In Situ Homogeneous Generation of Copper Nanoparticles in Collagen-Cellulose Freeze-Dried Foams Using Natural Reduction Agents to Enhance Their Stability, Antibacterial Properties, and Cytocompatibility

. 2025 Sep 09 ; 10 (35) : 39799-39813. [epub] 20250728

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40949256

The treatment of chronic wounds remains a major challenge in regenerative medicine due to prolonged healing times, susceptibility to infection, and underlying conditions like diabetes. Incorporating bioactive and antibacterial nanoparticles (NPs) into wound dressings can significantly enhance their mechanical properties, structural integrity, and functionality, improving stability, biocompatibility, and healing efficacy. However, conventional methods of loading NPs in polymer matrices often lead to uneven distribution and localized toxicity. To overcome these limitations, we employ a novel in situ synthesis of copper nanoparticles (CuNPs) using an encapsulation method via the self-assembled polymerization of dopamine (DOPA) or tannic acid (TA) within collagen/carboxymethyl cellulose (Coll/CMC) 3D freeze-dried scaffolds. When CuNPs are synthesized ex situ, both DOPA and TA act as reducing and encapsulating agents. However, in situ synthesis within Coll/CMC scaffolds results in TA functioning solely as a reducing agent, while DOPA serves both as a reducing agent and, through its polymerization into polydopamine, as a stabilizing agent. The polydopamine network enhances collagen fiber adhesion to CuNPs and stabilizes them via noncovalent interactions. Notably, the DOPA-in situ/Cu sample exhibited prolonged enzymatic stability for up to 7 days. X-ray microcomputed tomography confirmed the homogeneous distribution of CuNPs throughout the scaffold. Biological assays demonstrated the enhanced antibacterial efficacy of DOPA/TA-in situ/Cu samples against Staphylococcus aureus and MRSA, along with cytocompatibility with 3T3 fibroblasts. Future research should explore the in vivo application of these scaffolds and their potential in regenerative medicine for treating infected wounds.

Zobrazit více v PubMed

Sowbhagya R., Muktha H., Ramakrishnaiah T. N., Surendra A. S., Sushma S. M., Tejaswini C., Roopini K., Rajashekara S.. Collagen As The Extracellular Matrix Biomaterials In The Arena Of Medical Sciences. Tissue and Cell. 2024;90:90. doi: 10.1016/j.tice.2024.102497. PubMed DOI

Shi, S. ; Wang, L. ; Song, C. ; Yao, L. ; Xiao, J. . Recent Progresses Of Collagen Dressings For Chronic Skin Wound Healing. Collagen and Leather 2023, 5 (1), 10.1186/s42825-023-00136-4. DOI

Sedlář M., Kacvinská K., Fohlerová Z., Izsák D., Chalupová M., Suchý P., Dohnalová M., Sopuch T., Vojtová L.. A Synergistic Effect Of Fibrous Carboxymethyl Cellulose With Equine Collagen Improved The Hemostatic Properties Of Freeze-Dried Wound Dressings. Cellulose. 2023;30(17):11113–11131. doi: 10.1007/s10570-023-05499-9. DOI

Babrnáková J., Pavliňáková V., Brtníková J., Sedláček P., Prosecká E., Rampichová M., Filová E., Hearnden V., Vojtová L.. Synergistic Effect Of Bovine Platelet Lysate And Various Polysaccharides On The Biological Properties Of Collagen-Based Scaffolds For Tissue Engineering: Scaffold Preparation, Chemo-Physical Characterization, In Vitro And Ex Ovo Evaluation. Materials Science and Engineering: C. 2019;100:236–246. doi: 10.1016/j.msec.2019.02.092. PubMed DOI

Wang, H. A Review Of The Effects Of Collagen Treatment In Clinical Studies. Polymers 2021, 13 (22), 3868 10.3390/polym13223868. PubMed DOI PMC

