Synergistic Effect of Chitosan and Selenium Nanoparticles on Biodegradation and Antibacterial Properties of Collagenous Scaffolds Designed for Infected Burn Wounds

. 2020 Oct 05 ; 10 (10) : . [epub] 20201005

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33027935

Grantová podpora
AZV 17-29874A Agentura Pro Zdravotnický Výzkum České Republiky
CZ.02.1.01/0.0/0.0/16_025/0007314 European Regional Development Fund
CEITEC VUT-J-19-6086 Specific Research Project of the Brno University of Technology
LQ1601 National Sustainability Program II, Ministry of Education, Youth and Sports

A highly porous scaffold is a desirable outcome in the field of tissue engineering. The porous structure mediates water-retaining properties that ensure good nutrient transportation as well as creates a suitable environment for cells. In this study, porous antibacterial collagenous scaffolds containing chitosan and selenium nanoparticles (SeNPs) as antibacterial agents were studied. The addition of antibacterial agents increased the application potential of the material for infected and chronic wounds. The morphology, swelling, biodegradation, and antibacterial activity of collagen-based scaffolds were characterized systematically to investigate the overall impact of the antibacterial additives. The additives visibly influenced the morphology, water‑retaining properties as well as the stability of the materials in the presence of collagenase enzymes. Even at concentrations as low as 5 ppm of SeNPs, modified polymeric scaffolds showed considerable inhibition activity towards Gram-positive bacterial strains such as Staphylococcus aureus and methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis in a dose-dependent manner.

Zobrazit více v PubMed

Mayet N., Choonara Y.E., Chellappan D.K., Tomar L.K., Tyagi C., Du Toit L.C., Pillay V. A Comprehensive Review of Advanced Biopolymeric Wound Healing Systems. J. Pharm. Sci. 2014;103:2211–2230. doi: 10.1002/jps.24068. PubMed DOI

Gonzalez A.C.D.O., Freire T.F.C., Andrade Z.D.A., Medrado A.P. Wound healing—A literature review. An. Bras. Dermatol. 2016;91:614–620. doi: 10.1590/abd1806-4841.20164741. PubMed DOI PMC

Malone C.H., McLaughlin J.M., Ross L.S., Phillips L.G., Wagner J.R.F. Progressive Tightening of Pulley Sutures for Primary Repair of Large Scalp Wounds. Plast. Reconstr. Surg. Glob. Open. 2017;5:e1592. doi: 10.1097/GOX.0000000000001592. PubMed DOI PMC

Yang J.D., Choi D.S., Cho Y.K., Kim T.K., Lee J.W., Choi K.Y., Chung H.Y., Cho B.C., Byun J.S. Effect of Amniotic Fluid Stem Cells and Amniotic Fluid Cells on the Wound Healing Process in a White Rat Model. Arch. Plast. Surg. 2013;40:496–504. doi: 10.5999/aps.2013.40.5.496. PubMed DOI PMC

Chang P., Guo B., Hui Q., Liu X., Tao K. A bioartificial dermal regeneration template promotes skin cell proliferation in vitro and enhances large skin wound healing in vivo. Oncotarget. 2017;8:25226–25241. doi: 10.18632/oncotarget.16005. PubMed DOI PMC

Bessa L.J., Fazii P., Di Giulio M., Cellini L. Bacterial isolates from infected wounds and their antibiotic susceptibility pattern: Some remarks about wound infection. Int. Wound J. 2013;12:47–52. doi: 10.1111/iwj.12049. PubMed DOI PMC

Méric G., Mageiros L., Pensar J., Laabei M., Yahara K., Pascoe B., Kittiwan N., Tadee P., Post V., Lamble S., et al. Disease-associated genotypes of the commensal skin bacterium Staphylococcus epidermidis. Nat. Commun. 2018;9:5034. doi: 10.1038/s41467-018-07368-7. PubMed DOI PMC

Tsige Y., Tadesse S., G/Eyesus T., Tefera M.M., Amsalu A., Menberu M.A., Gelaw B. Prevalence of Methicillin-Resistant Staphylococcus aureus and Associated Risk Factors among Patients with Wound Infection at Referral Hospital, Northeast Ethiopia. J. Pathog. 2020;2020:3168325. doi: 10.1155/2020/3168325. PubMed DOI PMC

Murray R.Z., West Z., Cowin A.J., Farrugia B.L. Development and use of biomaterials as wound healing therapies. Burn. Trauma. 2019;7:2. doi: 10.1186/s41038-018-0139-7. PubMed DOI PMC

