Staphylococcus aureus and MRSA Growth and Biofilm Formation after Treatment with Antibiotics and SeNPs
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26501270
PubMed Central
PMC4632770
DOI
10.3390/ijms161024656
PII: ijms161024656
Knihovny.cz E-zdroje
- Klíčová slova
- Staphylococcus aureus, antibiotics, methicillin-resistant Staphylococcus aureus, selenium nanoparticles,
- MeSH
- antibakteriální látky farmakologie MeSH
- biofilmy účinky léků MeSH
- methicilin rezistentní Staphylococcus aureus účinky léků MeSH
- mikrobiální testy citlivosti MeSH
- nanočástice chemie MeSH
- selen chemie farmakologie MeSH
- Staphylococcus aureus účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- selen MeSH
Methicillin-resistant Staphylococcus aureus (MRSA) is a dangerous pathogen resistant to β-lactam antibiotics. Due to its resistance, it is difficult to manage the infections caused by this strain. We examined this issue in terms of observation of the growth properties and ability to form biofilms in sensitive S. aureus and MRSA after the application of antibiotics (ATBs)-ampicillin, oxacillin and penicillin-and complexes of selenium nanoparticles (SeNPs) with these ATBs. The results suggest the strong inhibition effect of SeNPs in complexes with conventional ATBs. Using the impedance method, a higher disruption of biofilms was observed after the application of ATB complexes with SeNPs compared to the group exposed to ATBs without SeNPs. The biofilm formation was intensely inhibited (up to 99%±7% for S. aureus and up to 94%±4% for MRSA) after application of SeNPs in comparison with bacteria without antibacterial compounds whereas ATBs without SeNPs inhibited S. aureus up to 79%±5% and MRSA up to 16%±2% only. The obtained results provide a basis for the use of SeNPs as a tool for the treatment of bacterial infections, which can be complicated because of increasing resistance of bacteria to conventional ATB drugs.
Zobrazit více v PubMed
Ding Y.L., Wang W., Fan M., Tong Z.C., Kuang R., Jiang W.K., Ni L.X. Antimicrobial and anti-biofilm effect of Bac8c on major bacteria associated with dental caries and Streptococcus mutans biofilms. Peptides. 2014;52:61–67. doi: 10.1016/j.peptides.2013.11.020. PubMed DOI
Abucayon E., Ke N., Cornut R., Patelunas A., Miller D., Nishiguchi M.K., Zoski C.G. Investigating catalase activity through hydrogen peroxide decomposition by bacteria biofilms in real time using scanning electrochemical microscopy. Anal. Chem. 2014;86:498–505. doi: 10.1021/ac402475m. PubMed DOI
Chudobova D., Nejdl L., Gumulec J., Krystofova O., Rodrigo M.A.M., Kynicky J., Ruttkay-Nedecky B., Kopel P., Babula P., Adam V., et al. Complexes of silver(I) ions and silver phosphate nanoparticles with hyaluronic acid and/or chitosan as promising antimicrobial agents for vascular grafts. Int. J. Mol. Sci. 2013;14:13592–13614. doi: 10.3390/ijms140713592. PubMed DOI PMC
Zaidi S.T.R., Al Omran S., Al Aithan A.S.M., Al Sultan M. Efficacy and safety of low-dose colistin in the treatment for infections caused by multidrug-resistant gram-negative bacteria. J. Clin. Pharm. Ther. 2014;39:272–276. doi: 10.1111/jcpt.12138. PubMed DOI
Buru A.S., Pichika M.R., Neela V., Mohandas K. In vitro antibacterial effects of Cinnamomum extracts on common bacteria found in wound infections with emphasis on methicillin-resistant Staphylococcus aureus. J. Ethnopharmacol. 2014;153:587–595. doi: 10.1016/j.jep.2014.02.044. PubMed DOI
Bjarnsholt T., Ciofu O., Molin S., Givskov M., Hoiby N. Applying insights from biofilm biology to drug development—Can a new approach be developed? Nat. Rev. Drug Discov. 2013;12:791–808. doi: 10.1038/nrd4000. PubMed DOI
Besinis A., de Peralta T., Handy R.D. Inhibition of biofilm formation and antibacterial properties of a silver nano-coating on human dentine. Nanotoxicology. 2014;8:745–754. doi: 10.3109/17435390.2013.825343. PubMed DOI
Banaszkiewicz T., Krukowski H. Pathogenicity of MRSA for humans and animals. Med. Weter. 2014;70:151–156.
