The Significance and Utilisation of Biomimetic and Bioinspired Strategies in the Field of Biomedical Material Engineering: The Case of Calcium Phosphat-Protein Template Constructs

. 2020 Jan 10 ; 13 (2) : . [epub] 20200110

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid31936830

Grantová podpora
RVO: 67985891 Academy os Sciences of the Czech Republic

This review provides a summary of recent research on biomimetic and bioinspired strategies applied in the field of biomedical material engineering and focusing particularly on calcium phosphate-protein template constructs inspired by biomineralisation. A description of and discussion on the biomineralisation process is followed by a general summary of the application of the biomimetic and bioinspired strategies in the fields of biomedical material engineering and regenerative medicine. Particular attention is devoted to the description of individual peptides and proteins that serve as templates for the biomimetic mineralisation of calcium phosphate. Moreover, the review also presents a description of smart devices including delivery systems and constructs with specific functions. The paper concludes with a summary of and discussion on potential future developments in this field.

Zobrazit více v PubMed

Schmitt O.H. Some interesting and useful biomimetic transforms; Proceedings of the 3rd International Biophysics Congress of the International Union for Pure and Applied Biophysics at the Massachusetts Institute of Technology; Cambridge, MA, USA. 29 August–3 September 1969;

Vincent J.F.V., Bogatyreva O.A., Bogatyrev N.R., Bowyer A., Pahl A.K. Biomimetics: Its practice and theory. J. R. Soc. Interface. 2006;3:471–482. doi: 10.1098/rsif.2006.0127. PubMed DOI PMC

Sarikaya M., Aksay I.A. Nacre: Properties, crystallography, morphology, and formation. In: Sarikaya M., Aksay I.A., editors. Design and Processing of Materials by Biomimetics. American Institute of Physics; Washington, DC, USA: 1993. pp. 35–86.

Sarikaya M. An introduction to biomimetics: A structural viewpoint. Microsc. Res. Tech. 1994;27:360–375. doi: 10.1002/jemt.1070270503. PubMed DOI

Green D., Walsh D., Mann S., Oreffo R.O. The potential of biomimesis in bone tissue engineering: Lessons from the design and synthesis of invertebrate skeletons. Bone. 2000;30:810–815. doi: 10.1016/S8756-3282(02)00727-5. PubMed DOI

Raucci M.G., Guarino V., Ambrosio L. Biomimetic strategies for bone repair and regeneration. J. Funct. Biomater. 2012;3:688–705. doi: 10.3390/jfb3030688. PubMed DOI PMC

Kikuchi M., Ikoma T., Itoh S., Matsumoto H.N., Koyama Y., Takakuda K., Shinomiya K., Tanaka J. Biomimetic synthesis of bone-like nanocomposites using the self-organization mechanism of hydroxyapatite and collagen. Comp. Sci. Technol. 2004;64:819–825. doi: 10.1016/j.compscitech.2003.09.002. DOI

Du C., Cui F.Z., Zhu X.D., De Groot K. Three-dimensional nano-HAp/collagen matrix loading with osteogenic cells in organ culture. J. Biomed. Mater. Res A. 1999;44:407–415. doi: 10.1002/(SICI)1097-4636(19990315)44:4<407::AID-JBM6>3.0.CO;2-T. PubMed DOI

Lin X., Li X., Fan H., Wen X., Lu J., Zhang X. In Situ synthesis of bone-like apatite/collagen nano-composite at low temperature. Mater. Lett. 2004;58:3569–3572. doi: 10.1016/j.matlet.2004.06.044. DOI

Allo B.A., Costa D.O., Dixon S.J., Mequanint K., Rizkalla A.S. Bioactive and biodegradable nanocomposites and hybrid biomaterials for bone regeneration. J. Funct. Biomater. 2012;3:432–463. doi: 10.3390/jfb3020432. PubMed DOI PMC

Sugawara-Narutaki A. Bio-inspired synthesis of polymer–inorganic nanocomposite materials in mild aqueous systems. Polym. J. 2013;45:269–276. doi: 10.1038/pj.2012.171. DOI

