Speed and quality of interbody fusion in porous bioceramic Al2O3 and polyetheretherketone cages for anterior cervical discectomy and fusion: a comparative study

. 2023 Mar 03 ; 18 (1) : 165. [epub] 20230303

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu randomizované kontrolované studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36869376
Odkazy

PubMed 36869376
PubMed Central PMC9983253
DOI 10.1186/s13018-023-03625-8
PII: 10.1186/s13018-023-03625-8
Knihovny.cz E-zdroje

BACKGROUND: The objective of this prospective randomized monocentric study is to compare the speed and quality of interbody fusion of implanted porous Al2O3 (aluminium oxide) cages with PEEK (polyetheretherketone) cages in ACDF (anterior cervical discectomy and fusion). MATERIALS AND METHODS: A total of 111 patients were enrolled in the study, which was carried out between 2015 and 2021. The 18-month follow-up (FU) was completed in 68 patients with an Al2O3 cage and 35 patients with a PEEK cage in one-level ACDF. Initially, the first evidence (initialization) of fusion was evaluated on computed tomography. Subsequently, interbody fusion was evaluated according to the fusion quality scale, fusion rate and incidence of subsidence. RESULTS: Signs of incipient fusion at 3 months were detected in 22% of cases with the Al2O3 cage and 37.1% with the PEEK cage. At 12-month FU, the fusion rate was 88.2% for Al2O3 and 97.1% for PEEK cages, and at the final FU at 18 months, 92.6% and 100%, respectively. The incidence of subsidence was observed to be 11.8% and 22.9% of cases with Al2O3 and PEEK cages, respectively. CONCLUSIONS: Porous Al2O3 cages demonstrated a lower speed and quality of fusion in comparison with PEEK cages. However, the fusion rate of Al2O3 cages was within the range of published results for various cages. The incidence of subsidence of Al2O3 cages was lower compared to published results. We consider the porous Al2O3 cage as safe for a stand-alone disc replacement in ACDF.

Zobrazit více v PubMed

Samartzis D, Shen FH, Goldberg EJ, An HS. Is autograft the gold standard in achieving radiographic fusion in one-level anterior cervical discectomy and fusion with rigid anterior plate fixation? Spine. 2005;30:1756–1761. doi: 10.1097/01.brs.0000172148.86756.ce. PubMed DOI

Stieber JR, Brown K, Donald GD, Cohen JD. Anterior cervical decompression and fusion with plate fixation as an outpatient procedure. Spine J. 2005;5:503–507. doi: 10.1016/j.spinee.2005.01.011. PubMed DOI

Kepler CK, Rawlins BA. Mesh cage reconstruction with autologous cancellous graft in anterior cervical discectomy and fusion. J Spinal Disord Tech. 2010;23:328–332. doi: 10.1097/BSD.0b013e3181aed73c. PubMed DOI

Armaghani SJ, Even JL, Zern EK, Braly BA, et al. The evaluation of donor site pain after harvest of tricortical anterior iliac crest bone graft for spinal surgery: a prospective study. Spine. 2016;41:E191–E196. doi: 10.1097/BRS.0000000000001201. PubMed DOI

Maharaj MM, Phan K, Mobbs RJ. Anterior cervical discectomy and fusion (ACDF) autograft versus graft substitutes: what do patients prefer?-A clinical study. J Spine Surg. 2016;2:105–110. doi: 10.21037/jss.2016.05.01. PubMed DOI PMC

Rhee JM, Patel N, Yoon ST, Franklin B. High graft resorption rates with dense cancellous allograft in anterior cervical discectomy and fusion. Spine. 2007;26:2980–2984. doi: 10.1097/BRS.0b013e31815cd464. PubMed DOI

Singh P, Kumar A, Shekhawat V. Comparative analysis of interbody cages versus tricortical graft with anterior plate fixation for anterior cervical discectomy and fusion in degenerative cervical disc disease. J Clin Diagn Res. 2016 doi: 10.7860/JCDR/2016/16520.7340. PubMed DOI PMC

Pirkle S, Kaskovich S, Cook DJ, Ho A, et al. Cages in ACDF are associated with a higher nonunion rate than allograft: a stratified comparative analysis of 6130 patients. Spine. 2019;44:384–388. doi: 10.1097/BRS.0000000000002854. PubMed DOI

Seaman S, Kerezoudis P, Bydon M, Torner JC, Hitchon PW. Titanium vs. polyetheretherketone (PEEK) interbody fusion: Meta-analysis and review of the literature. J Clin Neurosci. 2017;44:23–29. doi: 10.1016/j.jocn.2017.06.062. PubMed DOI

Yson SC, Sembrano JN, Santos ER. Comparison of allograft and polyetheretherketone (PEEK) cage subsidence rates in anterior cervical discectomy and fusion (ACDF) J Clin Neurosci. 2017;38:118–121. doi: 10.1016/j.jocn.2016.12.037. PubMed DOI

Ragni E, Orfei CP, Bidossi A, De Vecchi E, Francaviglia N, Romano A, Maestretti G, Tartara F, de Girolamo L. Superior osteo-inductive and osteo-conductive properties of trabecular titanium vs. PEEK scaffolds on human mesenchymal stem cells: a proof of concept for the use of fusion cages. Int J Mol Sci. 2021;22(5):2379. doi: 10.3390/ijms22052379. PubMed DOI PMC