Sun L., Li B., Jiang D., Hou H.. Nile Tilapia Skin Collagen Sponge Modified With Chemical Cross-Linkers As A Biomedical Hemostatic Material. Colloids Surf., B. 2017;159:89–96. doi: 10.1016/j.colsurfb.2017.07.061. PubMed DOI

Sharma S., Rai V. K., Narang R. K., Markandeywar T. S.. Collagen-Based Formulations For Wound Healing: A Literature Review. Life Sciences. 2022;290:290. doi: 10.1016/j.lfs.2021.120096. PubMed DOI

Szopa K., Znamirowska-Piotrowska A., Szajnar K., Pawlos M.. Effect Of Collagen Types, Bacterial Strains And Storage Duration On The Quality Of Probiotic Fermented Sheep’s Milk. Molecules. 2022;27(9):3028. doi: 10.3390/molecules27093028. PubMed DOI PMC

Zayed H. S., Saleh S., Omar A. E., Saleh A. K., Salama A., Tolba E.. Development Of Collagen–Chitosan Dressing Gel Functionalized With Propolis–Zinc Oxide Nanoarchitectonics To Accelerate Wound Healing. Int. J. Biol. Macromol. 2024;261:261. doi: 10.1016/j.ijbiomac.2024.129665. PubMed DOI

Moreira T. D., Martins V. B., da Silva Júnior A. H., Sayer C., de Araújo P. H. H., Immich A. P. S.. New Insights Into Biomaterials For Wound Dressings And Care: Challenges And Trends. Prog. Org. Coat. 2024;187:187. doi: 10.1016/j.porgcoat.2023.108118. DOI

Markandeywar, T. S. ; Narang, R. K. . Collagen And Chitosan-Based Biogenic Sprayable Gel Of Silver Nanoparticle For Advanced Wound Care. Naunyn-Schmiedeberg’s Archives of Pharmacology 2025, 398, 5543 10.1007/s00210-024-03554-1. PubMed DOI

Dorazilová, J. ; Muchová, J. ; Šmerková, K. ; Kočiová, S. ; Diviš, P. ; Kopel, P. ; Veselý, R. ; Pavliňáková, V. ; Adam, V. ; Vojtová, L. . Synergistic Effect Of Chitosan And Selenium Nanoparticles On Biodegradation And Antibacterial Properties Of Collagenous Scaffolds Designed For Infected Burn Wounds. Nanomaterials 2020, 10 (10), 1971 10.3390/nano10101971. PubMed DOI PMC

Muchová, J. ; Hearnden, V. ; Michlovská, L. ; Vištejnová, L. ; Zavad’áková, A. ; Šmerková, K. ; Kočiová, S. ; Adam, V. ; Kopel, P. ; Vojtová, L. . Mutual Influence of Selenium Nanoparticles And FGF2-STAB® On Biocompatible Properties Of Collagen/Chitosan 3D Scaffolds: In Vitro And Ex Ovo Evaluation. J. Nanobiotechnol. PubMed DOI PMC

Kumar S. V., Bafana A. P., Pawar P., Faltane M., Rahman A., Dahoumane S. A., Kucknoor A., Jeffryes C. S.. Optimized Production Of Antibacterial Copper Oxide Nanoparticles In A Microwave-Assisted Synthesis Reaction Using Response Surface Methodology. Colloids Surf., A. 2019;573:170–178. doi: 10.1016/j.colsurfa.2019.04.063. DOI

Naz S., Gul A., Zia M.. Toxicity Of Copper Oxide Nanoparticles: A Review Study. IET Nanobiotechnology. 2020;14(1):1–13. doi: 10.1049/iet-nbt.2019.0176. PubMed DOI PMC

Fahmy H. M., Ebrahim N. M., Gaber M. H.. In-Vitro Evaluation Of Copper/Copper Oxide Nanoparticles Cytotoxicity And Genotoxicity In Normal And Cancer Lung Cell Lines. Journal of Trace Elements in Medicine and Biology. 2020;60:60. doi: 10.1016/j.jtemb.2020.126481. PubMed DOI

