Problematika vzniku bakteriálních a kvasinkových infekcí s komplikovaným průběhem léčby, způsobeným rezistencí původců těchto onemocnění, je častým tématem výzkumu na poli humánní i veterinární medicíny. V této studii jsme se zaměřili na studium účinku selenových nanočástic ve formě gelovitého komplexu s polymerní látkou Cekolem (SeNPs), jako možné alternativy antibiotických léčiv při eliminaci bakteriálních a kvasinkových infekcí. Testování komplexu probíhalo na bakteriálních a kvasinkových izolátech získaných z kohorty 450 pa-cientů Oddělení traumatologie Úrazové nemocnice v Brně, od kterých byl odebrán vždy jeden vzorek stěru z povrchové kožní infekce, a doposud se podařilo identifikovat celkem 74 poddruhů bakteriálních kmenů nebo kvasinek. K identifikaci kmenů a testování SeNPs bylo využito mikrobiologických a molekulárně-biologických metod a metody hmotnostní spektrometrie. Studie prokázala výrazný vliv tohoto přípravku na bakteriální kmeny a kvasinky bez ohledu na jejich morfologii. Růst většiny kmenů ze souboru se podařilo aplikací nanočástic zcela eliminovat, ve všech případech však byl tento růst alespoň velkou měrou potlačen. Velikosti inhibičních zón, které se dají považovat za efektivní (1), se ve většině případů pohybovaly v rozmezí 5–20 mm (79 %). Výsledky popisují významné antimikrobiální účinky na bázi nanotechnologií selenových nanočástic, které mohou být použity ke snížení rizika vzniku nekontrolovatelných infekcí. Klíčová slova: bakterie – kvasinky – patogenita – infekce – selenové nanočástice – inhibice
Issue of bacterial and yeast infections with complicated course of treatment due to resistance of agents of these diseases are a frequent topic of research in the field of human and veterinary medicine. In this study, we focused on the study of selenium nanoparticles effect in the form of a gel-like complex with a polymer substance Cekol (SeNPs) as possible alternative to antibiotic drugs, in the elimination of bacterial and yeast infections. Testing of complex was carried out on the bacterial and yeast isolates obtained from a cohort of 450 patients from the Department of Traumatology at Trauma Hospital in Brno, from which it was taken always one swab sample from a superficial skin infection and to date have managed to identify in total 74 sub-species of bacterial strains or yeasts. To identify strains and tests of SeNPs microbiological, molecular-biological and mass spectrometry methods were used. The study demonstrated a significant effect of this product on the bacterial strains and yeasts, regardless of their morphology. The growth of most strains from the file was managed by application of nanoparticles completely eliminated. However, in all cases this growth was at least largely suppressed. Sizes of inhibition zones, which can be regarded as effective (1), ranged from 5–20 mm. Our results describe significant antimicrobial effects based on nanotechnologies, which can be used to reduce the risk of uncontrolled infections in comparison with conventional antibiotic therapy. Keywords: bacteria – yeast – pathogenicity – infections – selenium nanoparticles – inhibition
- Keywords
- Cekol,
- MeSH
- Anti-Infective Agents pharmacology MeSH
- Bacteria growth & development drug effects MeSH
- Bacterial Infections drug therapy MeSH
- Candida tropicalis growth & development drug effects MeSH
- Candida growth & development drug effects MeSH
- Molecular Diagnostic Techniques methods MeSH
- Escherichia coli growth & development drug effects MeSH
- Mass Spectrometry MeSH
- Surgical Wound Infection etiology drug therapy MeSH
- Inhibitory Concentration 50 MeSH
- Humans MeSH
- Microbial Sensitivity Tests * MeSH
- Microscopy, Electron, Scanning MeSH
- Nanoparticles * MeSH
- Polymers pharmacology MeSH
- Selenium * pharmacology MeSH
- Staphylococcus aureus growth & development drug effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Research Support, Non-U.S. Gov't MeSH
Selenium is an essential trace element in the diet, required for maintenance of health and growth; however, its toxicity could cause serious damage depending on dose and chemical form. Selenium nanoparticles (SeNPs) represent what we believe to be a novel prospect for nutritional supplementation because of their lower toxicity and ability to gradually release selenium after ingestion. In this review, we discuss various forms and types of SeNPs, as well as the way they are synthesized. We also discuss absorption and bioavailability of nanoparticles within the organism. SeNPs demonstrate anticancer and antimicrobial properties that may contribute to human health, not only as dietary supplements, but also as therapeutic agents.
