Mutual influence of selenium nanoparticles and FGF2-STAB® on biocompatible properties of collagen/chitosan 3D scaffolds: in vitro and ex ovo evaluation
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-29874A
Ministerstvo Zdravotnictví Ceské Republiky
CZ.02.1.01/0.0/0.0/16_019/0000787
Ministerstvo Školství, Mládeže a Tělovýchovy
CEITEC VUT/FEKT-J-20-6146
Vysoké Učení Technické v Brně
CZ.02.1.01/0.0/0.0/16_025/0007314
European Regional Development Fund
PubMed
33849566
PubMed Central
PMC8045349
DOI
10.1186/s12951-021-00849-w
PII: 10.1186/s12951-021-00849-w
Knihovny.cz E-zdroje
- Klíčová slova
- 3D porous scaffold, Chitosan, Collagen, Fibroblast growth factor 2, Selenium nanoparticles,
- MeSH
- antibakteriální látky MeSH
- biokompatibilní materiály farmakologie MeSH
- buněčné linie MeSH
- chitosan farmakologie MeSH
- fibroblastový růstový faktor 2 farmakologie MeSH
- fibroblasty účinky léků MeSH
- hojení ran MeSH
- kolagen farmakologie MeSH
- lidé MeSH
- nanočástice chemie terapeutické užití MeSH
- poréznost MeSH
- selen chemie farmakologie MeSH
- testování materiálů MeSH
- tkáňové inženýrství metody MeSH
- tkáňové podpůrné struktury * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- biokompatibilní materiály MeSH
- chitosan MeSH
- fibroblastový růstový faktor 2 MeSH
- kolagen MeSH
- selen MeSH
In a biological system, nanoparticles (NPs) may interact with biomolecules. Specifically, the adsorption of proteins on the nanoparticle surface may influence both the nanoparticles' and proteins' overall bio-reactivity. Nevertheless, our knowledge of the biocompatibility and risk of exposure to nanomaterials is limited. Here, in vitro and ex ovo biocompatibility of naturally based crosslinked freeze-dried 3D porous collagen/chitosan scaffolds, modified with thermostable fibroblast growth factor 2 (FGF2-STAB®), to enhance healing and selenium nanoparticles (SeNPs) to provide antibacterial activity, were evaluated. Biocompatibility and cytotoxicity were tested in vitro using normal human dermal fibroblasts (NHDF) with scaffolds and SeNPs and FGF2-STAB® solutions. Metabolic activity assays indicated an antagonistic effect of SeNPs and FGF2-STAB® at high concentrations of SeNPs. The half-maximal inhibitory concentration (IC50) of SeNPs for NHDF was 18.9 µg/ml and IC80 was 5.6 µg/ml. The angiogenic properties of the scaffolds were monitored ex ovo using a chick chorioallantoic membrane (CAM) assay and the cytotoxicity of SeNPs over IC80 value was confirmed. Furthermore, the positive effect of FGF2-STAB® at very low concentrations (0.01 µg/ml) on NHDF metabolic activity was observed. Based on detailed in vitro testing, the optimal concentrations of additives in the scaffolds were determined, specifically 1 µg/ml of FGF2-STAB® and 1 µg/ml of SeNPs. The scaffolds were further subjected to antimicrobial tests, where an increase in selenium concentration in the collagen/chitosan scaffolds increased the antibacterial activity. This work highlights the antimicrobial ability and biocompatibility of newly developed crosslinked collagen/chitosan scaffolds involving FGF2-STAB® and SeNPs. Moreover, we suggest that these sponges could be used as scaffolds for growing cells in systems with low mechanical loading in tissue engineering, especially in dermis replacement, where neovascularization is a crucial parameter for successful skin regeneration. Due to their antimicrobial properties, these scaffolds are also highly promising for tissue replacement requiring the prevention of infection.