Liu Y., Luo D., Wang T. Hierarchical structures of bone and bioinspired bone tissue engineering. Small. 2016;12:4611–4632. doi: 10.1002/smll.201600626. PubMed DOI

Alves N.M., Leonor I.B., Azevedo H.S., Reis R.L., Mano J.F. Designing biomaterials based on biomineralization of bone. J. Mater. Chem. 2010;20:2911–2921. doi: 10.1039/b910960a. DOI

Vriezema D.M., Comellas Aragone’s M., Elemans J.A.A.W., Cornelissen J.J.L.M., Rowan A.E., Nolte R.J.M. Self-assembled nanoreactors. Chem. Rev. 2005;105:1445–1489. doi: 10.1021/cr0300688. PubMed DOI

Maria S.M., Prukner C., Sheikh Z., Müller F.A., Komarova S.V., Barralet J.E. Characterization of biomimetic calcium phosphate labeled with fluorescent dextran for quantification of osteoclastic activity. Acta Biomater. 2015;20:140–146. doi: 10.1016/j.actbio.2015.03.026. PubMed DOI

Pérez R.A., Won J.E., Knowles J.C., Kim H.W. Naturally and synthetic smart composite biomaterials for tissue regeneration. Adv. Drug Deliv. Rev. 2013;65:471–496. doi: 10.1016/j.addr.2012.03.009. PubMed DOI

Fernandez-Yague M.A., Abbah S.A., McNamara L., Zeugolis D.I., Pandit A., Biggs M.J. Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies. Adv. Drug Deliv. Rev. 2015;84:1–29. doi: 10.1016/j.addr.2014.09.005. PubMed DOI

Nudelman F., Sommerdijk N.A. Biomineralization as an inspiration for materials chemistry. Angew. Chem. Int. Ed. Engl. 2012;51:6582–6596. doi: 10.1002/anie.201106715. PubMed DOI

Fabritius H.O., Ziegler A., Friák M., Nikolov S., Huber J., Seidl B.H.M., Ruangchai S., Alagboso F.I., Karsten S., Lu J. Functional adaptation of crustacean exoskeletal elements through structural and compositional diversity: A combined experimental and theoretical study. Bioinspir. Biomim. 2016;11:055006. doi: 10.1088/1748-3190/11/5/055006. PubMed DOI

Neues F., Epple M. X-ray microcomputer tomography for the study of biomineralized endo-and exoskeletons of animals. Chem. Rev. 2008;108:4734–4741. doi: 10.1021/cr078250m. PubMed DOI

Jiang S.D., Yao Q.Z., Ma Y.F., Zhou G.T., Fu S.Q. Phosphate-dependent morphological evolution of hydroxyapatite and implication for biomineralisation. Gondwana Res. 2015;28:858–868. doi: 10.1016/j.gr.2014.04.005. DOI

Qi C., Musetti S., Fu L.H., Zhu Y.J., Huang L. Biomolecule-assisted green synthesis of nanostructured calcium phosphates and their biomedical applications. Chem. Soc. Rev. 2019;48:2698–2737. doi: 10.1039/C8CS00489G. PubMed DOI

Veis A. Biomineralization. Rev. Mineral. Geochem. 2003;54:249–289. doi: 10.2113/0540249. DOI

Poole R.A., Kojima T., Tasuda T., Mwale F., Kobayashi M., Laverty S. Composition and structure of articular cartilage-A template for tissue repair. Clin. Orthop. Relat. Res. 2001;391:S26–S33. doi: 10.1097/00003086-200110001-00004. PubMed DOI

Robinson C., Connell S., Kirkham J., Shore R., Smith A. Dental enamel—A biological ceramic: Regular substructures in enamel hydroxyapatite crystals revealed by atomic force microscopy. J. Mater. Chem. 2004;14:2242–2248. doi: 10.1039/B401154F. DOI

Paschalis E.P., Tan J., Nancollas G.H. Constant composition dissolution kinetics studies of human dentin. J. Dent. Res. 1996;75:1019–1026. doi: 10.1177/00220345960750040401. PubMed DOI