- MeSH
- Anti-Infective Agents pharmacology MeSH
- Humans MeSH
- Nanoparticles * MeSH
- Dietary Supplements * MeSH
- Antineoplastic Agents pharmacology MeSH
- Selenium administration & dosage pharmacology MeSH
- Trace Elements administration & dosage pharmacology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Interactions of silver phosphate nanoparticles (SPNPs) and selenium nanoparticles (SeNPs) with Staphylococcus aureus cultures have been studied at the cellular, molecular and protein level. Significant antibacterial effects of both SPNPs and SeNPs on S. aureus were observed. At a concentration of 300 μM, SPNPs caused 37.5% inhibition of bacterial growth and SeNPs totally inhibited bacterial growth. As these effects might have been performed due to the interactions of nanoparticles with DNA and proteins, the interaction of SPNPs or SeNPs with the amplified zntR gene was studied. The presence of nanoparticles decreased the melting temperatures of the nanoparticle complexes with the zntR gene by 23% for SeNPs and by 12% for SPNPs in comparison with the control value. The concentration of bacterial metallothionein was 87% lower in bacteria after application of SPNPs (6.3 μg mg(-1) protein) but was increased by 29% after addition of SeNPs (63 μg mg(-1) protein) compared with the S. aureus control (49 μg mg(-1) protein). Significant antimicrobial effects of the nanoparticles on bacterial growth and DNA integrity provide a promising approach to reducing the risk of bacterial infections that cannot be controlled by the usual antibiotic treatments.
- MeSH
- Anti-Bacterial Agents pharmacology MeSH
- Phosphates pharmacology MeSH
- Microbial Sensitivity Tests MeSH
- Nanoparticles * MeSH
- Selenium pharmacology MeSH
- Silver Compounds pharmacology MeSH
- Staphylococcal Infections prevention & control MeSH
- Staphylococcus aureus drug effects growth & development MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Traditional supplements of selenium generally have a low degree of absorption and increased toxicity. Therefore, it is imperative to develop innovative systems as transporters of selenium compounds, which would raise the bioavailability of this element and allow its controlled release in the organism. Nanoscale selenium has attracted a great interest as a food additive especially in individuals with selenium deficiency, but also as a therapeutic agent without significant side effects in medicine. This review is focused on the incorporation of nanotechnological applications, in particular exploring the possibilities of a more effective way of administration, especially in selenium-deficient organisms. In addition, this review summarizes the survey of knowledge on selenium nanoparticles, their biological effects in the organism, advantages, absorption mechanisms, and nanotechnological applications for peroral administration.
- MeSH
- Administration, Oral MeSH
- Drug Delivery Systems methods MeSH
- Humans MeSH
- Nanoparticles administration & dosage chemistry MeSH
- Nanomedicine methods MeSH
- Nanotechnology MeSH
- Food Additives administration & dosage chemistry MeSH
- Selenium administration & dosage pharmacokinetics MeSH
- Intestinal Mucosa drug effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
In a biological system, nanoparticles (NPs) may interact with biomolecules. Specifically, the adsorption of proteins on the nanoparticle surface may influence both the nanoparticles' and proteins' overall bio-reactivity. Nevertheless, our knowledge of the biocompatibility and risk of exposure to nanomaterials is limited. Here, in vitro and ex ovo biocompatibility of naturally based crosslinked freeze-dried 3D porous collagen/chitosan scaffolds, modified with thermostable fibroblast growth factor 2 (FGF2-STAB®), to enhance healing and selenium nanoparticles (SeNPs) to provide antibacterial activity, were evaluated. Biocompatibility and cytotoxicity were tested in vitro using normal human dermal fibroblasts (NHDF) with scaffolds and SeNPs and FGF2-STAB® solutions. Metabolic activity assays indicated an antagonistic effect of SeNPs and FGF2-STAB® at high concentrations of SeNPs. The half-maximal inhibitory concentration (IC50) of SeNPs for NHDF was 18.9 µg/ml and IC80 was 5.6 µg/ml. The angiogenic properties of the scaffolds were monitored ex ovo using a chick chorioallantoic membrane (CAM) assay and the cytotoxicity of SeNPs over IC80 value was confirmed. Furthermore, the positive effect of FGF2-STAB® at very low concentrations (0.01 µg/ml) on NHDF metabolic activity was observed. Based on detailed in vitro testing, the optimal concentrations of additives in the scaffolds were determined, specifically 1 µg/ml of FGF2-STAB® and 1 µg/ml of SeNPs. The scaffolds were further subjected to antimicrobial tests, where an increase in selenium concentration in the collagen/chitosan scaffolds increased the antibacterial activity. This work highlights the antimicrobial ability and biocompatibility of newly developed crosslinked collagen/chitosan scaffolds involving FGF2-STAB® and SeNPs. Moreover, we suggest that these sponges could be used as scaffolds for growing cells in systems with low mechanical loading in tissue engineering, especially in dermis replacement, where neovascularization is a crucial parameter for successful skin regeneration. Due to their antimicrobial properties, these scaffolds are also highly promising for tissue replacement requiring the prevention of infection.