Lall M., Sahni A.K. Prevalence of inducible clindamycin resistance in Staphylococcus aureus isolated from clinical samples. Armed. Forces Med. J. India. 2014;70:43–47. doi: 10.1016/j.mjafi.2013.01.004. PubMed DOI PMC
Zhu C., He N.A., Cheng T., Tan H.L., Guo Y.Y., Chen D.S., Cheng M.Q., Yang Z., Zhang X.L. Ultrasound-targeted microbubble destruction enhances human beta-defensin 3 activity against antibiotic-resistant Staphylococcus biofilms. Inflammation. 2013;36:983–996. doi: 10.1007/s10753-013-9630-2. PubMed DOI
Kim C., Mwangi M., Chung M., Milheirco C., de Lencastre H., Tomasz A. The mechanism of heterogeneous beta-lactam resistance in MRSA: Key role of the stringent stress response. PLoS ONE. 2013;8:1–10. doi: 10.1371/journal.pone.0082814. PubMed DOI PMC
Vanderhaeghen W., Vandendriessche S., Crombe F., Dispas M., Denis O., Hermans K., Haesebrouck F., Butaye P. Species and staphylococcal cassette chromosome mec (SCCmec) diversity among methicillin-resistant non-Staphylococcus aureus staphylococci isolated from pigs. Vet. Microbiol. 2012;158:123–128. doi: 10.1016/j.vetmic.2012.01.020. PubMed DOI
Chang L.-J., Jia B., Wei X.-Y., Huang W.-X., Liu C.-W. Tracing the outbreak of methicilin resistant Staphylococcus aureus in intensive care units. Zhongguo Kangshengsu Zazhi. 2012;37:615–618. (In Chinese)
Boneca I.G., Chiosis G. Vancomycin resistance: Occurrence, mechanisms and strategies to combat it. Expert Opin. Ther. Targets. 2003;7:311–328. doi: 10.1517/14728222.7.3.311. PubMed DOI
Doron S., Hibberd P.L., Goldin B., Thorpe C., McDermott L., Snydman D.R. Effect of lactobacillus rhamnosus GG administration on vancomycin-resistant enterococcus colonization in adults with comorbidities. Antimicrob. Agents Chemther. 2015;59:4593–4599. doi: 10.1128/AAC.00300-15. PubMed DOI PMC
Hiramatsu K., Okuma K., Ma X.X., Yamamoto M., Hori S., Kapi M. New trends in Staphylococcus aureus infections: Glycopeptide resistance in hospital and methicillin resistance in the community. Curr. Opin. Infect. Dis. 2002;15:407–413. doi: 10.1097/00001432-200208000-00009. PubMed DOI
Rai M., Kon K., Ingle A., Duran N., Galdiero S., Galdiero M. Broad-spectrum bioactivities of silver nanoparticles: The emerging trends and future prospects. Appl. Microbiol. Biotechnol. 2014;98:1951–1961. doi: 10.1007/s00253-013-5473-x. PubMed DOI PMC
Ahmed R.A., Fadl-allah S.A., El-Bagoury N., El-Rab S. Improvement of corrosion resistance and antibacterial effect of NiTi orthopedic materials by chitosan and gold nanoparticles. Appl. Surf. Sci. 2014;292:390–399. doi: 10.1016/j.apsusc.2013.11.150. DOI
Kummer K.M., Taylor E.N., Durmas N.G., Tarquinio K.M., Ercan B., Webster T.J. Effects of different sterilization techniques and varying anodized TiO2 nanotube dimensions on bacteria growth. J. Biomed. Mater. Res. Part B. 2013;101B:677–688. doi: 10.1002/jbm.b.32870. PubMed DOI
Mirershadi F., Jafari A., Janati E., Roohi E., Sarabi M. Ag/ZnO nano-composites as novel antibacterial agent against strain of MRSA. J. Pure Appl. Microbiol. 2013;7:947–956.
