Serendipita indica promotes P acquisition and growth in tea seedlings under P deficit conditions by increasing cytokinins and indoleacetic acid and phosphate transporter gene expression

. 2023 ; 14 () : 1146182. [epub] 20230317

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37008477

The culturable endophytic fungus Serendipita indica has many beneficial effects on plants, but whether and how it affects physiological activities and phosphorus (P) acquisition of tea seedlings at low P levels is unclear. The objective of this study was to analyze the effects of inoculation with S. indica on growth, gas exchange, chlorophyll fluorescence, auxins, cytokinins, P levels, and expressions of two phosphate transporter (PT) genes in leaves of tea (Camellia sinensis L. cv. Fudingdabaicha) seedlings grown at 0.5 μM (P0.5) and 50 μM (P50) P levels. Sixteen weeks after the inoculation, S. indica colonized roots of tea seedlings, with root fungal colonization rates reaching 62.18% and 81.34% at P0.5 and P50 levels, respectively. Although plant growth behavior, leaf gas exchange, chlorophyll values, nitrogen balance index, and chlorophyll fluorescence parameters of tea seedlings were suppressed at P0.5 versus P50 levels, inoculation of S. indica mitigated the negative effects to some extent, along with more prominent promotion at P0.5 levels. S. indica inoculation significantly increased leaf P and indoleacetic acid concentrations at P0.5 and P50 levels and leaf isopentenyladenine, dihydrozeatin, and transzeatin concentrations at P0.5 levels, coupled with the reduction of indolebutyric acid at P50 levels. Inoculation of S. indica up-regulated the relative expression of leaf CsPT1 at P0.5 and P50 levels and CsPT4 at P0.5 levels. It is concluded that S. indica promoted P acquisition and growth in tea seedlings under P deficit conditions by increasing cytokinins and indoleacetic acid and CsPT1 and CsPT4 expression.

Zobrazit více v PubMed

Bakhshandeh E., Pirdashti H., Shahsavarpour Lendeh K., Gilani Z., Yaghoubi Khanghahi M., Crecchio C. (2020). Effects of plant growth promoting microorganisms inoculums on mineral nutrition, growth and productivity of rice ( DOI

Bielach A., Hrtyan M., Tognetti V. B. (2017). Plants under stress: Involvement of auxin and cytokinin. Int. J. Mol. Sci. 18, 1427. doi:  10.3390/ijms18071427 PubMed DOI PMC

Cao M. A., Liu R. C., Xiao Z. Y., Hashem A., Allah E. F. A., Alsayed M. F., et al. (2022). Symbiotic fungi alter the acquisition of phosphorus in PubMed DOI PMC

Cao Y. W., Pan Y. H., Wang M., Liu T. H., Meng X. H., Guo S. W. (2022). The effects of different nitrogen forms on chlorophyll fluorescence and photosystem II in DOI

Chen Q., Qi W. B., Reiter R. J., Wei W., Wang B. M. (2009). Exogenously applied melatonin stimulates root growth and raises endogenous indoleacetic acid in roots of etiolated seedlings of PubMed DOI

Chen P. Y., Yang C., Zhang Q. S., Zhou S., Yang Y. K., Luo J. (2022). Effects of shading treatment on chlorophyll fluorescence characteristics of DOI

Cheng C. Z., Li D., Qi Q., Sun X. L., Anue M. R., David B. M., et al. (2020). The root endophytic fungus DOI

Cheng X. F., Xie M. M., Li Y. (2022). Effects of field inoculation with arbuscular mycorrhizal fungi and endophytic fungi on fruit quality and soil properties of newhall navel orange. Appl. Soil Ecol. 170, 104308. doi:  10.1016/j.apsoil.2021.104308 DOI

Deng C., Sun R.-T., Ma Q., Yang Q.-H., Zhou N., Hashem A., et al. (2022). Mycorrhizal effects on active components and associated gene expressions in leaves of DOI

Eliaspour S., Sharifi R. S., Shirkhani A. (2020). Evaluation of interaction between PubMed DOI PMC

Frick E. M., Strader L. C. (2018). Roles for IBA-derived auxin in plant development. J. Exp. Bot. 69, 169–177. doi:  10.1093/jxb/erx298 PubMed DOI PMC

Hallasgo A. M., Spangl B., Steinkellner S., Hage-Ahmed K. (2020). The fungal endophyte PubMed DOI PMC

Huang W. G., Jiang W. D., Yao Y. B., Song X. X., Yuan H. M., Ren C. Y., et al. (2022). The effects of phosphorus deficiency on the morpho-physiology and expression of DOI