- MeSH
- Anti-Bacterial Agents MeSH
- Biocompatible Materials pharmacology MeSH
- Cell Line MeSH
- Chitosan pharmacology MeSH
- Fibroblast Growth Factor 2 pharmacology MeSH
- Fibroblasts drug effects MeSH
- Wound Healing MeSH
- Collagen pharmacology MeSH
- Humans MeSH
- Nanoparticles chemistry therapeutic use MeSH
- Porosity MeSH
- Selenium chemistry pharmacology MeSH
- Materials Testing MeSH
- Tissue Engineering methods MeSH
- Tissue Scaffolds * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Selenium is an essential trace element that is crucial for cellular antioxidant defense against reactive oxygen species (ROS). Recently, many selenium-containing compounds have exhibited a wide spectrum of biological activities that make them promising scaffolds in Medicinal Chemistry, and, in particular, in the search for novel compounds with anticancer activity. Similarly, certain tellurium-containing compounds have also exhibited substantial biological activities. Here we provide an overview of the biological activities of seleno- and tellurocompounds including chemopreventive activity, antioxidant or pro-oxidant activity, modulation of the inflammatory processes, induction of apoptosis, modulation of autophagy, inhibition of multidrug efflux pumps such as P-gp, inhibition of cancer metastasis, selective targeting of tumors and enhancement of the cytotoxic activity of chemotherapeutic drugs, as well as overcoming tumor drug resistance. A review of the chemistry of the most relevant seleno- or tellurocompounds with activity against resistant cancers is also presented, paying attention to the synthesis of these compounds and to the preparation of bioactive selenium or tellurium nanoparticles. Based on these data, the use of these seleno- and tellurocompounds is a promising approach in the development of strategies that can drive forward the search for novel therapies or adjuvants of current therapies against drug-resistant cancers.
- MeSH
- Drug Resistance, Neoplasm MeSH
- Humans MeSH
- Drug Resistance, Multiple MeSH
- Neoplasms * drug therapy MeSH
- Nanoparticles * MeSH
- Antineoplastic Agents * chemistry pharmacology therapeutic use MeSH
- Reactive Oxygen Species MeSH
- Selenium * chemistry pharmacology therapeutic use MeSH
- Tellurium chemistry pharmacology therapeutic use MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
This paper reviews the current understanding of the toxicity of selenium (Se) to terrestrial mammalian and aquatic organisms. Adverse biological effects occur in the case of Se deficiencies, associated with this element having essential biological functions and a narrow window between essentiality and toxicity. Several inorganic species of Se (-2, 0, +4, and +6) and organic species (monomethylated and dimethylated) have been reported in aquatic systems. The toxicity of Se in any given sample depends not only on its speciation and concentration, but also on the concomitant presence of other compounds that may have synergistic or antagonistic effects, affecting the target organism as well, usually spanning 2 or 3 orders of magnitude for inorganic Se species. In aquatic ecosystems, indirect toxic effects, linked to the trophic transfer of excess Se, are usually of much more concern than direct Se toxicity. Studies on the toxicity of selenium nanoparticles indicate the greater toxicity of chemically generated selenium nanoparticles relative to selenium oxyanions for fish and fish embryos while oxyanions of selenium have been found to be more highly toxic to rats as compared to nano-Se. Studies on polymer coated Cd/Se quantum dots suggest significant differences in toxicity of weathered vs. non-weathered QD's as well as a significant role for cadmium with respect to toxicity.
- MeSH
- Ecosystem MeSH
- Rats MeSH
- Quantum Dots toxicity MeSH
- Environmental Pollutants toxicity MeSH
- Humans MeSH
- Organoselenium Compounds toxicity MeSH
- Cattle MeSH
- Cadmium Compounds toxicity MeSH
- Selenium Compounds toxicity MeSH
- Drug Synergism MeSH
- Aquatic Organisms drug effects growth & development MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Cattle MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Nanoparticles have drawn significant interest in a range of applications, ranging from biomedical to environmental sciences, due to their distinctive physicochemical characteristics. In this study, it was reported that simple biological production of Ag, Se, and bimetallic Ag2Se nanoparticles (NPs) with Pseudomonas aeruginosa is a promising, low-cost, and environmentally friendly method. For the first time in the scientific literature, Ag2Se nanoparticles have been generated via green bacterial biosynthesis. UV-vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and EDX were used to characterize the produced NPs. Biosynthesized NPs were examined for antibacterial, antibiofilm, and photocatalytic properties, and it was determined that the effects of NPs were dose dependent. The biosynthesized AgNPs, SeNPs, and Ag2Se NPs showed anti-microbial activity against Escherichia coli and Staphylococcus aureus. Minimal inhibitory concentrations (MICs) of E. coli and S. aureus were between 150 and 250 μg/mL. The NPs showed antibiofilm activity against E. coli and S. aureus at sub-MIC levels and reduced biofilm formation by at least 80% at a concentration of 200 μg/mL of each NPs. To photocatalyze the breakdown of Congo red, Ag, Se, and Ag2Se NPs were utilized, and their photocatalytic activity was tested at various concentrations and intervals. A minor decrease of photocatalytic degradation was detected throughout the NPs reuse operation (five cycles). Based on the encouraging findings, the synthesized NPs demonstrated antibacterial, antibiofilm, and photocatalytic properties, suggesting that they might be used in pharmaceutical, medical, environmental, and other applications.
