Accelular nanofibrous bilayer scaffold intrapenetrated with polydopamine network and implemented into a full-thickness wound of a white-pig model affects inflammation and healing process
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-29874A and extended project no. NU22-08-00454
Ministerstvo Zdravotnictví Ceské Republiky
17-29874A and extended project no. NU22-08-00454
Ministerstvo Zdravotnictví Ceské Republiky
17-29874A and extended project no. NU22-08-00454
Ministerstvo Zdravotnictví Ceské Republiky
823981
EU Horizon 2020 MSCA-RISE-2018 Research and Innovation Staff Exchange Programme, project ActiTOX under the Marie Skłodowska-Curie grant agreement
RO0518
Ministerstvo Zemědělství
PubMed
36882867
PubMed Central
PMC9990222
DOI
10.1186/s12951-023-01822-5
PII: 10.1186/s12951-023-01822-5
Knihovny.cz E-zdroje
- Klíčová slova
- Bilayer, Chitosan, Collagen, Oxidized cellulose, Polydopamine, Wound healing,
- MeSH
- myši MeSH
- nanovlákna * MeSH
- prasata MeSH
- sloučeniny osmia MeSH
- zánět MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chloropentaammineosmium(III) chloride MeSH Prohlížeč
- polydopamine MeSH Prohlížeč
- sloučeniny osmia MeSH
Treatment of complete loss of skin thickness requires expensive cellular materials and limited skin grafts used as temporary coverage. This paper presents an acellular bilayer scaffold modified with polydopamine (PDA), which is designed to mimic a missing dermis and a basement membrane (BM). The alternate dermis is made from freeze-dried collagen and chitosan (Coll/Chit) or collagen and a calcium salt of oxidized cellulose (Coll/CaOC). Alternate BM is made from electrospun gelatin (Gel), polycaprolactone (PCL), and CaOC. Morphological and mechanical analyzes have shown that PDA significantly improved the elasticity and strength of collagen microfibrils, which favorably affected swelling capacity and porosity. PDA significantly supported and maintained metabolic activity, proliferation, and viability of the murine fibroblast cell lines. The in vivo experiment carried out in a domestic Large white pig model resulted in the expression of pro-inflammatory cytokines in the first 1-2 weeks, giving the idea that PDA and/or CaOC trigger the early stages of inflammation. Otherwise, in later stages, PDA caused a reduction in inflammation with the expression of the anti-inflammatory molecule IL10 and the transforming growth factor β (TGFβ1), which could support the formation of fibroblasts. Similarities in treatment with native porcine skin suggested that the bilayer can be used as an implant for full-thickness skin wounds and thus eliminate the use of skin grafts.
Zobrazit více v PubMed
Efron PA, Moldawer LL. Cytokines and wound healing: the role of cytokine and anticytokine therapy in the repair response. J Burn Care Rehabil. 2004;25(2):149–160. doi: 10.1097/01.BCR.0000111766.97335.34. PubMed DOI
Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003;83(3):835–870. doi: 10.1152/physrev.2003.83.3.835. PubMed DOI
Flanagan M. A practical framework for wound assessment 1: physiology. Br J Nurs. 1996;5(22):1391–1397. doi: 10.12968/bjon.1996.5.22.1391. PubMed DOI
Xie J, Willerth SM, Li X, Macewan MR, Rader A, Sakiyama-Elbert SE, et al. The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials. 2009;30(3):354–362. doi: 10.1016/j.biomaterials.2008.09.046. PubMed DOI PMC
Kennedy KM, Bhaw-Luximon A, Jhurry D. Skin tissue engineering: biological performance of electrospun polymer scaffolds and translational challenges. Regen Eng Transl Med. 2017;3(4):201–214. doi: 10.1007/s40883-017-0035-x. DOI
Ahmadi-Aghkand F, Gholizadeh-Ghaleh AS, Panahi Y, Daraee H, Gorjikhah F, Gholizadeh-Ghaleh Aziz S, et al. Recent prospective of nanofiber scaffolds fabrication approaches for skin regeneration. Artif Cells Nanomed Biotechnol. 2016;44(7):1635–1641. doi: 10.3109/21691401.2015.1111232. PubMed DOI
Zhong SP, Zhang YZ, Lim CT. Tissue scaffolds for skin wound healing and dermal reconstruction. Wires Nanomed Nanobi. 2010;2(5):510–525. doi: 10.1002/wnan.100. PubMed DOI
Demir A, Cevher E. Biopolymers as wound healing materials challenges and new strategies. In: Pignatello Rosario., editor. Biomaterials applications for nanomedicine. London: InTech; 2011.