Angelé-Martínez C., Nguyen K. V. T., Ameer F. S., Anker J. N., Brumaghim J. L.. Reactive Oxygen Species Generation By Copper­(Ii) Oxide Nanoparticles Determined By Dna Damage Assays And Epr Spectroscopy. Nanotoxicology. 2017;11(2):278–288. doi: 10.1080/17435390.2017.1293750. PubMed DOI PMC

Malhotra S., Welling M. N., Mantri S. B., Desai K.. In Vitro And In Vivo Antioxidant, Cytotoxic, And Anti-Chronic Inflammatory Arthritic Effect Of Selenium Nanoparticles. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2016;104(5):993–1003. doi: 10.1002/jbm.b.33448. PubMed DOI

AshaRani P. V., Low Kah Mun G., Hande M. P., Valiyaveettil S.. Cytotoxicity And Genotoxicity Of Silver Nanoparticles In Human Cells. ACS Nano. 2009;3(2):279–290. doi: 10.1021/nn800596w. PubMed DOI

Muguruza A. R., di Maio A., Hodges N. J., Blair J. M. A., Pikramenou Z.. Chelating Silica Nanoparticles For Efficient Antibiotic Delivery And Particle Imaging In Gram-Negative Bacteria. Nanoscale Advances. 2023;5(9):2453–2461. doi: 10.1039/D2NA00884J. PubMed DOI PMC

Xu N., Hu A., Pu X., Wang J., Liao X., Huang Z., Yin G.. Cu-Chelated Polydopamine Nanoparticles As A Photothermal Medium And “Immunogenic Cell Death” Inducer For Combined Tumor Therapy. J. Mater. Chem. B. 2022;10(16):3104–3118. doi: 10.1039/D2TB00025C. PubMed DOI

Fu Z., Chen R.. Study Of Complexes Of Tannic Acid With Fe­(Iii) And Fe­(Ii) Journal of Analytical Methods in Chemistry. 2019;2019:1–6. doi: 10.1155/2019/3894571. PubMed DOI PMC

Foley P.. Dopamine In Perspective. Encyclopedia of. Neuroscience. 2009:563–570. doi: 10.1016/B978-008045046-9.01137-2. DOI

Liebscher J.. Chemistry Of Polydopamine–Scope, Variation, And Limitation. Eur. J. Org. Chem. 2019;2019(31–32):4976–4994. doi: 10.1002/ejoc.201900445. DOI

Lee H., Dellatore S. M., Miller W. M., Messersmith P. B.. Mussel-Inspired Surface Chemistry For Multifunctional Coatings. Science. 2007;318(5849):426–430. doi: 10.1126/science.1147241. PubMed DOI PMC

Khan N. S., Ahmad A., Hadi S. M.. Anti-Oxidant, Pro-Oxidant Properties Of Tannic Acid And Its Binding To Dna. Chemico-Biological Interactions. 2000;125(3):177–189. doi: 10.1016/S0009-2797(00)00143-5. PubMed DOI

Lin M.-C., Wang Y., Wang R., Zhang X.. The Synergetic Effect Of Tannic Acid As Adhesion Promoter In Electrodeposition Of Polypyrrole On Copper For Corrosion Protection. Mater. Chem. Phys. 2023;294:294. doi: 10.1016/j.matchemphys.2022.126991. DOI

Awashra M., Młynarz P.. The Toxicity Of Nanoparticles And Their Interaction With Cells In Vitro Metabolomic Perspective: An In Vitro Metabolomic Perspective. Nanoscale Advances. 2023;5(10):2674–2723. doi: 10.1039/D2NA00534D. PubMed DOI PMC