Park S.-B., Lih E., Park K.-S., Joung Y.K., Han D.K. Biopolymer-based functional composites for medical applications. Prog. Polym. Sci. 2017;68:77–105. doi: 10.1016/j.progpolymsci.2016.12.003. DOI

Rajabi M., Ali A., McConnell M., Cabral J. Keratinous materials: Structures and functions in biomedical applications. Mater. Sci. Eng. C. 2020;110:110612. doi: 10.1016/j.msec.2019.110612. PubMed DOI

Chouhan D., Mandal B.B. Silk biomaterials in wound healing and skin regeneration therapeutics: From bench to bedside. Acta Biomater. 2020;103:24–51. doi: 10.1016/j.actbio.2019.11.050. PubMed DOI

Goh K.L., Holmes D.F. Collagenous Extracellular Matrix Biomaterials for Tissue Engineering: Lessons from the Common Sea Urchin Tissue. Int. J. Mol. Sci. 2017;18:901. doi: 10.3390/ijms18050901. PubMed DOI PMC

Hussey G.S., Dziki J.L., Badylak S.F. Extracellular matrix-based materials for regenerative medicine. Nat. Rev. Mater. 2018;3:159–173. doi: 10.1038/s41578-018-0023-x. DOI

Carson A.E., Barker T.H. Emerging concepts in engineering extracellular matrix variants for directing cell phenotype. Regen. Med. 2009;4:593–600. doi: 10.2217/rme.09.30. PubMed DOI PMC

Vogel S., Ullm F., Müller C.D., Pompe T., Hempel U. Remodeling of 3D collagen I matrices by human bone marrow stromal cells during osteogenic differentiation in vitro. ACS Appl. Bio Mater. 2020 doi: 10.1021/acsabm.0c00856. PubMed DOI

Nečas A., Plánka L., Srnec R., Crha M., Hlučilová J., Klíma J., Starý D., Křen L., Amler E., Vojtová L., et al. Quality of newly formed cartilaginous tissue in defects of articular surface after transplantation of mesenchymal stem cells in a composite scaffold based on collagen I with chitosan micro- and nanofibres. Physiol. Res. 2009;59:605–614. PubMed

Jančář J., Vojtová L., Nečas A., Srnec R., Urbanová L., Crha M. Stability of Collagen Scaffold Implants for Animals with Iatrogenic Articular Cartilage Defects. Acta Veter-Brno. 2009;78:643–648. doi: 10.2754/avb200978040643. DOI

Prosecká E., Rampichová M., Litvinec A., Tonar Z., Králíčková M., Vojtová L., Kochová P., Plencner M., Buzgo M., Míčková A., et al. Collagen/hydroxyapatite scaffold enriched with polycaprolactone nanofibers, thrombocyte-rich solution and mesenchymal stem cells promotes regeneration in large bone defect in vivo. J. Biomed. Mater. Res. Part. A. 2014;103:671–682. doi: 10.1002/jbm.a.35216. PubMed DOI

Prosecká E., Rampichová M., Vojtová L., Tvrdík D., Melčáková Š., Juhasová J., Plencner M., Jakubová R., Jančář J., Nečas A., et al. Optimized conditions for mesenchymal stem cells to differentiate into osteoblasts on a collagen/hydroxyapatite matrix. J. Biomed. Mater. Res. Part. A. 2011;99:307–315. doi: 10.1002/jbm.a.33189. PubMed DOI

Selvakumar G., Suguna L. Fabrication and characterization of collagen-oxidized pullulan scaffold for biomedical applications. Int. J. Biol. Macromol. 2020;164:1592–1599. doi: 10.1016/j.ijbiomac.2020.07.264. PubMed DOI

El-Fiqi A., Kim J.-H., Kim H.-W. Novel bone-mimetic nanohydroxyapatite/collagen porous scaffolds biomimetically mineralized from surface silanized mesoporous nanobioglass/collagen hybrid scaffold: Physicochemical, mechanical and in vivo evaluations. Mater. Sci. Eng. C. 2020;110:110660. doi: 10.1016/j.msec.2020.110660. PubMed DOI

Si J., Yang Y., Xing X., Yang F., Shan P. Controlled degradable chitosan/collagen composite scaffolds for application in nerve tissue regeneration. Polym. Degrad. Stab. 2019;166:73–85. doi: 10.1016/j.polymdegradstab.2019.05.023. DOI

Berdichevski A., Birch M., Markaki A.E. Collagen scaffolds with tailored pore geometry for building three-dimensional vascular networks. Mater. Lett. 2019;248:93–96. doi: 10.1016/j.matlet.2019.03.137. DOI

Ge L., Xu Y., Li X., Yuan L., Tan H., Li D., Mu C. Fabrication of Antibacterial Collagen-Based Composite Wound Dressing. ACS Sustain. Chem. Eng. 2018;6:9153–9166. doi: 10.1021/acssuschemeng.8b01482. DOI

Oryan A., Sahvieh S. Effectiveness of chitosan scaffold in skin, bone and cartilage healing. Int. J. Biol. Macromol. 2017;104:1003–1011. doi: 10.1016/j.ijbiomac.2017.06.124. PubMed DOI

Freier T., Koh H.S., Kazazian K., Shoichet M.S. Controlling cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials. 2005;26:5872–5878. doi: 10.1016/j.biomaterials.2005.02.033. PubMed DOI

Chatelet C. Influence of the degree of acetylation on some biological properties of chitosan films. Biomaterials. 2001;22:261–268. doi: 10.1016/S0142-9612(00)00183-6. PubMed DOI

Li J., Wu Y., Zhao L. Antibacterial activity and mechanism of chitosan with ultra high molecular weight. Carbohydr. Polym. 2016;148:200–205. doi: 10.1016/j.carbpol.2016.04.025. PubMed DOI

Li B., Wang J., Gui Q., Yang H. Continuous production of uniform chitosan beads as hemostatic dressings by a facile flow injection method. J. Mater. Chem. B. 2020;8:7941–7946. doi: 10.1039/D0TB01462A. PubMed DOI

Li B., Wang J., Gui Q., Yang H. Drug-loaded chitosan film prepared via facile solution casting and air-drying of plain water-based chitosan solution for ocular drug delivery. Bioact. Mater. 2020;5:577–583. doi: 10.1016/j.bioactmat.2020.04.013. PubMed DOI PMC

Fairweather-Tait S., Bao Y., Broadley M.R., Collings R., Ford D., Hesketh J.E., Hurst R. Selenium in Human Health and Disease. Antioxidants Redox Signal. 2011;14:1337–1383. doi: 10.1089/ars.2010.3275. PubMed DOI

Wadhwani S.A., Shedbalkar U.U., Singh R., Chopade B.A. Biogenic selenium nanoparticles: Current status and future prospects. Appl. Microbiol. Biotechnol. 2016;100:2555–2566. doi: 10.1007/s00253-016-7300-7. PubMed DOI

Chudobova D., Cihalova K., Dostalova S., Ruttkay-Nedecky B., Rodrigo M.A.M., Tmejova K., Kopel P., Nejdl L., Kudr J., Gumulec J., et al. Comparison of the effects of silver phosphate and selenium nanoparticles onStaphylococcus aureusgrowth reveals potential for selenium particles to prevent infection. FEMS Microbiol. Lett. 2013;351:195–201. doi: 10.1111/1574-6968.12353. PubMed DOI

Mulla N.A., Otari S.V., Bohara R.A., Yadav H.M., Pawar S. Rapid and size-controlled biosynthesis of cytocompatible selenium nanoparticles by Azadirachta indica leaves extract for antibacterial activity. Mater. Lett. 2020;264:127353. doi: 10.1016/j.matlet.2020.127353. DOI

Shakibaie M., Forootanfar H., Golkari Y., Mohammadi-Khorsand T., Shakibaie M.R. Anti-biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis. J. Trace Elements Med. Biol. 2015;29:235–241. doi: 10.1016/j.jtemb.2014.07.020. PubMed DOI

Huang X., Chen X., Chen Q., Yu Q., Sun N., Liu J. Investigation of functional selenium nanoparticles as potent antimicrobial agents against superbugs. Acta Biomater. 2016;30:397–407. doi: 10.1016/j.actbio.2015.10.041. PubMed DOI

Guisbiers G., Lara H.H., Mendoza-Cruz R., Naranjo G., Vincent B.A., Peralta X.G., Nash K.L. Inhibition of Candida albicans biofilm by pure selenium nanoparticles synthesized by pulsed laser ablation in liquids. Nanomed. Nanotechnol. Biol. Med. 2017;13:1095–1103. doi: 10.1016/j.nano.2016.10.011. PubMed DOI PMC

Yip J., Liu L., Wong K.-H., Leung P.H.M., Yuen C.-W.M., Cheung M.-C. Investigation of antifungal and antibacterial effects of fabric padded with highly stable selenium nanoparticles. J. Appl. Polym. Sci. 2014;131:131. doi: 10.1002/app.40728. DOI

Sloviková A., Vojtova L., Jančař J. Preparation and modification of collagen-based porous scaffold for tissue engineering. Chem. Pap. 2008;62:417–422. doi: 10.2478/s11696-008-0045-8. DOI