Giachelli C.M. Inducers and inhibitors of biomineralization: Lessons from pathological calcification. Orthod. Craniofac. Res. 2005;8:229–231. doi: 10.1111/j.1601-6343.2005.00345.x. PubMed DOI

Uskoković V. When 1 + 1 > 2: Nanostructured composites for hard tissue engineering applications. Mater. Sci. Eng. C. 2015;57:434–451. doi: 10.1016/j.msec.2015.07.050. PubMed DOI PMC

Hellmich C., Ulm F.J., Dormieux L. Can the diverse elastic properties of trabecular and cortical bone be attributed to only a few tissue-independent phase properties and their interactions? Arguments from a multiscale approach. Biomech. Model Mechanobiol. 2004;2:219–238. doi: 10.1007/s10237-004-0040-0. PubMed DOI

Campi G., Fratini M., Bukreeva I., Ciasca G., Burghammer M., Brun F., Tromba G., Mastrogiacomo M., Cedola A. Imaging collagen packing dynamics during mineralization of engineered bone tissue. Acta Biomater. 2015;23:309–316. doi: 10.1016/j.actbio.2015.05.033. PubMed DOI

Li Y., Aparicio C. Discerning the subfibrillar structure of mineralized collagen fibrils: A model for the ultrastructure of bone. PLoS ONE. 2013;8:e76782. doi: 10.1371/journal.pone.0076782. PubMed DOI PMC

Wang L., Nancollas G.H. Calcium orthophosphates: Crystallization and dissolution. Chem. Rev. 2008;108:4628–4669. doi: 10.1021/cr0782574. PubMed DOI PMC

Li M., Wang L., Putnis C.V. Atomic force microscopy imaging of classical and nonclassical surface growth dynamics of calcium orthophosphates. Cryst. Eng. Commun. 2018;20:2886–2896. doi: 10.1039/C7CE02100C. DOI

Jin W., Jiang S., Pan H., Tang R. Amorphous phase mediated crystallization: Fundamentals of biomineralization. Crystals. 2018;8:48. doi: 10.3390/cryst8010048. DOI

Bolean M., Simão A.M.S., Barioni M.B., Favarin B.Z., Sebinelli H.G., Veschi E.A., Janku T.A.B., Bottini M., Hoylaerts M.F., Itri R., et al. Biophysical aspects of biomineralization. Biophys. Rev. 2017;9:747–760. doi: 10.1007/s12551-017-0315-1. PubMed DOI PMC

Palmer L.C., Newcomb C.J., Kaltz S.R., Spoerke E.D., Stupp S.I. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem. Rev. 2008;108:4754–4783. doi: 10.1021/cr8004422. PubMed DOI PMC

Wang Y., Azaïs T., Robin M., Vallée A., Catania C., Legriel P., Pehau-Arnaudet G., Babonneau F., Giraud-Guille M.M., Nassif N. The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite. Nat. Mater. 2012;11:724–733. doi: 10.1038/nmat3362. PubMed DOI

Quan B.D., Sone E.D. The effect of polyaspartate chain length on mediating biomimetic remineralization of collagenous tissues. J. R. Soc. Interface. 2018;15:20180269. doi: 10.1098/rsif.2018.0269. PubMed DOI PMC

Tejero R., Bierbaum S., Douglas T., Reinstorf A., Worch H., Scharnweber D. Glucuronic acid and phosphoserine act as mineralization mediators of collagen I based biomimetic substrates. J. Mater. Sci. Mater. Med. 2010;21:407–418. doi: 10.1007/s10856-009-3879-x. PubMed DOI

George A., Veis A. Phosphorylated proteins and control over apatite nucleation, crystal growth, and inhibition. Chem. Rev. 2008;108:4670–4693. doi: 10.1021/cr0782729. PubMed DOI PMC

Jie Y., Cai Z., Li S., Xie Z., Ma M., Huang X. Hydroxyapatite nucleation and growth on collagen electrospun fibers controlled with different mineralization conditions and phosvitin. Macromol. Res. 2017;25:905–912. doi: 10.1007/s13233-017-5091-z. DOI

