Serendipita indica promotes P acquisition and growth in tea seedlings under P deficit conditions by increasing cytokinins and indoleacetic acid and phosphate transporter gene expression
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37008477
PubMed Central
PMC10064445
DOI
10.3389/fpls.2023.1146182
Knihovny.cz E-zdroje
- Klíčová slova
- auxin, cash crop, endophytic fungi, nutrient deficit, phytohormone, symbiosis,
- Publikační typ
- časopisecké články MeSH
The culturable endophytic fungus Serendipita indica has many beneficial effects on plants, but whether and how it affects physiological activities and phosphorus (P) acquisition of tea seedlings at low P levels is unclear. The objective of this study was to analyze the effects of inoculation with S. indica on growth, gas exchange, chlorophyll fluorescence, auxins, cytokinins, P levels, and expressions of two phosphate transporter (PT) genes in leaves of tea (Camellia sinensis L. cv. Fudingdabaicha) seedlings grown at 0.5 μM (P0.5) and 50 μM (P50) P levels. Sixteen weeks after the inoculation, S. indica colonized roots of tea seedlings, with root fungal colonization rates reaching 62.18% and 81.34% at P0.5 and P50 levels, respectively. Although plant growth behavior, leaf gas exchange, chlorophyll values, nitrogen balance index, and chlorophyll fluorescence parameters of tea seedlings were suppressed at P0.5 versus P50 levels, inoculation of S. indica mitigated the negative effects to some extent, along with more prominent promotion at P0.5 levels. S. indica inoculation significantly increased leaf P and indoleacetic acid concentrations at P0.5 and P50 levels and leaf isopentenyladenine, dihydrozeatin, and transzeatin concentrations at P0.5 levels, coupled with the reduction of indolebutyric acid at P50 levels. Inoculation of S. indica up-regulated the relative expression of leaf CsPT1 at P0.5 and P50 levels and CsPT4 at P0.5 levels. It is concluded that S. indica promoted P acquisition and growth in tea seedlings under P deficit conditions by increasing cytokinins and indoleacetic acid and CsPT1 and CsPT4 expression.
Botany and Microbiology Department College of Science King Saud University Riyadh Saudi Arabia
College of Horticulture and Gardening Yangtze University Jingzhou Hubei China
Department of Chemistry Faculty of Science University of Hradec Kralove Hradec Kralove Czechia
ICAR Central Citrus Research Institute Nagpur Maharashtra India
Zobrazit více v PubMed
Bakhshandeh E., Pirdashti H., Shahsavarpour Lendeh K., Gilani Z., Yaghoubi Khanghahi M., Crecchio C. (2020). Effects of plant growth promoting microorganisms inoculums on mineral nutrition, growth and productivity of rice ( DOI
Bielach A., Hrtyan M., Tognetti V. B. (2017). Plants under stress: Involvement of auxin and cytokinin. Int. J. Mol. Sci. 18, 1427. doi: 10.3390/ijms18071427 PubMed DOI PMC
Cao M. A., Liu R. C., Xiao Z. Y., Hashem A., Allah E. F. A., Alsayed M. F., et al. (2022). Symbiotic fungi alter the acquisition of phosphorus in PubMed DOI PMC
Cao Y. W., Pan Y. H., Wang M., Liu T. H., Meng X. H., Guo S. W. (2022). The effects of different nitrogen forms on chlorophyll fluorescence and photosystem II in DOI
Chen Q., Qi W. B., Reiter R. J., Wei W., Wang B. M. (2009). Exogenously applied melatonin stimulates root growth and raises endogenous indoleacetic acid in roots of etiolated seedlings of PubMed DOI
Chen P. Y., Yang C., Zhang Q. S., Zhou S., Yang Y. K., Luo J. (2022). Effects of shading treatment on chlorophyll fluorescence characteristics of DOI
Cheng C. Z., Li D., Qi Q., Sun X. L., Anue M. R., David B. M., et al. (2020). The root endophytic fungus DOI
Cheng X. F., Xie M. M., Li Y. (2022). Effects of field inoculation with arbuscular mycorrhizal fungi and endophytic fungi on fruit quality and soil properties of newhall navel orange. Appl. Soil Ecol. 170, 104308. doi: 10.1016/j.apsoil.2021.104308 DOI