Mostofi K, Moghaddam BG, Peyravi M, Khouzani RK. Preliminary results of anterior cervical arthroplasty by porous alumina ceramic cage for cervical disc herniation surgery. J Craniovertebr Junction Spine. 2019;9:223–226. doi: 10.4103/jcvjs.JCVJS_95_18. PubMed DOI PMC

Finiels PJ. Intérêt des biocéramiques en alumine poreuse cellulaire en chirurgie rachidienne [Interest of porous biomaterials in spinal surgery] Neurochirurgie. 2004;50:630–638. doi: 10.1016/s0028-3770(04)98454-8. PubMed DOI

Krticka M, Planka L, Vojtova L, et al. Lumbar interbody fusion conducted on a porcine model with a bioresorbable ceramic/biopolymer hybrid implant enriched with hyperstable fibroblast growth factor 2. Biomedicines. 2021;9:733. doi: 10.3390/biomedicines9070733. PubMed DOI PMC

Saur K, Májovský M, Vaněk P. Radiological analysis of the results of expandable implant insertion in one- to two-level cervical somatectomy. Radiologická analýza výsledků implantace expandibilní náhrady při jedno-až dvouetážové somatektomii krční páteře. Rozhl Chir. 2020;99:72–76. PubMed

Vavruch L, Hedlund R, Javid D, Leszniewski W, Shalabi A. A prospective randomized comparison between the cloward procedure and a carbon fiber cage in the cervical spine: a clinical and radiologic study. Spine. 2002;27:1694–1701. doi: 10.1097/00007632-200208150-00003. PubMed DOI

Noordhoek I, Koning MT, Vleggeert-Lankamp CLA. Evaluation of bony fusion after anterior cervical discectomy: a systematic literature review. Eur Spine J. 2019;28:386–399. doi: 10.1007/s00586-018-5820-9. PubMed DOI

Park S, Lee DH, Seo J, et al. Feasibility of CaO-SiO2-P2O5-B2O3 bioactive glass ceramic cage in anterior cervical diskectomy and fusion. World Neurosurg. 2020;141:e358–e366. doi: 10.1016/j.wneu.2020.05.143. PubMed DOI

Yang JJ, Yu CH, Chang BS, Yeom JS, et al. Subsidence and nonunion after anterior cervical interbody fusion using a stand-alone polyetheretherketone (PEEK) cage. Clin Orthop Surg. 2011;3:16–23. doi: 10.4055/cios.2011.3.1.16. PubMed DOI PMC

Barsa P, Suchomel P. Factors affecting sagittal malalignment due to cage subsidence in standalone cage assisted anterior cervical fusion. Eur Spine J. 2007;16:1395–1400. doi: 10.1007/s00586-006-0284-8. PubMed DOI PMC

Park JY, Choi KY, Moon BJ, Hur H, et al. Subsidence after single-level anterior cervical fusion with a stand-alone cage. J Clin Neurosci. 2016;33:83–88. doi: 10.1016/j.jocn.2016.01.042. PubMed DOI

Krause KL, Obayashi JT, Bridges KJ, Raslan AM, Than KD. Fivefold higher rate of pseudarthrosis with polyetheretherketone interbody device than with structural allograft used for 1-level anterior cervical discectomy and fusion. J Neurosurg Spine. 2018;30(1):46–51. doi: 10.3171/2018.7.SPINE18531. PubMed DOI

Buyuk AF, Onyekwelu I, Gaffney CJ, et al. Symptomatic pseudarthrosis requiring revision surgery after 1- or 2-level ACDF with plating: peek versus allograft. J Spine Surg. 2020;6(4):670–680. doi: 10.21037/jss-19-419. PubMed DOI PMC

Ahmed AF, Al Dosari MAA, Al Kuwari A, Khan NM. The outcomes of stand alone polyetheretherketone cages in anterior cervical discectomy and fusion. Int Orthop. 2021;45(1):173–180. doi: 10.1007/s00264-020-04760-1. PubMed DOI PMC

Campana V, Milano G, Pagano E, et al. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci Mater Med. 2014;25:2445–2461. doi: 10.1007/s10856-014-5240-2. PubMed DOI PMC

Oryan A, Alidadi S, Moshiri A, Maffulli N. Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res. 2014;9(1):18. doi: 10.1186/1749-799X-9-18. PubMed DOI PMC

Du Z, Zhu Z, Wang Y. The degree of peri-implant osteolysis induced by PEEK, CoCrMo, and HXLPE wear particles: a study based on a porous Ti6Al4V implant in a rabbit model. J Orthop Surg Res. 2018;13(1):23. doi: 10.1186/s13018-018-0736-y. PubMed DOI PMC

Cuzzocrea F, Ivone A, Jannelli E, et al. PEEK versus metal cages in posterior lumbar interbody fusion: a clinical and radiological comparative study. Musculoskelet Surg. 2019;103(3):237–241. doi: 10.1007/s12306-018-0580-6. PubMed DOI

Jin ZY, Teng Y, Wang HZ, Yang HL, et al. Comparative analysis of cage subsidence in anterior cervical decompression and fusion: zero profile anchored spacer (ROI-C) vs. conventional cage and plate construct. Front Surg. 2021;8:736680. doi: 10.3389/fsurg.2021.736680. PubMed DOI PMC

Keppler AM, Saller MM, Alberton P, Westphal I, Heidenau F, Schönitzer V, Böcker W, Kammerlander C, Schieker M, Aszodi A, Neuerburg C. Bone defect reconstruction with a novel biomaterial containing calcium phosphate and aluminum oxide reinforcement. J Orthop Surg Res. 2020 doi: 10.1186/s13018-020-01801-8. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace