer-Fields J.L., Juska D., Fields G.B. Matrix metalloproteinases and collagen catabolism. Biopolymers. 2002;66:19–32. doi: 10.1002/bip.10201. PubMed DOI
Karakiulakis G., Papadimitriu E., Missirlis E., Maragoudakis M.E. Effect of divalent metal ions on collagenase from Clostridium histolyticum. Biochem. Int. 1991;24:397–404. PubMed
Gimeno M., Pinczowski P., Pérez M., Giorello A., Martínez M.Á., Santamaria J., Arruebo M., Luján L. A controlled antibiotic release system to prevent orthopedic-implant associated infections: An in vitro study. Eur. J. Pharm. Biopharm. 2015;96:264–271. doi: 10.1016/j.ejpb.2015.08.007. PubMed DOI PMC
Kourmouli A., Valenti M., Van Rijn E., Beaumont H.J.E., Kalantzi O.-I., Schmidt-Ott A., Biskos G. Can disc diffusion susceptibility tests assess the antimicrobial activity of engineered nanoparticles? J. Nanoparticle Res. 2018;20:1–6. doi: 10.1007/s11051-018-4152-3. PubMed DOI PMC
Stocks S.M. Mechanism and use of the commercially available viability stain, BacLight. Cytom. Part A. 2003;61:189–195. doi: 10.1002/cyto.a.20069. PubMed DOI
Zgurskaya H.I., Lopez C.A., Gnanakaran S. Permeability Barrier of Gram-Negative Cell Envelopes and Approaches To Bypass It. ACS Infect. Dis. 2015;1:512–522. doi: 10.1021/acsinfecdis.5b00097. PubMed DOI PMC
Geoffrion L.D., Hesabizadeh T., Medina-Cruz D., Kusper M., Taylor P., Vernet-Crua A., Chen J., Ajo A., Webster T.J., Guisbiers G. Naked Selenium Nanoparticles for Antibacterial and Anticancer Treatments. ACS Omega. 2020;5:2660–2669. doi: 10.1021/acsomega.9b03172. PubMed DOI PMC
Huang T., Holden J.A., Heath D.E., O’Brien-Simpson N.M., O’Connor A.J. Engineering highly effective antimicrobial selenium nanoparticles through control of particle size. Nanoscale. 2019;11:14937–14951. doi: 10.1039/C9NR04424H. PubMed DOI
Giacometti A., Cirioni O., Schimizzi A.M., Del Prete M.S., Barchiesi F., D’Errico M.M., Petrelli E., Scalise G. Epidemiology and Microbiology of Surgical Wound Infections. J. Clin. Microbiol. 2000;38:918–922. doi: 10.1128/JCM.38.2.918-922.2000. PubMed DOI PMC
Chen Y.E., Fischbach M.A., Belkaid Y. Skin microbiota–host interactions. Nat. Cell Biol. 2018;553:427–436. doi: 10.1038/nature25177. PubMed DOI PMC