Zobrazit více v PubMed
Amani H, et al. Antioxidant nanomaterials in advanced diagnoses and treatments of ischemia reperfusion injuries. J Mater Chem B. 2017;5(48):9452–9476. doi: 10.1039/C7TB01689A. PubMed DOI
Amani H, et al. Selenium nanoparticles for targeted stroke therapy through modulation of inflammatory and metabolic signaling. Sci Reports. 2019;12:9. PubMed PMC
Babrnáková J, Pavliňáková V, Brtníková J, Sedláček P, Prosecká E, Rampichová M, Filová E, Hearnden V, Vojtová V. Synergistic effect of bovine platelet lysate and various polysaccharides on the biological properties of collagen-based scaffolds for tissue engineering: Scaffold preparation, chemo-physical characterization, in vitro and ex ovo evaluation. Mater Sci Eng C. 2019;100:236-46. PubMed
Beheshti N, et al. Efficacy of biogenic selenium nanoparticles against Leishmania major: in vitro and in vivo studies. J Trace Elements Med Biol. 2013;27(3):203–7. doi: 10.1016/j.jtemb.2012.11.002. PubMed DOI
Brown K, Arthur J. Selenium, selenoproteins and human health: a review. Public Health Nutr. 2001;4(2B):593–9. doi: 10.1079/PHN2001143. PubMed DOI
Cihalova K, et al. Staphylococcus aureus and MRSA growth and biofilm formation after treatment with antibiotics and SeNPs. Int J Mol Sci. 2015;16(10):24656–24672. doi: 10.3390/ijms161024656. PubMed DOI PMC
Di Gioacchino M, et al. Immunotoxicity of nanoparticles. Int J Immunopathol Pharmacol. 2011;24(1):65S–71S. PubMed
Dohle DS, et al. Chick ex ovo culture and ex ovo CAM assay: how it really works. J Visualiz Exp. 2010;33:1620. PubMed PMC
Dorazilová J, et al. Synergistic effect of chitosan and selenium nanoparticles on biodegradation and antibacterial properties of collagenous scaffolds designed for infected burn wounds. Nanomaterials. 2020;10(10):1–20. doi: 10.3390/nano10101971. PubMed DOI PMC
Drury JL, Mooney DJ. Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials. 2003;24(24):4337–4351. doi: 10.1016/S0142-9612(03)00340-5. PubMed DOI
Geoffrion LD, et al. Naked Selenium Nanoparticles for Antibacterial and Anticancer Treatments. ACS Omega. 2020;5(6):2660–2669. doi: 10.1021/acsomega.9b03172. PubMed DOI PMC
Guisbiers G, et al. Inhibition of Candida albicans biofilm by pure selenium nanoparticles synthesized by pulsed laser ablation in liquids. Nanomedicine. 2017;13(3):1095–1103. doi: 10.1016/j.nano.2016.10.011. PubMed DOI PMC
Hariharan H, Al-Harbi A, Karuppiah P, Kumar Rajaram S. microbial Synthesis of selinium nanocomposite using Saccharomyces cerevisiae and its antimicrobial activity against pathogens causing nosocomial infECTION. Chalcogenide Letters. 2012;9(12):509–515.
Hegerova D, et al. Antimicrobial agent based on selenium nanoparticles and carboxymethyl cellulose for the treatment of bacterial infections. J Biomed Nanotechnol. 2017;13(7):767–777. doi: 10.1166/jbn.2017.2384. DOI
He Y, et al. Toxicity of selenium nanoparticles in male Sprague-Dawley rats at supranutritional and nonlethal levels. Life Sci. 2014;115(1):44–51. doi: 10.1016/j.lfs.2014.08.023. PubMed DOI
Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev. 2012;64:18–23. doi: 10.1016/j.addr.2012.09.010. PubMed DOI
Huang X, et al. Investigation of functional selenium nanoparticles as potent antimicrobial agents against superbugs. Acta Biomaterialia. 2016;30:397–407. doi: 10.1016/j.actbio.2015.10.041. PubMed DOI
Chang C, Gershwin ME. Drugs and autoimmunity—a contemporary review and mechanistic approach. J Autoimmun. 2010;34(3):J266–75. doi: 10.1016/j.jaut.2009.11.012. PubMed DOI
Chudobova D, et al. Comparison of the effects of silver phosphate and selenium nanoparticles on Staphylococcus aureus growth reveals potential for selenium particles to prevent infection. FEMS Microbiol Lett. 2014;351:195–201. doi: 10.1111/1574-6968.12353. PubMed DOI
Johnson M. Fetal bovine serum. Mater Methods. 2012;32:117.