Deng C., Sun R.-T., Ma Q., Yang Q.-H., Zhou N., Hashem A., et al. (2022). Mycorrhizal effects on active components and associated gene expressions in leaves of DOI
Eliaspour S., Sharifi R. S., Shirkhani A. (2020). Evaluation of interaction between PubMed DOI PMC
Frick E. M., Strader L. C. (2018). Roles for IBA-derived auxin in plant development. J. Exp. Bot. 69, 169–177. doi: 10.1093/jxb/erx298 PubMed DOI PMC
Hallasgo A. M., Spangl B., Steinkellner S., Hage-Ahmed K. (2020). The fungal endophyte PubMed DOI PMC
Huang W. G., Jiang W. D., Yao Y. B., Song X. X., Yuan H. M., Ren C. Y., et al. (2022). The effects of phosphorus deficiency on the morpho-physiology and expression of DOI
Kieber J. J., Schaller G. E. (2018). Cytokinin signaling in plant development. Development 145, 149344. doi: 10.1242/dev.149344 PubMed DOI
Kunkel B. N., Harper C. P. (2018). The roles of auxin during interactions between bacterial plant pathogens and their hosts. J. Exp. Bot. 69, 245–254. doi: 10.1093/jxb/erx447 PubMed DOI
Kushwaha A. S., Kumar M. (2022). An effective in-gel assay protocol for the assessment of acid phosphatase (ACPase) isoform expression in the fungus PubMed DOI PMC
Liao Y. Y., Li J. L., Pan R. L., Chiou T. J. (2019). Structure-function analysis reveals amino acid residues of arabidopsis phosphate transporter PubMed DOI PMC
Liu R. C., Gao W. Q., Srivastava A. K., Zou Y. N., Kuča K., Hashem A., et al. (2021). Differential effects of exogenous glomalin-related soil proteins on plant growth of trifoliate orange through regulating auxin changes. Front. Plant Sci. 12, 745402. doi: 10.3389/fpls.2021.745402 PubMed DOI PMC
Liu B. H., Jing D. W., Liu F. C., Ma H. L., Liu X. H., Peng L. (2021). PubMed DOI
Liu M. H., Wang Y. X., Li Q., Xiao W. F., Song X. Z. (2019). Photosynthesis, ecological stoichiometry, and non-structural carbohydrate response to simulated nitrogen deposition and phosphorus addition in chinese fir forests. Forests 10, 1068. doi: 10.3390/f10121068 DOI
Liu R. C., Yang L., Zou Y. N., Wu Q. S. (2022). Root-associated endophytic fungi modulate endogenous auxin and cytokinin levels to improve plant biomass and root morphology of trifoliate orange. Hortic. Plant J. doi: 10.1016/j.hpj.2022.08.009 DOI
Liu Y., Zhang M., Meng Z., Wang B., Chen M. (2020). Research progress on the roles of cytokinin in plant response to stress. Int. J. Mol. Sci. 21, 6574. doi: 10.3390/ijms21186574 PubMed DOI PMC
Livak K. J., Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2 PubMed DOI
Loha A., Kashyap A. K., Sharma P. (2018). A putative cyclin, PubMed DOI
Mathur S., Sharma M. P., Jajoo A. (2018). Improved photosynthetic efficacy of maize ( PubMed DOI
Nguyen V., Palmer L., Stangoulis J. (2022). Higher photochemical quenching and better maintenance of carbon dioxide fixation are key traits for phosphorus use efficiency in the wheat breeding line, RAC875. Front. Plant Sci. 12, 816211. doi: 10.3389/fpls.2021.816211 PubMed DOI PMC
Pang J. Y., Zhao H. X., Bansal R., Bohuon E., Lambers H., Ryan M. H., et al. (2018). Leaf transpiration plays a role in phosphorus acquisition among a large set of chickpea genotypes. Plant Cell Environ. 41, 2069–2079. doi: 10.1111/pce.13139 PubMed DOI
Perez-Alonso M. M., Ortiz-Garcia P., Moya-Cuevas J., Lehmann T., Sánchez-Parra B., Björk R. G., et al. (2021). Endogenous indole-3-acetamide levels contribute to the crosstalk between auxin and abscisic acid, and trigger plant stress responses in arabidopsis. J. Exp. Bot. 72, 459–475. doi: 10.1093/jxb/eraa485 PubMed DOI PMC
Poveda J., Eugui D., Abril-Urias P., Velasco P. (2021). Endophytic fungi as direct plant growth promoters for sustainable agricultural production. Symbiosis 85, 1–19. doi: 10.1007/s13199-021-00789-x DOI
Saddique M. A., Ali Z., Khan A. S., Rana I. A., Shamsi I. H. (2018). Inoculation with the endophyte PubMed DOI PMC
Shao Y. D., Hu X. C., Wu Q. S. (2021). Mycorrhizas promote p acquisition of tea plants through changes in root morphology and p transporter gene expression. S. Afr. J. Bot. 137, 455–462. doi: 10.1016/j.sajb.2020.11.028 DOI