- MeSH
- Anti-Bacterial Agents * pharmacology chemistry chemical synthesis MeSH
- Biofilms * drug effects MeSH
- Escherichia coli * drug effects MeSH
- Catalysis MeSH
- Metal Nanoparticles * chemistry MeSH
- Microbial Sensitivity Tests * MeSH
- Pseudomonas aeruginosa * drug effects metabolism MeSH
- Selenium chemistry pharmacology MeSH
- Silver Compounds chemistry pharmacology MeSH
- Staphylococcus aureus * drug effects MeSH
- Silver * chemistry pharmacology metabolism MeSH
- Green Chemistry Technology * MeSH
- Publication type
- Journal Article MeSH
In this study, we tested the ability of lactobacilli and bifidobacteria strains to accumulate and biotransform sodium selenite into various selenium species, including selenium nanoparticles (SeNPs). Selenium tolerance and cytotoxicity of selenized strains towards human adenocarcinoma Caco-2 and HT29 cells were determined for all tested strains. Furthermore, the influence of selenium enrichment on the antioxidant activity of selenized strains and hydrophobicity of the bacterial cell surfaces were evaluated. Both hydrophobicity and antioxidant activity increased significantly in the selenized L. paracasei strain and decreased significantly in the selenized L. helveticus strain. The concentrations of 5 and 10 mg/L Na2SeO3 in the growth media were safer for Caco-2 and HT29 cell growth than higher concentrations. At higher concentrations (30, 50, and 100 mg/L), the cell viability was reduced. All the tested strains showed differences in antioxidant potential and hydrophobicity after selenium enrichment. In addition to selenocystine and selenomethionine, the tested bacterial strains produced significant amounts of SeNPs. Our results show that the tested bacterial strains can accumulate and biotransform inorganic selenium, which allows them to become a potential source of selenium.
- MeSH
- Antioxidants MeSH
- Caco-2 Cells MeSH
- Lactobacillus metabolism MeSH
- Humans MeSH
- Dietary Supplements MeSH
- Selenium * metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
BACKGROUND AND OBJECTIVE: Microbial selenium (Se) supplementation is an essential area of biotechnological research due to differences in the bioavailability and toxicity of different forms of selenium. To date, research has focused mainly on the use of selenized yeast. However, in recent years, scientific interest has also increased in other microorganisms, such as lactic acid bacteria (LAB), which have several unique properties that can affect the quality and bioavailability of selenium. LAB, unlike yeast, can also act as probiotics, which may bring additional health benefits related to improving the intestinal microbiota and supporting the health of the gastrointestinal tract. METHODS: This study investigates the in vitro bioaccessibility and bioavailability of Se from two lactic acid bacterial strains, Streptococcus thermophilus CCDM 144 and Enterococcus faecium CCDM 922 A. We evaluated Se accumulation, speciation, and stability during simulated gastrointestinal digestion and Se permeation through a Caco-2 cell monolayer model. RESULTS: Both strains accumulated Se, metabolizing it predominantly into selenium nanoparticles (SeNPs, 64-77 % of total Se), with only a minor fraction (<5 % of total Se) of organic Se species. Experiments revealed that while organic Se species had high bioavailability (up to 90 %), their bioaccessibility during digestion was very low (<0.1 % of total Se). In contrast, SeNPs showed high bioaccessibility (∼90 %) and moderate transport efficiency through the intestinal model (16-19 % after 4 hours). CONCLUSION: These results highlight the potential of SeNPs produced by lactic acid bacteria as a bioaccessible form of Se for dietary supplementation. Further research is required to explore the behavior of SeNPs within the human body to fully understand how they can be used safely and effectively in nutrition or other applications.
- MeSH
- Biological Availability * MeSH
- Models, Biological MeSH
- Caco-2 Cells MeSH
- Intestinal Barrier Function MeSH
- Lactobacillales metabolism MeSH
- Humans MeSH
- Permeability MeSH
- Selenium * metabolism MeSH
- Streptococcus thermophilus metabolism MeSH
- Digestion MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH