Replica-mold nanopatterned PHEMA hydrogel surfaces for ophthalmic applications
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36008433
PubMed Central
PMC9411613
DOI
10.1038/s41598-022-18564-3
PII: 10.1038/s41598-022-18564-3
Knihovny.cz E-zdroje
- MeSH
- hydrogely chemie MeSH
- mikroskopie atomárních sil MeSH
- nanostruktury * chemie MeSH
- PEG-DMA hydrogel chemie MeSH
- polyhydroxyethylmethakrylát * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hydrogely MeSH
- PEG-DMA hydrogel MeSH
- polyhydroxyethylmethakrylát * MeSH
Biomimicking native tissues and organs require the development of advanced hydrogels. The patterning of hydrogel surfaces may enhance the cellular functionality and therapeutic efficacy of implants. For example, nanopatterning of the intraocular lens (IOL) surface can suppress the upregulation of cytoskeleton proteins (actin and actinin) within the cells in contact with the IOL surface and, hence, prevent secondary cataracts causing blurry or opaque vision. Here we introduce a fast and efficient method for fabricating arrays consisting of millions of individual nanostructures on the hydrogel surface. In particular, we have prepared the randomly distributed nanopillars on poly(2-hydroxyethyl methacrylate) hydrogel using replica molding and show that the number, shape, and arrangement of nanostructures are fully adjustable. Characterization by atomic force microscopy revealed that all nanopillars were of similar shape, narrow size distribution, and without significant defects. In imprint lithography, choosing the appropriate hydrogel composition is critical. As hydrogels with imprinted nanostructures mimic the natural cell environment, they can find applications in fundamental cell biology research, e.g., they can tune cell attachment and inhibit or promote cell clustering by a specific arrangement of protrusive nanostructures on the hydrogel surface.
Zobrazit více v PubMed
Chai, Q., Jiao, Y. & Yu, X. Hydrogels for biomedical applications: Their characteristics and the mechanisms behind them. Gels3 (2017). PubMed PMC
Caló E, Khutoryanskiy VV. Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J. 2015;65:252–267. doi: 10.1016/j.eurpolymj.2014.11.024. DOI
Vojtová, L et al. Healing and angiogenic properties of collagen/chitosan scaffolds enriched with hyperstable FGF2-STAB® Protein In Vitro, Ex Ovo and In Vivo Comprehensive Evaluation. Biomedicines. 9, 590 (2021). PubMed PMC
Michlovská L, et al. Hydrolytic stability of end-linked hydrogels from PLGA-PEG-PLGA macromonomers terminated by alpha, omega-itaconyl groups. RSC Adv. 2016;6:16808–16816. doi: 10.1039/C5RA26222D. DOI
Spicer CD. Hydrogel scaffolds for tissue engineering: The importance of polymer choice. Polym. Chem. 2020;11:184–219. doi: 10.1039/C9PY01021A. DOI
Barui, A. Synthetic polymeric gel. Polymeric Gels (Elsevier Ltd, 2018).
Musgrave CSA, Fang F. Contact lens materials: A materials science perspective. Materials (Basel). 2019;12:1–36. doi: 10.3390/ma12020261. PubMed DOI PMC
Zare, M. et al. PHEMA: An overview for biomedical applications. Int. J. Mol. Sci.22, (2021). PubMed PMC
Sefton MV, May MH, Lahooti S, Babensee JE. Making microencapsulation work: Conformal coating, immobilization gels and in vivo performance. J. Control. Release. 2000;65:173–186. doi: 10.1016/S0168-3659(99)00234-5. PubMed DOI
Tian ML, Zhou JF, Qi X, Shen R. Thermo-sensitive hydrogel and their biomedical applications. IOP Conf. Ser. Earth Environ. Sci. 2021;714:032062. doi: 10.1088/1755-1315/714/3/032062. DOI
Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem. Rev. 2001;101:1869–1880. doi: 10.1021/cr000108x. PubMed DOI
Helgeson ME, Chapin SC, Doyle PS. Hydrogel microparticles from lithographic processes: Novel materials for fundamental and applied colloid science. Curr. Opin. Colloid Interface Sci. 2011;16:106–117. doi: 10.1016/j.cocis.2011.01.005. PubMed DOI PMC
Ingber DE, Folkman J. Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: Role of extracellular matrix. J. Cell Biol. 1989;109:317–330. doi: 10.1083/jcb.109.1.317. PubMed DOI PMC
Aslam, S. Key cytoskeletal proteins are upregulated in 2D cell culture in comparison to 3D culture. (2020).