Chudobova D., Cihalova K., Dostalova S., Ruttkay-Nedecky B., Rodrigo M.A.M., Tmejova K., Kopel P., Nejdl L., Kudr J., Gumulec J., et al. Comparison of the effects of silver phosphate and selenium nanoparticles on Staphylococcus aureus growth reveals potential for selenium particles to prevent infection. FEMS Microbiol. Lett. 2014;351:195–201. doi: 10.1111/1574-6968.12353. PubMed DOI
Tran P.A., Webster T.J. Selenium nanoparticles inhibit Staphylococcus aureus growth. Int. J. Nanomed. 2011;6:1553–1558. PubMed PMC
Singh R., Smitha M.S., Singh S.P. The role of nanotechnology in combating multi-drug resistant bacteria. J. Nanosci. Nanotechnol. 2014;14:4745–4756. doi: 10.1166/jnn.2014.9527. PubMed DOI
Noh H.J., Kim H.S., Jun S.H., Kang Y.H., Cho S., Park Y. Biogenic silver nanoparticles with chlorogenic acid as a bioreducing agent. J. Nanosci. Nanotechnol. 2013;13:5787–5793. doi: 10.1166/jnn.2013.7492. PubMed DOI
Grigor’eva A., Saranina I., Tikunova N., Safonov A., Timoshenko N., Rebrov A., Ryabchikova E. Fine mechanisms of the interaction of silver nanoparticles with the cells of Salmonella typhimurium and Staphylococcus aureus. Biometals. 2013;26:479–488. doi: 10.1007/s10534-013-9633-3. PubMed DOI
Garcia S.N., Gutierrez L., McNulty A. Real-time cellular analysis as a novel approach for in vitro cytotoxicity testing of medical device extracts. J. Biomed. Mater. Res. Part A. 2013;101A:2097–2106. doi: 10.1002/jbm.a.34507. PubMed DOI
Scrace S., O’Neill E., Hammond E.M., Pires I.M. Use of the xCELLigence system for real-time analysis of changes in cellular motility and adhesion in physiological conditions. In: Coutts A.S., editor. Adhesion Protein Protocols. 3rd ed. Volume 1046. Humana Press Inc; Totowa, UK: 2013. pp. 295–306. PubMed
Junka A.F., Janczura A., Smutnicka D., Maczynska B., Secewicz A., Nowicka J., Bartoszewicz M., Gosciniak G. Use of the real time xCelligence system for purposes of medical microbiology. Pol. J. Microbiol. 2012;61:191–197. PubMed
Wagner C., Aytac S., Hansch G.M. Biofilm growth on implants: Bacteria prefer plasma coats. Int. J. Artif. Organs. 2011;34:811–817. doi: 10.5301/ijao.5000061. PubMed DOI
Anastasiadis P., Mojica K.D.A., Allen J.S., Matter M.L. Detection and quantification of bacterial biofilms combining high-frequency acoustic microscopy and targeted lipid microparticles. J. Nanobiotechnol. 2014;12:1–11. doi: 10.1186/1477-3155-12-24. PubMed DOI PMC
Muhsin T.M., Hachim A.K. Mycosynthesis and characterization of silver nanoparticles and their activity against some human pathogenic bacteria. World J. Microbiol. Biotechnol. 2014;30:2081–2090. doi: 10.1007/s11274-014-1634-z. PubMed DOI
Wang S.-Y., Wang X.-J., Ma J. Progress in real time xCELLigence analysis system on drug cardiotoxicity screening. Zhongguo Yaolixue Yu Dulixue Zazhi. 2013;27:908–912. (In Chinese)
Himmel H., Herbold S. Drug-induced functional cardiotoxicity screening with the xcelligence system: Effects of reference compounds in human iPSC-versus mouse eSC-derived cardiomyocytes. J. Pharmacol. Toxicol. Methods. 2013;68:E9–E10. doi: 10.1016/j.vascn.2013.01.043. PubMed DOI
Xi B.A., Wang T.X., Li N., Ouyang W., Zhang W., Wu J.Y., Xu X., Wang X.B., Abassi Y.A. Functional cardiotoxicity profiling and screening using the xCELLigence RTCA cardio system. J. Assoc. Lab. Autom. 2011;16:415–421. doi: 10.1016/j.jala.2011.09.002. PubMed DOI
Macdonald C., Unsworth C.P., Graham E.S. Enrichment of differentiated hNT neurons and subsequent analysis using flow-cytometry and xCELLigence sensing. J. Neurosci. Methods. 2014;227:47–56. doi: 10.1016/j.jneumeth.2014.02.004. PubMed DOI