Mavil-Guerrero E., Vazquez-Duhalt R., Juarez-Moreno K.. Exploring The Cytotoxicity Mechanisms Of Copper Ions And Copper Oxide Nanoparticles In Cells From The Excretory System. Chemosphere. 2024;347:347. doi: 10.1016/j.chemosphere.2023.140713. PubMed DOI

Fu C., Fan Y., Liu G., Li W., Ma J., Xiao J.. One-Step Fabrication Of An Injectable Antibacterial Collagen Hydrogel With In Situ Synthesized Silver Nanoparticles For Accelerated Diabetic Wound Healing. Chemical Engineering Journal. 2024;480:480. doi: 10.1016/j.cej.2023.148288. DOI

Trayford C., van Rijt S.. In Situ Modified Mesoporous Silica Nanoparticles: Synthesis, Properties And Theranostic Applications. Biomaterials. Science. 2024;12(21):5450–5467. doi: 10.1039/D4BM00094C. PubMed DOI PMC

Scudiero D. A., Shoemaker R. H., Paull K. D., Monks A., Tierney S., Nofziger T. H., Currens M. J., Seniff D., Boyd M. R.. Evaluation of a Soluble Tetrazolium/Formazan Assay for Cell Growth and Drug Sensitivity in Culture Using Human and Other Tumor Cell Lines. Cancer Res. 1988:4827–4833. PubMed

Ferreira T. A. G., Campelo M. d. S., Alves D. R., da Silva W. M. B., de Morais S. M., Krambrock K., Ricardo N. M. P. S., de Menezes J. E. S. A., da Silva F. L. F., Pinheiro S. d. O., Ribeiro M. E. N. P.. Synthesis And Characterization Of Tannic Acid–Copper Complex: A Promising Anticholinesterase Drug. Polyhedron. 2024;264:264. doi: 10.1016/j.poly.2024.117213. DOI

Wang P., Chen R., Jia Y., Xu Y., Bai S., Li H., Li J.. Cu-Chelated Polydopamine Nanozymes With Laccase-Like Activity For Photothermal Catalytic Degradation Of Dyes. J. Colloid Interface Sci. 2024;669:712–722. doi: 10.1016/j.jcis.2024.04.124. PubMed DOI

Sackey J., Nwanya A. C., Bashir A. K. H., Matinise N., Ngilirabanga J. B., Ameh A. E., Coetsee E., Maaza M.. Electrochemical Properties Of Euphorbia Pulcherrima Mediated Copper Oxide Nanoparticles. Mater. Chem. Phys. 2020;244:244. doi: 10.1016/j.matchemphys.2020.122714. DOI

Ma, J. ; Chen, X. ; Sun, X. ; Zhao, C. . Preparation And Characterization Of Dopamine-Modified Carbon Fiber Paper Composites For Gas Diffusion Layers. Polymers 2023, 15 (16), 3428 10.3390/polym15163428. PubMed DOI PMC

Presti, M. L. ; Portoghese, M. ; Farinola, G. M. ; Omenetto, F. G. . Dynamic Adhesive Fibers For Remote Capturing Of Objects. Adv. Funct. Mater. 2025, 35 (4), 10.1002/adfm.202414219. DOI

Li, H. ; Xi, J. ; Donaghue, A. G. ; Keum, J. ; Zhao, Y. ; An, K. ; McKenzie, E. R. ; Ren, F. . Synthesis And Catalytic Performance Of Polydopamine Supported Metal Nanoparticles. Sci. Rep. 2020, 10 (1), 10.1038/s41598-020-67458-9. PubMed DOI PMC

Li H., Jia Y., Bai S., Peng H., Li J.. Metal-Chelated Polydopamine Nanomaterials: Nanoarchitectonics And Applications In Biomedicine, Catalysis, And Energy Storage. Adv. Colloid Interface Sci. 2024;334:334. doi: 10.1016/j.cis.2024.103316. PubMed DOI