Rodriguez D.E., Thula-Mata T., Toro E.J., Yeh Y.W., Holt C., Holliday L.S., Gower L.B. Multifunctional role of osteopontin in directing intrafibrillar mineralization of collagen and activation of osteoclasts. Acta Biomater. 2014;10:494–507. doi: 10.1016/j.actbio.2013.10.010. PubMed DOI PMC

Olszta M.J., Cheng X., Jee S.S., Kumar R., Kim Y.Y., Kaufman M.J., Douglas E.P., Gower L.B. Bone structure and formation: A new perspective. Mater. Sci. Eng. R. 2007;58:77–116. doi: 10.1016/j.mser.2007.05.001. DOI

Zhang Z., Zhang C., Guo Q., Ma G., Shen L., Yu H., Lin B., Lu N., Huang K. Application of recombinant collagen type I combined with polyaspartic acid in biomimetic biomineralization. Chin. Acad. Med. Sci. 2017;39:318–323. doi: 10.3881/j.issn.1000-503X.2017.03.004. PubMed DOI

Tsiourvas D., Tsetsekou A., Kammenou M.I., Boukos N. Biomimetic synthesis of ribbon-like hydroxyapatite employing poly(L-arginine) Mater. Sci. Eng. C. 2016;58:1225–1231. doi: 10.1016/j.msec.2015.09.076. PubMed DOI

Ding H., Pan H., Xu X., Tang R. Toward a detailed understanding of magnesium ions on hydroxyapatite crystallization inhibition. Cryst. Growth Des. 2014;14:763–769. doi: 10.1021/cg401619s. DOI

Eiden-Aßmann S., Viertelhaus M., Heiß A., Hoetzer K.A., Felsche J. The influence of amino acids on the biomineralization of hydroxyapatite in gelatin. J. Inorg. Biochem. 2002;91:481–486. doi: 10.1016/S0162-0134(02)00481-6. PubMed DOI

Tavafoghi M., Cerruti M. The role of amino acids in hydroxyapatite mineralization. J. R. Soc. Interface. 2016;13:20160462. doi: 10.1098/rsif.2016.0462. PubMed DOI PMC

Toroian D., Lim J.E., Price P.A. The size exclusion characteristics of type I collagen: Implications for the role of noncollagenous bone constituents in mineralization. J. Biol. Chem. 2007;282:22437–22447. doi: 10.1074/jbc.M700591200. PubMed DOI

Lin T.J., Heinz H. Accurate force field parameters and pH resolved surface models for hydroxyapatite to understand structure, mechanics, hydration, and biological interfaces. J. Phys. Chem. C. 2016;120:4975–4992. doi: 10.1021/acs.jpcc.5b12504. DOI

Bleek K., Taubert A. New developments in polymer-controlled, bioinspired calcium phosphate mineralization from aqueous solution. Acta Biomater. 2013;9:6283–6321. doi: 10.1016/j.actbio.2012.12.027. PubMed DOI

Kuttappan S., Mathew D., Nair M.B. Biomimetic composite scaffolds containing bioceramics andcollagen/gelatin for bone tissue engineering—A mini review. Int. J. Biol. Macromol. 2016;93:1390–1401. doi: 10.1016/j.ijbiomac.2016.06.043. PubMed DOI

Pawelec K.M., Kluijtmans S.G.M.J. Biomineralization of recombinant peptide scaffolds: Interplay among chemistry, architecture, and mechanics. ACS Biomater. Sci. Eng. 2017;3:1100–1108. doi: 10.1021/acsbiomaterials.7b00175. PubMed DOI

Ding S., Tang M., Chen J., Li L., Li H. Effects of collagen assembly form on biomimetic mineralization. Chin. J. Mater. Res. 2016;30:51–56. doi: 10.11901/1005.3093.2015.286. DOI

Xia Z., Villa M.M., Wei M. A biomimetic collagen–apatite scaffold with a multi-level lamellar structure for bone tissue engineering. J. Mater. Chem. B. 2014;2:1998–2007. doi: 10.1039/c3tb21595d. PubMed DOI PMC