Cihalova K., Chudobova D., Michálek P., Moulick A., Guran R., Kopel P., Adam V., Kizek R. Staphylococcus aureus and MRSA Growth and Biofilm Formation after Treatment with Antibiotics and SeNPs. Int. J. Mol. Sci. 2015;16:24656–24672. doi: 10.3390/ijms161024656. PubMed DOI PMC

Heger Z., Vesely R., Cihalova K., Kopel P., Milosavljevic V., Heger Z., Hynek D., Guran R., Vaculovicova M., Sedlacek P., et al. Antimicrobial Agent Based on Selenium Nanoparticles and Carboxymethyl Cellulose for the Treatment of Bacterial Infections. J. Biomed. Nanotechnol. 2017;13:767–777. doi: 10.1166/jbn.2017.2384. DOI

Sendrea C., Carsote C., Badea E., Buda A.A., Niculescu M., Iovu H. Non-Invasive Characterisation of Collagen-Based Materials by NMR-Mouse and ATR-FTIR. Sci. Bull. B Chem. Mater. Sci. UPB. 2016;78:27–38.

Bauer E.A., Cooper T.W., Huang J.S., Altman J., Deuel T.F. Stimulation of in vitro human skin collagenase expression by platelet-derived growth factor. Proc. Natl. Acad. Sci. USA. 1985;82:4132–4136. doi: 10.1073/pnas.82.12.4132. PubMed DOI PMC

Zhang X., Xu S., Shen L., Li G. Factors affecting thermal stability of collagen from the aspects of extraction, processing and modification. J. Leather Sci. Eng. 2020;2:1–29. doi: 10.1186/s42825-020-00033-0. DOI

Davidenko N., Schuster C., Bax D., Raynal N., Farndale R., Best S., Cameron R.E. Control of cross-linking for tailoring collagen-based scaffolds stability and mechanics. Acta Biomater. 2015;25:131–142. doi: 10.1016/j.actbio.2015.07.034. PubMed DOI PMC

Grabarek Z., Gergely J. Zero-length cross-linking procedure with the use of active esters. Anal. Biochem. 1990;185:131–135. doi: 10.1016/0003-2697(90)90267-D. PubMed DOI

Yang C. Enhanced physicochemical properties of collagen by using EDC/NHS-cross-linking. Bull. Mater. Sci. 2012;35:913–918. doi: 10.1007/s12034-012-0376-5. DOI

Babrnáková J., Pavliňáková V., Brtníková J., Sedlacek P., Prosecká E., Rampichová M., Filová E., Hearnden V., Vojtová L. Synergistic effect of bovine platelet lysate and various polysaccharides on the biological properties of collagen-based scaffolds for tissue engineering: Scaffold preparation, chemo-physical characterization, in vitro and ex ovo evaluation. Mater. Sci. Eng. C. 2019;100:236–246. doi: 10.1016/j.msec.2019.02.092. PubMed DOI

McHale M.K., Bergmann N.M., West J.L. Handbook of Stem Cells. Elsevier BV; London, UK: 2013. Histogenesis in Three-Dimensional Scaffolds; pp. 951–963.

Murphy C.M., Haugh M.G., O’Brien F.J. The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials. 2010;31:461–466. doi: 10.1016/j.biomaterials.2009.09.063. PubMed DOI

Loh Q.L., Choong C. Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size. Tissue Eng. Part. B Rev. 2013;19:485–502. doi: 10.1089/ten.teb.2012.0437. PubMed DOI PMC

George J., Onodera J., Miyata T. Biodegradable honeycomb collagen scaffold for dermal tissue engineering. J. Biomed. Mater. Res. Part A. 2008;87:1103–1111. doi: 10.1002/jbm.a.32277. PubMed DOI

Shoulders M.D., Raines R.T. Collagen Structure and Stability. Annu. Rev. Biochem. 2009;78:929–958. doi: 10.1146/annurev.biochem.77.032207.120833. PubMed DOI PMC

Nagai T., Suzuki N., Tanoue Y., Kai N., Takeshi N., Nobutaka S., Yasuhiro T., Norihisa K. Collagen from Tendon of Yezo Sika Deer (Cervus nippon yesoensis) as By-Product. Food Nutr. Sci. 2012;3:72–79. doi: 10.4236/fns.2012.31012. DOI

Stani C., Vaccari L., Mitri E., Giovanni B. FTIR investigation of the secondary structure of type I collagen: New insight into the amide III band. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020;229:118006. doi: 10.1016/j.saa.2019.118006. PubMed DOI