Shen YI, Song HHG, Papa AE, Burke JA, Volk SW, Gerecht S. Acellular hydrogels for regenerative burn wound healing: translation from a porcine model. J Invest Dermatol. 2015;135(10):2519–2529. doi: 10.1038/jid.2015.182. PubMed DOI PMC
Ruszczak Z. Effect of collagen matrices on dermal wound healing. Adv Drug Deliv Rev. 2003;55(12):1595–1611. doi: 10.1016/j.addr.2003.08.003. PubMed DOI
Meyer M. Processing of collagen based biomaterials and the resulting materials properties. Biomed Eng Online. 2019;18(1):24. doi: 10.1186/s12938-019-0647-0. PubMed DOI PMC
Gaspar A, Moldovan L, Constantin D, Stanciuc AM, Sarbu Boeti PM, Efrimescu IC. Collagen-based scaffolds for skin tissue engineering. J Med Life. 2011;4(2):172–177. PubMed PMC
Vojtová L, Pavliňáková V, Muchová J, Kacvinská K, Brtníková J, Knoz M, et al. Healing and angiogenic properties of collagen/chitosan scaffolds enriched with hyperstable FGF2-STAB protein: in vitro, ex ovo and in vivo comprehensive evaluation. Biomedicines. 2021;9(6):590. PubMed PMC
Vojtová L, Zikmund T, Pavliňáková V, Šalplachta J, Kalasová D, Prosecká E, et al. The 3D imaging of mesenchymal stem cells on porous scaffolds using high-contrasted x-ray computed nanotomography. J Microsc. 2019;273(3):169–177. doi: 10.1111/jmi.12771. PubMed DOI
Shepherd DV, Shepherd JH, Ghose S, Kew SJ, Cameron RE, Best SM. The process of EDC-NHS cross-linking of reconstituted collagen fibres increases collagen fibrillar order and alignment. APL Mater. 2015;3(1):014902. doi: 10.1063/1.4900887. PubMed DOI PMC
Yang C. Enhanced physicochemical properties of collagen by using EDC/NHS-crosslinking. Bull Mater Sci. 2012;35(5):913–918. doi: 10.1007/s12034-012-0376-5. DOI
Davidenko N, Schuster CF, Bax DV, Raynal N, Farndale RW, Best SM, et al. Control of crosslinking for tailoring collagen-based scaffolds stability and mechanics. Acta Biomater. 2015;25:131–142. doi: 10.1016/j.actbio.2015.07.034. PubMed DOI PMC
Gu L, Shan T, Xuan Ma Y, Tay FR, Niu L. Novel biomedical applications of crosslinked collagen. Trends Biotechnol. 2019;37(5):464–91. doi: 10.1016/j.tibtech.2018.10.007. PubMed DOI
Sun LP, Wang S, Zhang ZW, Wang XY, Zhang QQ. Biological evaluation of collagen–chitosan scaffolds for dermis tissue engineering. Biomed Mater. 2009;4(5):055008. doi: 10.1088/1748-6041/4/5/055008. PubMed DOI
Ahmed S, Ikram S. Chitosan based scaffolds and their applications in wound healing. Achiev Life Sci. 2016;10(1):27–37.