Kieber J. J., Schaller G. E. (2018). Cytokinin signaling in plant development. Development 145, 149344. doi:  10.1242/dev.149344 PubMed DOI

Kunkel B. N., Harper C. P. (2018). The roles of auxin during interactions between bacterial plant pathogens and their hosts. J. Exp. Bot. 69, 245–254. doi:  10.1093/jxb/erx447 PubMed DOI

Kushwaha A. S., Kumar M. (2022). An effective in-gel assay protocol for the assessment of acid phosphatase (ACPase) isoform expression in the fungus PubMed DOI PMC

Liao Y. Y., Li J. L., Pan R. L., Chiou T. J. (2019). Structure-function analysis reveals amino acid residues of arabidopsis phosphate transporter PubMed DOI PMC

Liu R. C., Gao W. Q., Srivastava A. K., Zou Y. N., Kuča K., Hashem A., et al. (2021). Differential effects of exogenous glomalin-related soil proteins on plant growth of trifoliate orange through regulating auxin changes. Front. Plant Sci. 12, 745402. doi:  10.3389/fpls.2021.745402 PubMed DOI PMC

Liu B. H., Jing D. W., Liu F. C., Ma H. L., Liu X. H., Peng L. (2021). PubMed DOI

Liu M. H., Wang Y. X., Li Q., Xiao W. F., Song X. Z. (2019). Photosynthesis, ecological stoichiometry, and non-structural carbohydrate response to simulated nitrogen deposition and phosphorus addition in chinese fir forests. Forests 10, 1068. doi:  10.3390/f10121068 DOI

Liu R. C., Yang L., Zou Y. N., Wu Q. S. (2022). Root-associated endophytic fungi modulate endogenous auxin and cytokinin levels to improve plant biomass and root morphology of trifoliate orange. Hortic. Plant J. doi:  10.1016/j.hpj.2022.08.009 DOI

Liu Y., Zhang M., Meng Z., Wang B., Chen M. (2020). Research progress on the roles of cytokinin in plant response to stress. Int. J. Mol. Sci. 21, 6574. doi:  10.3390/ijms21186574 PubMed DOI PMC

Livak K. J., Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2 PubMed DOI

Loha A., Kashyap A. K., Sharma P. (2018). A putative cyclin, PubMed DOI

Mathur S., Sharma M. P., Jajoo A. (2018). Improved photosynthetic efficacy of maize ( PubMed DOI

Nguyen V., Palmer L., Stangoulis J. (2022). Higher photochemical quenching and better maintenance of carbon dioxide fixation are key traits for phosphorus use efficiency in the wheat breeding line, RAC875. Front. Plant Sci. 12, 816211. doi:  10.3389/fpls.2021.816211 PubMed DOI PMC

Pang J. Y., Zhao H. X., Bansal R., Bohuon E., Lambers H., Ryan M. H., et al. (2018). Leaf transpiration plays a role in phosphorus acquisition among a large set of chickpea genotypes. Plant Cell Environ. 41, 2069–2079. doi:  10.1111/pce.13139 PubMed DOI

Perez-Alonso M. M., Ortiz-Garcia P., Moya-Cuevas J., Lehmann T., Sánchez-Parra B., Björk R. G., et al. (2021). Endogenous indole-3-acetamide levels contribute to the crosstalk between auxin and abscisic acid, and trigger plant stress responses in arabidopsis. J. Exp. Bot. 72, 459–475. doi:  10.1093/jxb/eraa485 PubMed DOI PMC

Poveda J., Eugui D., Abril-Urias P., Velasco P. (2021). Endophytic fungi as direct plant growth promoters for sustainable agricultural production. Symbiosis 85, 1–19. doi:  10.1007/s13199-021-00789-x DOI

Saddique M. A., Ali Z., Khan A. S., Rana I. A., Shamsi I. H. (2018). Inoculation with the endophyte PubMed DOI PMC

Shao Y. D., Hu X. C., Wu Q. S. (2021). Mycorrhizas promote p acquisition of tea plants through changes in root morphology and p transporter gene expression. S. Afr. J. Bot. 137, 455–462. doi:  10.1016/j.sajb.2020.11.028 DOI

Silva-Navas J., Conesa C. M., Saez A., Navarro-Neila S., Garcia-Mina J. M., Zamarreño A. M., et al. (2019). Role of cis-zeatin in root responses to phosphate starvation. New Phytol. 224, 242–257. doi:  10.1111/nph.16020 PubMed DOI