Xia Y, Rogers JA, Paul KE, Whitesides GM. Unconventional methods for fabricating and patterning nanostructures. Chem. Rev. 1999;99:1823–1848. doi: 10.1021/cr980002q. PubMed DOI
Xia Y, Whitesides GM. Soft Lithography. Angew. Chem. Int. Ed. 1998;37:550–575. doi: 10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G. PubMed DOI
Zainuddin, et al. F2 excimer laser (157nm) radiation modification and surface ablation of PHEMA hydrogels and the effects on bioactivity: Surface attachment and proliferation of human corneal epithelial cells. Radiat. Phys. Chem. 2011;80:219–229. doi: 10.1016/j.radphyschem.2010.07.036. DOI
Slepička P, et al. Polymer nanostructures for bioapplications induced by laser treatment. Biotechnol. Adv. 2018;36:839–855. doi: 10.1016/j.biotechadv.2017.12.011. PubMed DOI
Papenburg BJ, Rodrigues ED, Wessling M, Stamatialis D. Insights into the role of material surface topography and wettability on cell-material interactions. Soft Matter. 2010;6:4377. doi: 10.1039/b927207k. DOI
Masters, K. S. & Anseth, K. S. Cell–material interactions. In Advances in Chemical Engineering, 29, 7–46 (Elsevier, 2004).
Nečas, D. & Klapetek, P. Gwyddion: an open-source software for SPM data analysis. Open Phys.10 (2012).
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Hantsche, H. High resolution XPS of organic polymers, the scienta ESCA300 database. By G. Beamson and D. Briggs, Wiley, Chichester 1992, 295 pp., hardcover, £ 65.00, ISBN 0-471-93592-1. Adv. Mater. 5, 778–778 (1993).
Bragg WH, Bragg WL. The reflection of X-rays by crystals. Proc. R. Soc. Lond. A. 1913;88:428–438. doi: 10.1098/rspa.1913.0040. DOI
Khelfallah NS, Decher G, Mésini PJ. Design, synthesis, and degradation studies of new enzymatically erodible Poly(hydroxyethyl methacrylate)/poly(ethylene oxide) hydrogels. Biointerphases. 2007;2:131–135. doi: 10.1116/1.2799034. PubMed DOI
Barcelos LM, et al. Effect of the photoinitiator system on the polymerization of secondary methacrylamides of systematically varied structure for dental adhesive applications. Dent. Mater. 2020;36:468–477. doi: 10.1016/j.dental.2020.01.020. PubMed DOI PMC
Bischoff, L. & Teichert, J. Focused ion beam sputtering of silicon and related materials. Forschungszentrum Rossendorf; FZR-217 (1998).
Ali MY, Hung W, Yongqi F. A review of focused ion beam sputtering. Int. J. Precis. Eng. Manuf. 2010;11:157–170. doi: 10.1007/s12541-010-0019-y. DOI
McArthur SL, McLean KM, St. John HAW, Griesser HJ. XPS and surface-MALDI-MS characterisation of worn HEMA-based contact lenses. Biomaterials. 2001;22:3295–3304. doi: 10.1016/S0142-9612(01)00166-1. PubMed DOI
De Giglio E, et al. PHEMA-based thin hydrogel films for biomedical applications. J. Bioact. Compat. Polym. 2011;26:420–434. doi: 10.1177/0883911511410460. DOI
Castner DG, Ratner BD, Hirao A, Nakahama S. Characterization of Poly(2-Hydroxyethyl Methacrylate) (PHEMA) by XPS. Surf. Sci. Spectra. 1996;4:14–20. doi: 10.1116/1.1247807. DOI
Gam-Derouich S, et al. Electrografted Aryl diazonium initiators for surface-confined photopolymerization: A new approach to designing functional polymer coatings. Langmuir. 2010;26:11830–11840. doi: 10.1021/la100880j. PubMed DOI
Khavandi Khiavi A, Ghanbari A, Ahmadi E. Evaluation of Poly 2-Hydroxyethyl Methacrylate—Modified Bitumen aging using NMR and FTIR techniques. J. Transp. Eng. Part B: Pavements. 2021;147:04020087. doi: 10.1061/JPEODX.0000228. DOI
Chamerski, K. et al. Nanoscale observation of dehydration process in PHEMA hydrogel structure. (2017). PubMed PMC
Davison JC, Meakin JR, Skakle JMS, Hukins DWL. X-ray diffraction shows a 0.5 nm spacing in hydrogels of poly(2-hydroxyethyl methacrylate) (pHEMA) J. Mater. Sci. Lett. 2001;20:2135–2136. doi: 10.1023/A:1013776331345. DOI
Raut HK, Ganesh VA, Nair AS, Ramakrishna S. Anti-reflective coatings: A critical, in-depth review. Energy Environ. Sci. 2011;4:3779–3804. doi: 10.1039/c1ee01297e. DOI