Kalishwaralal K, et al. Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells. Colloids Surfaces B. 2009;73(1):51–57. doi: 10.1016/j.colsurfb.2009.04.025. PubMed DOI
Khurana A, et al. Therapeutic applications of selenium nanoparticles. Biomed Pharmacother. 2019;111:802–812. doi: 10.1016/j.biopha.2018.12.146. PubMed DOI
Kielczykowska M, Kocot J, Pazdzior M, Musik I. Selenium - a fascinating antioxidant of protective properties. Adv Clin Exp Med. 2018;27(2):245–255. doi: 10.17219/acem/67222. PubMed DOI
Lee AS, et al. Methicillin-resistant Staphylococcus aureus. Nat Rev Dis Prim. 2018;5:4. PubMed
Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem Rev. 2001;101(7):1869–1879. doi: 10.1021/cr000108x. PubMed DOI
Li X, Xu H, Chen ZS, Chen G. Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater. 2011;2011:1687–4110.
Loomba L, Scarabelli T. Metallic nanoparticles and their medicinal potential. Part I: Gold and silver colloids. Ther Delivery. 2013;4(7):859–73. doi: 10.4155/tde.13.55. PubMed DOI
MacFarquhar JK, et al. Acute selenium toxicity associated with a dietary supplement. Archiv Intern Med. 2010;170(3):256–61. doi: 10.1001/archinternmed.2009.495. PubMed DOI PMC
Menon S, Shanmugam VK. Chemopreventive mechanism of action by oxidative stress and toxicity induced surface decorated selenium nanoparticles. J Trace Elem Met Biol. 2020;62:126549. doi: 10.1016/j.jtemb.2020.126549. PubMed DOI
Monopoli MP, Åberg C, Salvati A, Dawson KA. Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol. 2012;7(12):779–786. doi: 10.1038/nnano.2012.207. PubMed DOI
Navarro-Alarcon M, Cabrera-Vique C. Selenium in food and the human body: A review. Sci Total Environ. 2008;400(1–3):115–41. doi: 10.1016/j.scitotenv.2008.06.024. PubMed DOI
Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev. 2013;65(13–14):1803–15. doi: 10.1016/j.addr.2013.07.011. PubMed DOI
Piętka-Ottlik M, et al. New organoselenium compounds active against pathogenic bacteria. Fungi and Viruses. Chem Pharm Bull. 2008;56(10):1423–7. doi: 10.1248/cpb.56.1423. PubMed DOI
Ramos JF, Tran PA, Webster TJ. Selenium nanoparticles for the prevention of PVC-related medical infections. IEEE. 2012;12:58.