Ni Y.-Z., Jiang W.-F., Tong G.-S., Chen J.-X., Wang J., Li H.-M., Yu C.-Y., Huang X.-h., Zhou Y.-F.. Preparation Of Polydopamine Nanocapsules In A Miscible Tetrahydrofuran–Buffer Mixture. Org. Biomol. Chem. 2015;13(3):686–690. doi: 10.1039/C4OB02080D. PubMed DOI

Ding T., Wang L., Zhang J., Xing Y., Cai K.. Interfacially Active Polydopamine For Nanoparticle Stabilized Nanocapsules In A One-Pot Assembly Strategy Toward Efficient Drug Delivery. J. Mater. Chem. B. 2018;6(12):1754–1763. doi: 10.1039/C7TB03008H. PubMed DOI

Postma A., Yan Y., Wang Y., Zelikin A. N., Tjipto E., Caruso F.. Self-Polymerization Of Dopamine As A Versatile And Robust Technique To Prepare Polymer Capsules. Chem. Mater. 2009;21(14):3042–3044. doi: 10.1021/cm901293e. DOI

Zidek, J. ; Vojtova, L. ; Abdel-Mohsen, A. M. ; Chmelik, J. ; Zikmund, T. ; Brtnikova, J. ; Jakubicek, R. ; Zubal, L. ; Jan, J. ; Kaiser, J. . Accurate Micro-Computed Tomography Imaging Of Pore Spaces In Collagen-Based Scaffold. J. Mater. Sci.: Mater. Med. 2016, 27 (6), 10.1007/s10856-016-5717-2. PubMed DOI

Zhang M., Ding C., Yang J., Lin S., Chen L., Huang L.. Study Of Interaction Between Water-Soluble Collagen And Carboxymethyl Cellulose In Neutral Aqueous Solution. Carbohydr. Polym. 2016;137:410–417. doi: 10.1016/j.carbpol.2015.10.098. PubMed DOI

Galardy R. E., Grobelny D.. Inhibition Of The Collagenase From Clostridium Histolyticum By Phosphoric And Phosphonic Amides. Biochemistry. 1983;22(19):4556–4561. doi: 10.1021/bi00288a032. PubMed DOI

Kanth S. V., Ramaraj A., Rao J. R., Nair B. U.. Stabilization Of Type I Collagen Using Dialdehyde Cellulose. Process Biochemistry. 2009;44(8):869–874. doi: 10.1016/j.procbio.2009.04.008. DOI

Zmerli I., Michel J.-P., Makky A.. Bioinspired Polydopamine Nanoparticles: Synthesis, Nanomechanical Properties, And Efficient Pegylation Strategy. J. Mater. Chem. B. 2020;8(20):4489–4504. doi: 10.1039/C9TB02769F. PubMed DOI

Zhu S., Gu Z., Xiong S., An Y., Liu Y., Yin T., You J., Hu Y.. Fabrication Of A Novel Bio-Inspired Collagen–Polydopamine Hydrogel And Insights Into The Formation Mechanism For Biomedical Applications. RSC Adv. 2016;6(70):66180–66190. doi: 10.1039/C6RA12306F. DOI

Kraal P., Jansen B., Nierop K. G. J., Verstraten J. M.. Copper Complexation By Tannic Acid In Aqueous Solution. Chemosphere. 2006;65(11):2193–2198. doi: 10.1016/j.chemosphere.2006.05.058. PubMed DOI

Broussard K. C., Powers J. G.. Wound Dressings: Selecting The Most Appropriate Type. American Journal of Clinical Dermatology. 2013;14(6):449–459. doi: 10.1007/s40257-013-0046-4. PubMed DOI

Rahmani S., Mooney D. J.. Tissue-Engineered Wound Dressings For Diabetic Foot Ulcers. Diabetic Foot. 2018:247–256. doi: 10.1007/978-3-319-89869-8_15. DOI