Silva-Navas J., Conesa C. M., Saez A., Navarro-Neila S., Garcia-Mina J. M., Zamarreño A. M., et al. (2019). Role of cis-zeatin in root responses to phosphate starvation. New Phytol. 224, 242–257. doi: 10.1111/nph.16020 PubMed DOI
Sun Y. L., Wang X. Z., Ma C. H., Zhang Q. B. (2022). Effects of nitrogen and phosphorus addition on agronomic characters, photosynthetic performance and anatomical structure of alfalfa in northern xinjiang, China. Agronomy 12, 1613. doi: 10.3390/agronomy12071613 DOI
Sun R. T., Zhang Z. Z., Liu M. Y., Feng X. C., Zhou N., Feng H. D., et al. (2022). Arbuscular mycorrhizal fungi and phosphorus supply accelerate main medicinal component production of PubMed DOI PMC
Taghinasab M., Imani J., Steffens D., Glaeser S. P., Kogel K. H. (2018). The root endophytes DOI
Tyagi J., Chaudhary P., Mishra A., Khatwani M., Dey S., Varma A. (2022). Role of endophytes in abiotic stress tolerance: With special emphasis on DOI
Vance C. P., Uhde S. C., Allan D. L. (2003). Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol. 157, 423–447. doi: 10.1046/j.1469-8137.2003.00695.x PubMed DOI
Wang X. H., Fan X., Wang W., Song F. (2022). Use of DOI
Wang H. J., Gong Z. M., Chen X., Wang Y. (2015). Status and distribution of soil nutrients in tea garden. Hubei Agric. Sci. 54, 3875–3879. doi: 10.14088/j.cnki.issn0439-8114.2015.16.011 DOI
Wang Y., Zou Y. N., Shu B., Wu Q. S. (2023). Deciphering molecular mechanisms regarding enhanced drought tolerance in plants by arbuscular mycorrhizal fungi. Sci Hortic 308, 111591. doi: 10.1016/j.scienta.2022.111591 DOI
Wheal M. S., Fowles T. O., Palmer L. T. (2011). A cost-effective acid digestion method using closed polypropylene tubes for inductively coupled plasma optical emission spectrometry (ICP-OES) analysis of plant essential elements. Anal. Methods 3, 2854–2863. doi: 10.1039/C1AY05430A DOI
Wu F., Li J. R., Chen Y. L., Zhang L. P., Zhang Y., Wang S., et al. (2019). Effects of phosphate solubilizing bacteria on the growth, photosynthesis, and nutrient uptake of DOI
Wu Q. S., Li Y., Zou Y. N., He X. H. (2015). Arbuscular mycorrhiza mediates glomalin-related soil protein production and soil enzyme activities in the rhizosphere of trifoliate orange grown under different p levels. Mycorrhiza 25, 121–130. doi: 10.1007/s00572-014-0594-3 PubMed DOI
Wu C., Wei Q., Deng J., Zhang W. (2019). Changes in gas exchange, root growth, and biomass accumulation of DOI
Xin H. H., Wang W. D., Wang M. L., Ma Q. P., Gan Y. D., Li X. H. (2017). Molecular cloning, subcellular localization and expression analysis of DOI
Yang L., Cao J. L., Zou Y. N., Wu Q. S., Kuča K. (2020). DOI
Yang Y. M., Zhu X. H., Cui R. F., Wang R. Y., Li H. Y., Wang J. S., et al. (2021). Identification of soybean phosphorous efficiency QTLs and genes using chlorophyll fluorescence parameters through GWAS and RNA-seq. Planta 254, 110. doi: 10.1007/s00425-021-03760-8 PubMed DOI
Yang L., Zou Y. N., Tian Z. H., Wu Q. S., Kuča K. (2021). Effects of beneficial endophytic fungal inoculants on plant growth and nutrient absorption of trifoliate orange seedlings. Sci. Hortic. 277, 109815. doi: 10.1016/j.scienta.2020.109815 DOI
Zhang F., Wang P., Zou Y. N., Wu Q. S., Kuča K. (2019). Effects of mycorrhizal fungi on root-hair growth and hormone levels of taproot and lateral roots in trifoliate orange under drought stress. Arch. Agron. Soil Sci. 65, 1316–1330. doi: 10.1080/03650340.2018.1563780 DOI
Zheng H. L., Qi Y. P., Chen R. B., Zhang F. Z., Chen L. S. (2012). Effects of phosphorus supply on the quality of green tea. Food Chem. 130, 908–914. doi: 10.1016/j.foodchem.2011.08.008 DOI
Zou Y. N., Zhang F., Srivastava A. K., Wu Q. S., Kuča K. (2021). Arbuscular mycorrhizal fungi regulate polyamine homeostasis in roots of trifoliate orange for improved adaptation to soil moisture deficit stress. PubMed DOI PMC