Muchová J, Hearnden V, Michlovská L, Vištejnová L, Zavaďáková A, Šmerková K, et al. Mutual influence of selenium nanoparticles and FGF2-STAB® on biocompatible properties of collagen/chitosan 3D scaffolds: in vitro and ex ovo evaluation. J Nanobiotechnology. 2021;19(1):103. doi: 10.1186/s12951-021-00849-w. PubMed DOI PMC
Dorazilová J, Muchová J, Šmerková K, Kočiová S, Diviš P, Kopel P, et al. Synergistic effect of chitosan and selenium nanoparticles on biodegradation and antibacterial properties of collagenous scaffolds designed for infected burn wounds. Nanomaterials. 2020;10(10):1971. doi: 10.3390/nano10101971. PubMed DOI PMC
Meng X, Tian F, Yang J, He CN, Xing N, Li F. Chitosan and alginate polyelectrolyte complex membranes and their properties for wound dressing application. J Mater Sci Mater Med. 2010;21(5):1751–1759. doi: 10.1007/s10856-010-3996-6. PubMed DOI
Karri VVSR, Kuppusamy G, Talluri SV, Mannemala SS, Kollipara R, Wadhwani AD, et al. Curcumin loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds for diabetic wound healing. Int J Biol Macromol. 2016;93:1519–1529. doi: 10.1016/j.ijbiomac.2016.05.038. PubMed DOI
Novotna K, Havelka P, Sopuch T, Kolarova K, Vosmanska V, Lisa V, et al. Cellulose-based materials as scaffolds for tissue engineering. Cellulose. 2013;20(5):2263–2278. doi: 10.1007/s10570-013-0006-4. DOI
Zimnitsky DS, Yurkshtovich TL, Bychkovsky PM. Synthesis and characterization of oxidized cellulose. J Polym Sci A Polym Chem. 2004;42(19):4785–4791. doi: 10.1002/pola.20302. DOI
Martina B, Kateřina K, Miloslava R, Jan G, Ruta M. Oxycellulose: significant characteristics in relation to its pharmaceutical and medical applications. Adv Polym Technol. 2009;28(3):199–208. doi: 10.1002/adv.20161. DOI
Švachová V, Vojtová L, Pavliňák D, Vojtek L, Sedláková V, Hyršl P, et al. Novel electrospun gelatin/oxycellulose nanofibers as a suitable platform for lung disease modeling. Mater Sci Eng C. 2016;67:493–501. doi: 10.1016/j.msec.2016.05.059. PubMed DOI
Joseph B, Augustine R, Kalarikkal N, Thomas S, Seantier B, Grohens Y. Recent advances in electrospun polycaprolactone based scaffolds for wound healing and skin bioengineering applications. Mater Today Commun. 2019;19:319–335. doi: 10.1016/j.mtcomm.2019.02.009. DOI
Barbarisi M, Marino G, Armenia E, Vincenzo Q, Rosso F, Porcelli M, et al. Use of polycaprolactone (PCL) as scaffolds for the regeneration of nerve tissue. J Biomed Mater Res A. 2015;103(5):1755–1760. doi: 10.1002/jbm.a.35318. PubMed DOI
Ding YH, Floren M, Tan W. Mussel-inspired polydopamine for bio-surface functionalization. Biosurf Biotribol. 2016;2(4):121–136. doi: 10.1016/j.bsbt.2016.11.001. PubMed DOI PMC
Tsai WB, Chen WT, Chien HW, Kuo WH, Wang MJ. Poly(dopamine) coating of scaffolds for articular cartilage tissue engineering. Acta Biomater. 2011;7(12):4187–4194. doi: 10.1016/j.actbio.2011.07.024. PubMed DOI
Sun X, Cheng L, Zhao J, Jin R, Sun B, Shi Y, et al. bFGF-grafted electrospun fibrous scaffolds via poly(dopamine) for skin wound healing. J Mater Chem B. 2014;2(23):3636–3645. doi: 10.1039/C3TB21814G. PubMed DOI
Ho CC, Ding SJ. Structure, properties and applications of mussel-inspired polydopamine. J Biomed Nanotechnol. 2014;10(10):3063–3084. doi: 10.1166/jbn.2014.1888. PubMed DOI
Lou T, Leung M, Wang X, Chang JYF, Tsao CT, Sham JGC, et al. Bi-layer scaffold of chitosan/PCL-nanofibrous mat and PLLA-microporous disc for skin tissue engineering. J Biomed Nanotechnol. 2014;10(6):1105–1113. doi: 10.1166/jbn.2014.1793. PubMed DOI
Wang F, Wang M, She Z, Fan K, Xu C, Chu B, et al. Collagen/chitosan based two-compartment and bi-functional dermal scaffolds for skin regeneration. Mater Sci Eng: C. 2015;52:155–162. doi: 10.1016/j.msec.2015.03.013. PubMed DOI
Lin HY, Chen SH, Chang SH, Huang ST. Tri-layered chitosan scaffold as a potential skin substitute. J Biomater Sci Polym Ed. 2015;26(13):855–867. doi: 10.1080/09205063.2015.1061350. PubMed DOI
Kilic Bektas C, Kimiz I, Sendemir A, Hasirci V, Hasirci N. A bilayer scaffold prepared from collagen and carboxymethyl cellulose for skin tissue engineering applications. J Biomater Sci Polym Ed. 2018;29(14):1764–1784. doi: 10.1080/09205063.2018.1498718. PubMed DOI
Hasatsri S, Angspatt A, Aramwit P. Randomized clinical trial of the innovative bilayered wound dressing made of silk and gelatin: safety and efficacy tests using a split-thickness skin graft model. J Evid Based Comple Altern Med. 2015;2015:1–8. doi: 10.1155/2015/206871. PubMed DOI PMC
Ma W, Zhou M, Dong W, Zhao S, Wang Y, Yao J, et al. A bi-layered scaffold of a poly(lactic- co -glycolic acid) nanofiber mat and an alginate–gelatin hydrogel for wound healing. J Mater Chem B. 2021;9(36):7492–7505. doi: 10.1039/D1TB01039E. PubMed DOI
Yao W, Gu H, Hong T, Wang Y, Chen S, Mo X, et al. A bi-layered tubular scaffold for effective anti-coagulant in vascular tissue engineering. Mater Des. 2020;194:108943. doi: 10.1016/j.matdes.2020.108943. DOI
Zhang S, Chen L, Jiang Y, Cai Y, Xu G, Tong T, et al. Bi-layer collagen/microporous electrospun nanofiber scaffold improves the osteochondral regeneration. Acta Biomater. 2013;9(7):7236–7247. doi: 10.1016/j.actbio.2013.04.003. PubMed DOI
Sloviková A, Vojtová L, Jančař J. Preparation and modification of collagen-based porous scaffold for tissue engineering. Chem Pap. 2008;62:4. doi: 10.2478/s11696-008-0045-8. DOI
Kyrova K, Stepanova H, Rychlik I, Polansky O, Leva L, Sekelova Z, et al. The response of porcine monocyte derived macrophages and dendritic cells to salmonella typhimurium and lipopolysaccharide. BMC Vet Res. 2014;10(1):244. doi: 10.1186/s12917-014-0244-1. PubMed DOI PMC
Stepanova H, Pavlova B, Stromerova N, Ondrackova P, Stejskal K, Slana I, et al. Different immune response of pigs to mycobacterium avium subsp. avium and mycobacterium avium subsp. hominissuis infection. Vet Microbiol. 2012;159(3–4):343–50. doi: 10.1016/j.vetmic.2012.04.002. PubMed DOI
Vicenova M, Nechvatalova K, Chlebova K, Kucerova Z, Leva L, Stepanova H, et al. Evaluation of in vitro and in vivo anti-inflammatory activity of biologically active phospholipids with anti-neoplastic potential in porcine model. BMC Compl Altern Med. 2014;14(1):339. doi: 10.1186/1472-6882-14-339. PubMed DOI PMC
Ji Y, Yang X, Ji Z, Zhu L, Ma N, Chen D, et al. DFT-calculated IR spectrum amide I, II, and III band contributions of N -methylacetamide fine components. ACS Omega. 2020;5(15):8572–8578. doi: 10.1021/acsomega.9b04421. PubMed DOI PMC
Zangmeister RA, Morris TA, Tarlov MJ. Characterization of polydopamine thin films deposited at short times by autoxidation of dopamine. Langmuir. 2013;29(27):8619–8628. doi: 10.1021/la400587j. PubMed DOI
Zhu S, Gu Z, Xiong S, An Y, Liu Y, Yin T, et al. Fabrication of a novel bio-inspired collagen–polydopamine hydrogel and insights into the formation mechanism for biomedical applications. RSC Adv. 2016;6(70):66180–66190. doi: 10.1039/C6RA12306F. DOI
Mallinson D, Mullen AB, Lamprou DA. Probing polydopamine adhesion to protein and polymer films: microscopic and spectroscopic evaluation. J Mater Sci. 2018;53(5):3198–3209. doi: 10.1007/s10853-017-1806-y. PubMed DOI PMC
Debels H, Hamdi M, Abberton K, Morrison W. Dermal matrices and bioengineered skin substitutes. Plast Reconstr Surg Glob Open. 2015;3(1):e284. doi: 10.1097/GOX.0000000000000219. PubMed DOI PMC
Foley E, Robinson A, Maloney M. Skin substitutes and dermatology: a review. Curr Dermatol Rep. 2013;2(2):101–112. doi: 10.1007/s13671-013-0044-z. DOI
Zhang Q, Wen J, Liu C, Ma C, Bai F, Leng X, et al. Early-stage bilayer tissue-engineered skin substitute formed by adult skin progenitor cells produces an improved skin structure in vivo. Stem Cell Res Ther. 2020;11(1):407. doi: 10.1186/s13287-020-01924-z. PubMed DOI PMC
Bello YM, Falabella AF, Eaglstein WH. Tissue-Engineered skin. Am J Clin Dermatol. 2001;2(5):305–313. doi: 10.2165/00128071-200102050-00005. PubMed DOI
Butler CE, Orgill DP, Yannas IV, Compton CC. Effect of keratinocyte seeding of collagen-glycosaminoglycan membranes on the regeneration of skin in a porcine model. Plast Reconstr Surg. 1998;101(6):1572–9. doi: 10.1097/00006534-199805000-00021. PubMed DOI
Hu Y, Dan W, Xiong S, Kang Y, Dhinakar A, Wu J, et al. Development of collagen/polydopamine complexed matrix as mechanically enhanced and highly biocompatible semi-natural tissue engineering scaffold. Acta Biomater. 2017;47:135–148. doi: 10.1016/j.actbio.2016.10.017. PubMed DOI
Sharma D, Jia W, Long F, Pati S, Chen Q, Qyang Y, et al. Polydopamine and collagen coated micro-grated polydimethylsiloxane for human mesenchymal stem cell culture. Bioact Mater. 2019;4:142–150. doi: 10.1016/j.bioactmat.2019.02.002. PubMed DOI PMC
Fichman G, Schneider JP. Dopamine self-polymerization as a simple and powerful tool to modulate the viscoelastic mechanical properties of peptide-based gels. Molecules. 2021;26(5):1363. doi: 10.3390/molecules26051363. PubMed DOI PMC
Han X, Li M, Fan Z, Zhang Y, Zhang H, Li Q. PVA/Agar interpenetrating network hydrogel with fast healing, high strength, antifreeze, and water retention. Macromol Chem Phys. 2020;221(22):2000237. doi: 10.1002/macp.202000237. DOI
Zhao D, Kim JF, Ignacz G, Pogany P, Lee YM, Szekely G. Bio-inspired robust membranes nanoengineered from interpenetrating polymer networks of polybenzimidazole/polydopamine. ACS Nano. 2019;13(1):125–133. doi: 10.1021/acsnano.8b04123. PubMed DOI
Pacelli S, Paolicelli P, Petralito S, Subham S, Gilmore D, Varani G, et al. Investigating the role of polydopamine to modulate stem cell adhesion and proliferation on gellan gum-based hydrogels. ACS Appl Bio Mater. 2020;3(2):945–951. doi: 10.1021/acsabm.9b00989. PubMed DOI
Magin CM, Neale DB, Drinker MC, Willenberg BJ, Reddy ST, la Perle KM, et al. Evaluation of a bilayered, micropatterned hydrogel dressing for full-thickness wound healing. Exp Biol Med. 2016;241(9):986–995. doi: 10.1177/1535370216640943. PubMed DOI PMC
Eskandarinia A, Kefayat A, Agheb M, Rafienia M, Amini Baghbadorani M, Navid S, et al. A novel bilayer wound dressing composed of a dense polyurethane/propolis membrane and a biodegradable polycaprolactone/gelatin nanofibrous scaffold. Sci Rep. 2020;10(1):3063. doi: 10.1038/s41598-020-59931-2. PubMed DOI PMC
Sierra-Sánchez Á, Fernández-González A, Lizana-Moreno A, Espinosa-Ibáñez O, Martinez-Lopez A, Guerrero-Calvo J, et al. Hyaluronic acid biomaterial for human tissue-engineered skin substitutes: Preclinical comparative in vivo study of wound healing. J Eur Acad Dermatol Venereol. 2020;34(10):2414–2427. doi: 10.1111/jdv.16342. PubMed DOI
Gong M, Yan F, Yu L, Li F. A dopamine-methacrylated hyaluronic acid hydrogel as an effective carrier for stem cells in skin regeneration therapy. Cell Death Dis. 2022;13(8):738. doi: 10.1038/s41419-022-05060-9. PubMed DOI PMC
Lee SY, Jeon S, Kwon YW, Kwon M, Kang MS, Seong KY, et al. Combinatorial wound healing therapy using adhesive nanofibrous membrane equipped with wearable LED patches for photobiomodulation. Sci Adv. 2022;8:15. doi: 10.1126/sciadv.abn1646. PubMed DOI PMC
Zheng Z, Li M, Shi P, Gao Y, Ma J, Li Y, et al. Polydopamine-modified collagen sponge scaffold as a novel dermal regeneration template with sustained release of platelet-rich plasma to accelerate skin repair: a one-step strategy. Bioact Mater. 2021;6(8):2613–2628. doi: 10.1016/j.bioactmat.2021.01.037. PubMed DOI PMC
Yazdi MK, Zare M, Khodadadi A, Seidi F, Sajadi SM, Zarrintaj P, et al. Polydopamine biomaterials for skin regeneration. ACS Biomater Sci Eng. 2022;8(6):2196–2219. doi: 10.1021/acsbiomaterials.1c01436. PubMed DOI
Seaton M, Hocking A, Gibran NS. Porcine models of cutaneous wound healing. ILAR J. 2015;56(1):127–138. doi: 10.1093/ilar/ilv016. PubMed DOI
Tapking C, Popp D, Branski LK. Pig model to test tissue-engineered skin. In: Böttcher-Haberzeth Sophie, Biedermann Thomas., editors. Skin tissue engineering: methods and protocols. New York: Springer; 2019. pp. 239–49. PubMed
Stricker-Krongrad A, Shoemake CR, Bouchard GF. The miniature swine as a model in experimental and translational medicine. Toxicol Pathol. 2016;44(4):612–623. doi: 10.1177/0192623316641784. PubMed DOI
Sullivan TP, Eaglstein WH, Davis SC, Mertz P. The pig as a model for human wound healing. Wound Repair Regen. 2001;9(2):66–76. doi: 10.1046/j.1524-475x.2001.00066.x. PubMed DOI
Sierra-Sánchez Á, Kim KH, Blasco-Morente G, Arias-Santiago S. Cellular human tissue-engineered skin substitutes investigated for deep and difficult to heal injuries. NPJ Regen Med. 2021;6(1):35. doi: 10.1038/s41536-021-00144-0. PubMed DOI PMC
Debeer S, le Luduec JB, Kaiserlian D, Laurent P, Nicolas JF, Dubois B, et al. Comparative histology and immunohistochemistry of porcine versus human skin. Eur J Dermatol. 2013;23(4):456–466. doi: 10.1684/ejd.2013.2060. PubMed DOI
Khiao In M, Richardson KC, Loewa A, Hedtrich S, Kaessmeyer S, Plendl J. Histological and functional comparisons of four anatomical regions of porcine skin with human abdominal skin. Anat Histol Embryol. 2019;48(3):207–217. doi: 10.1111/ahe.12425. PubMed DOI
Xiao T, Yan Z, Xiao S, Xia Y. Proinflammatory cytokines regulate epidermal stem cells in wound epithelialization. Stem Cell Res Ther. 2020;11(1):232. doi: 10.1186/s13287-020-01755-y. PubMed DOI PMC
Akita S. Wound repair regen: mechanisms, signaling. Int J Mol Sci. 2019;20(24):6328. doi: 10.3390/ijms20246328. PubMed DOI PMC
Caley MP, Martins VLC, O’Toole EA. Metalloproteinases and wound healing. Adv Wound Care. 2015;4(4):225–234. doi: 10.1089/wound.2014.0581. PubMed DOI PMC
Zhao H, Zeng Z, Liu L, Chen J, Zhou H, Huang L, et al. Polydopamine nanoparticles for the treatment of acute inflammation-induced injury. Nanoscale. 2018;10(15):6981–6991. doi: 10.1039/C8NR00838H. PubMed DOI
Li Y, Yang L, Hou Y, Zhang Z, Chen M, Wang M, et al. Polydopamine-mediated graphene oxide and nanohydroxyapatite-incorporated conductive scaffold with an immunomodulatory ability accelerates periodontal bone regeneration in diabetes. Bioact Mater. 2022;18:213–227. doi: 10.1016/j.bioactmat.2022.03.021. PubMed DOI PMC
Zheng B, Deng G, Zheng J, Li Y, Wang B, Ding X, et al. Self-polymerized polydopamine-based nanoparticles for acute kidney injury treatment through inhibiting oxidative damages and inflammatory. Int J Biochem Cell Biol. 2022;143:106141. doi: 10.1016/j.biocel.2021.106141. PubMed DOI
Jin L, Yuan F, Chen C, Wu J, Gong R, Yuan G, et al. Degradation Products of polydopamine restrained inflammatory response of LPS-stimulated macrophages through mediation TLR-4-MYD88 dependent signaling pathways by antioxidant. Inflammation. 2019;42(2):658–671. doi: 10.1007/s10753-018-0923-3. PubMed DOI
Elgharably H, Ganesh K, Dickerson J, Khanna S, Abas M, Das Ghatak P, et al. A modified collagen gel dressing promotes angiogenesis in a preclinical swine model of chronic ischemic wounds. Wound Repair Regen. 2014;22(6):720–9. doi: 10.1111/wrr.12229. PubMed DOI PMC
Middelkoop E, van den Bogaerdt AJ, Lamme EN, Hoekstra MJ, Brandsma K, Ulrich MMW. Porcine wound models for skin substitution and burn treatment. Biomaterials. 2004;25(9):1559–1567. doi: 10.1016/S0142-9612(03)00502-7. PubMed DOI
Philandrianos C, Andrac-Meyer L, Mordon S, Feuerstein JM, Sabatier F, Veran J, et al. Comparison of five dermal substitutes in full-thickness skin wound healing in a porcine model. Burns. 2012;38(6):820–829. doi: 10.1016/j.burns.2012.02.008. PubMed DOI
el Har-el Y, Gerstenhaber JA, Brodsky R, Huneke RB, Lelkes PI. Electrospun soy protein scaffolds as wound dressings: enhanced reepithelialization in a porcine model of wound healing. Wound Med. 2014;5:9–15. doi: 10.1016/j.wndm.2014.04.007. DOI