Bruening-Wright A., Obejero-Paz C., Kojukhova M., Brown A. Quantification of cardioactive drug effects using xCELLigence RTCA cardio and human stem cell-derived cardiomyocytes. J. Pharmacol. Toxicol. Methods. 2013;68:E6. doi: 10.1016/j.vascn.2013.01.032. DOI
Golke A., Cymerys J., Slonska A., Dzieciatkowski T., Chmielewska A., Tucholska A., Banbura M.W. The xCELLigence system for real-time and label-free analysis of neuronal and dermal cell response to Equine Herpesvirus type 1 infection. Pol. J. Vet. Sci. 2012;15:151–153. doi: 10.2478/v10181-011-0126-4. PubMed DOI
Dowling C.M., Ors C.H., Kiely P.A. Using real-time impedance-based assays to monitor the effects of fibroblast-derived media on the adhesion, proliferation, migration and invasion of colon cancer cells. Biosci. Rep. 2014;34:415–427. doi: 10.1042/BSR20140031. PubMed DOI PMC
Murugan K., Usha M., Malathi P., Al-Sohaibani A.S., Chandrasekaran M. Biofilm forming multi drug resistant staphylococcus spp. Among Patients with Conjunctivitis. Pol. J. Microbiol. 2010;59:233–239. PubMed
Rudkin J.K., Laabei M., Edwards A.M., Joo H.S., Otto M., Lennon K.L., O’Gara J.P., Waterfield N.R., Massey R.C. Oxacillin alters the toxin expression profile of community-associated methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2014;58:1100–1107. doi: 10.1128/AAC.01618-13. PubMed DOI PMC
Ueda O., Tanaka S., Nagasawa Z., Hanaki H., Shobuike T., Miyamoto H. Development of a novel matrix-assisted laser desorption/ionization time-of-flight mass spectrum (MALDI-TOF-MS)-based typing method to identify meticillin-resistant Staphylococcus aureus clones. J. Hosp. Infect. 2015;90:147–155. doi: 10.1016/j.jhin.2014.11.025. PubMed DOI
Josten M., Reif M., Szekat C., Al-Sabti N., Roemer T., Sparbier K., Kostrzewa M., Rohde H., Sahl H.G., Bierbaum G. Analysis of the Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrum of Staphylococcus aureus Identifies Mutations That Allow Differentiation of the Main Clonal Lineages. J. Clin. Microbiol. 2013;51:1809–1817. doi: 10.1128/JCM.00518-13. PubMed DOI PMC
Zambelli B., Musiani F., Ciurli S. Metal Ion-Mediated DNA-Protein Interactions. In: Sigel A., Sigel H., Sigel R.K.O., editors. Interplay between Metal Ions and Nucleic Acids. Volume 10. Springer; Dordrecht, The Netherlands: 2012. pp. 135–170. PubMed
Bovenkamp G.L., Zanzen U., Krishna K.S., Hormes J., Prange A. X-Ray absorption near-edge structure (XANES) spectroscopy study of the interaction of silver ions with Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli. Appl. Environ. Microbiol. 2013;79:6385–6390. doi: 10.1128/AEM.01688-13. PubMed DOI PMC
Kumar R., Rao D.N. Role of DNA methyltransferases in epigenetic regulation in bacteria. Subcell. Biochem. 2013;61:81–102. PubMed
Gopal J., Manikandan M., Hasan N., Lee C.H., Wu H.F. A comparative study on the mode of interaction of different nanoparticles during MALDI-MS of bacterial cells. J. Mass Spectrom. 2013;48:119–127. doi: 10.1002/jms.3135. PubMed DOI
Choi J.G., Kang O.H., Lee Y.S., Oh Y.C., Chae H.S., Jang H.J., Shin D.W., Kwon D.Y. Antibacterial Activity of Methyl Gallate Isolated from Galla Rhois or Carvacrol Combined with Nalidixic Acid Against Nalidixic Acid Resistant Bacteria. Molecules. 2009;14:1773–1780. doi: 10.3390/molecules14051773. PubMed DOI PMC
Patel J.B., Eliopoulos G.M., Hindler J.A., Jenkins S.G., Lewis J.S., Limbago B., Miller L.A., Nicolau D.P., Powell M., et al. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. 10th ed. Clinical and Laboratory Standards Institute; Wayne, PA, USA: 2015.
Nano-selenium and its nanomedicine applications: a critical review