Ratushnaya EV, et al. SYNTHESIS And Antibacterial Activity Of Organoselenium compounds. Pharm Chem J. 2002;36:652–653. doi: 10.1023/A:1023405611793. DOI
Richtera L, et al. The composites of graphene oxide with metal or semimetal nanoparticles and their effect on pathogenic microorganism. Materials. 2015;8(6):2994–3011. doi: 10.3390/ma8062994. DOI
Saptarshi SR, Duschl A, Lopata AL. Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnol. 2013;7:11. PubMed PMC
Shakibaie M, et al. Anti-biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis. J Trace Elements Med Biol. 2015;29:235–241. doi: 10.1016/j.jtemb.2014.07.020. PubMed DOI
Shakibaie M, et al. Acute and subacute toxicity of novel biogenic selenium nanoparticles in mice. Pharm Biol. 2013;51(1):58–63. doi: 10.3109/13880209.2012.710241. PubMed DOI
Skalickova S, et al. Selenium nanoparticles as a nutritional supplement. Nutrition. 2017;33:83–90. doi: 10.1016/j.nut.2016.05.001. PubMed DOI
Sloviková A, Vojtová L, Jančař J. Preparation and modification of collagen-based porous scaffold for tissue engineering. Chem Papers. 2008;62:417–422. doi: 10.2478/s11696-008-0045-8. DOI
Spallholz JE. On the nature of selenium toxicity and carcinostatic activity. Free Radic Biol Med. 1994;17(1):45–64. doi: 10.1016/0891-5849(94)90007-8. PubMed DOI
Tong SYC, et al. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. ClinMicrobiol Rev. 2015;28(3):603–661. PubMed PMC
Tran PA, et al. Low cytotoxic trace element selenium nanoparticles and their differential antimicrobial properties against S. aureus and E. coli. Nanotechnology. 2015;27(4):45101. doi: 10.1088/0957-4484/27/4/045101. PubMed DOI
Tran PA, Webster TJ. Selenium nanoparticles inhibit Staphylococcus aureus growth. Int J Nanomed. 2011;6:1553–8. PubMed PMC
Tran PA, Webster TJ. Antimicrobial selenium nanoparticle coatings on polymeric medical devices. Nanotechnology. 2013;24(15):155101. doi: 10.1088/0957-4484/24/15/155101. PubMed DOI
Verlee A, Mincke S, Stevens CV. Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydr Polym. 2017;164:268–283. doi: 10.1016/j.carbpol.2017.02.001. PubMed DOI
Wadhwani SA, Shedbalkar UU, Singh R, Chopade BA. Biogenic selenium nanoparticles: current status and future prospects. Appl Microbiol Biotechnol. 2016;100:2555–2566. doi: 10.1007/s00253-016-7300-7. PubMed DOI
Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int J Nanomedicine. 2017;12:1227–1249. doi: 10.2147/IJN.S121956. PubMed DOI PMC
Wang Q, Webster TJ. Nanostructured selenium for preventing biofilm formation on polycarbonate medical devices. J Biomed Mater Res. 2012;100(12):3205–3210. doi: 10.1002/jbm.a.34262. PubMed DOI
Wang Q, Webster TJ. Short communication: Inhibiting biofilm formation on paper towels through the use of selenium nanoparticles coatings. Int J Nanomed. 2013;8:407–411. PubMed PMC
Yang J, et al. Antibacterial action of selenium-enriched probiotics against pathogenic Escherichia coli. Digest Dis Sci. 2009;54(2):246–54. doi: 10.1007/s10620-008-0361-4. PubMed DOI
Yan L, Gu Z, Zhao Y. Chemical mechanisms of the toxicological properties of nanomaterials: generation of intracellular reactive oxygen species. Chem Asian J. 2013;8(10):2342–53. doi: 10.1002/asia.201300542. PubMed DOI
Yip J, et al. Investigation of antifungal and antibacterial effects of fabric padded with highly stable selenium nanoparticles. J Appl Polym Sci. 2014;131(17):8886–8893. doi: 10.1002/app.40728. DOI
Zhang J, Wang X, Xu TT. Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with se-methylselenocysteine in mice. Toxicol Sci. 2008;101(1):22–31. doi: 10.1093/toxsci/kfm221. PubMed DOI
Zhang L, Pornpattananangkul D, Hu C-M, Huang C-M. Development of Nanoparticles for Antimicrobial Drug Delivery. Curr Med Chem. 2010;17:6. doi: 10.2174/157340610791208763. PubMed DOI