Sun Y. L., Wang X. Z., Ma C. H., Zhang Q. B. (2022). Effects of nitrogen and phosphorus addition on agronomic characters, photosynthetic performance and anatomical structure of alfalfa in northern xinjiang, China. Agronomy 12, 1613. doi:  10.3390/agronomy12071613 DOI

Sun R. T., Zhang Z. Z., Liu M. Y., Feng X. C., Zhou N., Feng H. D., et al. (2022). Arbuscular mycorrhizal fungi and phosphorus supply accelerate main medicinal component production of PubMed DOI PMC

Taghinasab M., Imani J., Steffens D., Glaeser S. P., Kogel K. H. (2018). The root endophytes DOI

Tyagi J., Chaudhary P., Mishra A., Khatwani M., Dey S., Varma A. (2022). Role of endophytes in abiotic stress tolerance: With special emphasis on DOI

Vance C. P., Uhde S. C., Allan D. L. (2003). Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol. 157, 423–447. doi:  10.1046/j.1469-8137.2003.00695.x PubMed DOI

Wang X. H., Fan X., Wang W., Song F. (2022). Use of DOI

Wang H. J., Gong Z. M., Chen X., Wang Y. (2015). Status and distribution of soil nutrients in tea garden. Hubei Agric. Sci. 54, 3875–3879. doi:  10.14088/j.cnki.issn0439-8114.2015.16.011 DOI

Wang Y., Zou Y. N., Shu B., Wu Q. S. (2023). Deciphering molecular mechanisms regarding enhanced drought tolerance in plants by arbuscular mycorrhizal fungi. Sci Hortic 308, 111591. doi:  10.1016/j.scienta.2022.111591 DOI

Wheal M. S., Fowles T. O., Palmer L. T. (2011). A cost-effective acid digestion method using closed polypropylene tubes for inductively coupled plasma optical emission spectrometry (ICP-OES) analysis of plant essential elements. Anal. Methods 3, 2854–2863. doi:  10.1039/C1AY05430A DOI

Wu F., Li J. R., Chen Y. L., Zhang L. P., Zhang Y., Wang S., et al. (2019). Effects of phosphate solubilizing bacteria on the growth, photosynthesis, and nutrient uptake of DOI

Wu Q. S., Li Y., Zou Y. N., He X. H. (2015). Arbuscular mycorrhiza mediates glomalin-related soil protein production and soil enzyme activities in the rhizosphere of trifoliate orange grown under different p levels. Mycorrhiza 25, 121–130. doi:  10.1007/s00572-014-0594-3 PubMed DOI

Wu C., Wei Q., Deng J., Zhang W. (2019). Changes in gas exchange, root growth, and biomass accumulation of DOI

Xin H. H., Wang W. D., Wang M. L., Ma Q. P., Gan Y. D., Li X. H. (2017). Molecular cloning, subcellular localization and expression analysis of DOI

Yang L., Cao J. L., Zou Y. N., Wu Q. S., Kuča K. (2020). DOI

Yang Y. M., Zhu X. H., Cui R. F., Wang R. Y., Li H. Y., Wang J. S., et al. (2021). Identification of soybean phosphorous efficiency QTLs and genes using chlorophyll fluorescence parameters through GWAS and RNA-seq. Planta 254, 110. doi:  10.1007/s00425-021-03760-8 PubMed DOI

Yang L., Zou Y. N., Tian Z. H., Wu Q. S., Kuča K. (2021). Effects of beneficial endophytic fungal inoculants on plant growth and nutrient absorption of trifoliate orange seedlings. Sci. Hortic. 277, 109815. doi:  10.1016/j.scienta.2020.109815 DOI

Zhang F., Wang P., Zou Y. N., Wu Q. S., Kuča K. (2019). Effects of mycorrhizal fungi on root-hair growth and hormone levels of taproot and lateral roots in trifoliate orange under drought stress. Arch. Agron. Soil Sci. 65, 1316–1330. doi:  10.1080/03650340.2018.1563780 DOI

Zheng H. L., Qi Y. P., Chen R. B., Zhang F. Z., Chen L. S. (2012). Effects of phosphorus supply on the quality of green tea. Food Chem. 130, 908–914. doi:  10.1016/j.foodchem.2011.08.008 DOI

Zou Y. N., Zhang F., Srivastava A. K., Wu Q. S., Kuča K. (2021). Arbuscular mycorrhizal fungi regulate polyamine homeostasis in roots of trifoliate orange for improved adaptation to soil moisture deficit stress. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...