Li, Y. ; Cheng, J. ; Delparastan, P. ; Wang, H. ; Sigg, S. J. ; DeFrates, K. G. ; Cao, Y. ; Messersmith, P. B. . Molecular Design Principles Of Lysine-Dopa Wet Adhesion. Nature Communications 2020, 11 (1), 10.1038/s41467-020-17597-4. PubMed DOI PMC

Wang Y., Zhang Y., Yang Y.-P., Jin M.-Y., Huang S., Zhuang Z.-M., Zhang T., Cao L.-L., Lin X.-Y., Chen J., Du Y.-Z., Chen J., Tan W.-Q.. Versatile Dopamine-Functionalized Hyaluronic Acid-Recombinant Human Collagen Hydrogel Promoting Diabetic Wound Healing Via Inflammation Control And Vascularization Tissue Regeneration. Bioactive Materials. 2024;35:330–345. doi: 10.1016/j.bioactmat.2024.02.010. PubMed DOI PMC

Chen C., Yang H., Yang X., Ma Q.. Tannic Acid: A Crosslinker Leading To Versatile Functional Polymeric Networks: A Review. RSC Adv. 2022;12(13):7689–7711. doi: 10.1039/D1RA07657D. PubMed DOI PMC

Borkow G., Roth T., Kalinkovich A.. Wide Spectrum Potent Antimicrobial Efficacy Of Wound Dressings Impregnated With Cuprous Oxide Microparticles. Microbiology Research. 2022;13(3):366–376. doi: 10.3390/microbiolres13030029. DOI

Melamed, E. ; Kiambi, P. ; Okoth, D. ; Honigber, I. ; Tamir, E. ; Borkow, G. . Healing Of Chronic Wounds By Copper Oxide-Impregnated Wound DressingsCase Series. Medicina 2021, 57 (3), 296 10.3390/medicina57030296. PubMed DOI PMC

Ross, C.A. ; Caballero, B.H. ; Cousins, R.J. ; Tucker, K.L. ; Ziegler, T.R. . Modern nutrition in health and disease, 11 ed., Wolters Kluwer Health Adis (ESP), 2012.

Chatterjee, A. K. ; Chakraborty, R. ; Basu, T. . Mechanism Of Antibacterial Activity Of Copper Nanoparticles. Nanotechnology 2014, 25 (13), 135101 10.1088/0957-4484/25/13/135101. PubMed DOI

Ezraty B., Gennaris A., Barras F., Collet J.-F.. Oxidative Stress, Protein Damage And Repair In Bacteria. Nature Reviews Microbiology. 2017;15(7):385–396. doi: 10.1038/nrmicro.2017.26. PubMed DOI

Wang L., Hu C., Shao L.. The Antimicrobial Activity Of Nanoparticles: Present Situation And Prospects For The Future. Int. J. Nanomed. 2017;12:1227–1249. doi: 10.2147/IJN.S121956. PubMed DOI PMC

Simonetti, O. ; Rizzetto, G. ; Radi, G. ; Molinelli, E. ; Cirioni, O. ; Giacometti, A. ; Offidani, A. . New Perspectives On Old And New Therapies Of Staphylococcal Skin Infections: The Role Of Biofilm Targeting In Wound Healing. Antibiotics 2021, 10 (11), 1377 10.3390/antibiotics10111377. PubMed DOI PMC

Trevors J. T., Cotter C. M.. Copper Toxicity And Uptake In Microorganisms. Journal of Industrial Microbiology. 1990;6(2):77–84. doi: 10.1007/BF01576426. DOI

Buracco S., Peracino B., Andreini C., Bracco E., Bozzaro S.. Differential Effects Of Iron, Zinc, And Copper On Dictyostelium Discoideum Cell Growth And Resistance To Legionella Pneumophila. Frontiers in Cellular and Infection. Microbiology. 2018;7:7. doi: 10.3389/fcimb.2017.00536. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...