Nikonenko N.A., Buslov D.K., Sushko N.I., Zhbankov R.G. Investigation of stretching vibrations of glycosidic linkages in disaccharides and polysaccarides with use of IR spectra deconvolution. Biopolymers. 2000;57:257–262. doi: 10.1002/1097-0282(2000)57:4<257::AID-BIP7>3.0.CO;2-3. PubMed DOI

Queiroz M.F., Melo K.R.T., Sabry D.A., Sassaki G.L., Rocha H.A.O. Does the Use of Chitosan Contribute to Oxalate Kidney Stone Formation? Mar. Drugs. 2014;13:141–158. doi: 10.3390/md13010141. PubMed DOI PMC

Soubhagya A., Moorthi A., Prabaharan M. Preparation and characterization of chitosan/pectin/ZnO porous films for wound healing. Int. J. Biol. Macromol. 2020;157:135–145. doi: 10.1016/j.ijbiomac.2020.04.156. PubMed DOI

Muta H., Miwa M., Satoh M. Ion-specific swelling of hydrophilic polymer gels. Polymer. 2001;42:6313–6316. doi: 10.1016/S0032-3861(01)00098-2. DOI

Egawa M., Arimoto H., Hirao T., Takahashi M., Ozaki Y. Regional Difference of Water Content in Human Skin Studied by Diffuse-Reflectance Near-Infrared Spectroscopy: Consideration of Measurement Depth. Appl. Spectrosc. 2006;60:24–28. doi: 10.1366/000370206775382866. PubMed DOI

Postlethwaite A.E., Seyer J.M., Kang A.H. Chemotactic attraction of human fibroblasts to type I, II, and III collagens and collagen-derived peptides. Proc. Natl. Acad. Sci. USA. 1978;75:871–875. doi: 10.1073/pnas.75.2.871. PubMed DOI PMC

Lauer-Fields J.L., Juska D., Fields G.B. Matrix metalloproteinases and collagen catabolism. Biopolymers. 2002;66:19–32. doi: 10.1002/bip.10201. PubMed DOI

Karakiulakis G., Papadimitriu E., Missirlis E., Maragoudakis M.E. Effect of divalent metal ions on collagenase from Clostridium histolyticum. Biochem. Int. 1991;24:397–404. PubMed

Gimeno M., Pinczowski P., Pérez M., Giorello A., Martínez M.Á., Santamaria J., Arruebo M., Luján L. A controlled antibiotic release system to prevent orthopedic-implant associated infections: An in vitro study. Eur. J. Pharm. Biopharm. 2015;96:264–271. doi: 10.1016/j.ejpb.2015.08.007. PubMed DOI PMC

Kourmouli A., Valenti M., Van Rijn E., Beaumont H.J.E., Kalantzi O.-I., Schmidt-Ott A., Biskos G. Can disc diffusion susceptibility tests assess the antimicrobial activity of engineered nanoparticles? J. Nanoparticle Res. 2018;20:1–6. doi: 10.1007/s11051-018-4152-3. PubMed DOI PMC

Stocks S.M. Mechanism and use of the commercially available viability stain, BacLight. Cytom. Part A. 2003;61:189–195. doi: 10.1002/cyto.a.20069. PubMed DOI

Zgurskaya H.I., Lopez C.A., Gnanakaran S. Permeability Barrier of Gram-Negative Cell Envelopes and Approaches To Bypass It. ACS Infect. Dis. 2015;1:512–522. doi: 10.1021/acsinfecdis.5b00097. PubMed DOI PMC

Geoffrion L.D., Hesabizadeh T., Medina-Cruz D., Kusper M., Taylor P., Vernet-Crua A., Chen J., Ajo A., Webster T.J., Guisbiers G. Naked Selenium Nanoparticles for Antibacterial and Anticancer Treatments. ACS Omega. 2020;5:2660–2669. doi: 10.1021/acsomega.9b03172. PubMed DOI PMC

Huang T., Holden J.A., Heath D.E., O’Brien-Simpson N.M., O’Connor A.J. Engineering highly effective antimicrobial selenium nanoparticles through control of particle size. Nanoscale. 2019;11:14937–14951. doi: 10.1039/C9NR04424H. PubMed DOI

Giacometti A., Cirioni O., Schimizzi A.M., Del Prete M.S., Barchiesi F., D’Errico M.M., Petrelli E., Scalise G. Epidemiology and Microbiology of Surgical Wound Infections. J. Clin. Microbiol. 2000;38:918–922. doi: 10.1128/JCM.38.2.918-922.2000. PubMed DOI PMC

Chen Y.E., Fischbach M.A., Belkaid Y. Skin microbiota–host interactions. Nat. Cell Biol. 2018;553:427–436. doi: 10.1038/nature25177. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...