Shen X., Chen L., Cai X., Tong T., Tong H., Hu J. A novel method for the fabrication of homogeneous hydroxyapatite/collagen nanocomposite and nanocomposite scaffold with hierarchical porosity. J. Mater. Sci. Mater. Med. 2011;22:299–305. doi: 10.1007/s10856-010-4199-x. PubMed DOI

Preti L., Lambiase B., Campodoni E., Sandri M., Ruffini A., Pugno N., Tampieri A., Sprio S. Bio-Inspired Technology. IntechOpen; London, UK: 2019. Nature-inspired processes and structures: New paradigms to develop highly bioactive devices for hard tissue regeneration.

Eppell S.J., Tong W., McMasters J., Soenjaya Y., Barbu A.M., Ko A., Baskin J.Z. Minor Review: An overview of a synthetic nanophase bone substitute. Materials. 2018;11:1556. doi: 10.3390/ma11091556. PubMed DOI PMC

Heinemann C., Heinemann S., Kruppke B., Worch H., Thomas J., Wiesmann H.P., Hanke T. Electric field-assisted formation of organically modified hydroxyapatite (ormoHAP) spheres in carboxymethylated gelatin gels. Acta Biomater. 2016;44:135–143. doi: 10.1016/j.actbio.2016.08.024. PubMed DOI

Yokoyama A., Gelinsky M., Kawasaki T., Kohgo T., König U., Pompe W., Watari F. Biomimetic porous scaffolds with high elasticity made from mineralized collagen—An animal study. J. Biomed. Mater. Res. Part B Appl. Biomater. 2005;75:464–472. doi: 10.1002/jbm.b.30331. PubMed DOI

Kikuchi M., Matsumoto H.N., Yamada T., Koyama Y., Takakuda K., Tanaka J. Glutaraldehyde cross-linked hydroxyapatite/collagen self-organized nanocomposites. Biomaterials. 2004;25:63–69. doi: 10.1016/S0142-9612(03)00472-1. PubMed DOI

Wang J., Liu C. Biomimetic collagen/hydroxyapatite composite scaffolds: Fabrication and characterizations. J. Bionic Eng. 2014;11:600–609. doi: 10.1016/S1672-6529(14)60071-8. DOI

Tomomatsu O., Tachibana A., Yamauchi K., Tanabe T. A film of collagen/calcium phosphate composite prepared by enzymatic mineralization in an aqueous phase. J. Ceram. Soc. Jpn. 2008;116:10–13. doi: 10.2109/jcersj2.116.10. DOI

Strange D.G.T., Oyen M.L. Biomimetic bone-like composites fabricated through an automated alternate soaking proces. Acta Biomater. 2011;7:3586–3594. doi: 10.1016/j.actbio.2011.06.025. PubMed DOI

Kruppke B., Farack J., Wagner A.S., Beckmann S., Heinemann C., Glenske K., Rößler S., Wiesmann H.P., Wenisch S., Hanke T. Gelatine modified monetite as a bone substitute material: An In Vitro assessment of bone biocompatibility. Acta Biomater. 2016;32:275–285. doi: 10.1016/j.actbio.2015.12.035. PubMed DOI

Kim H.W., Song J.H., Kim H.E. Nanofiber generation of gelatin-hydroxyapatite biomimetics for guided tissue regeneration. Adv. Funct. Mater. 2005;15:1988–1994. doi: 10.1002/adfm.200500116. DOI

Li X., Feng Q., Jiao Y., Cui F. Collagen-based scaffolds reinforced by chitosan fibres for bone tissue engineering. Polym. Int. 2005;54:1034–1040. doi: 10.1002/pi.1804. DOI

Han G.S., Lee S., Kim D.W., Kim D.H., Noh J.H., Park J.H., Roy S., Ahn T.K., Jung H.S. A simple method to control morphology of hydroxyapatite nano- and microcrystals by altering phase transition route. Cryst. Growth Des. 2013;13:3414–3418. doi: 10.1021/cg400308a. DOI

Lickorish D., Ramshaw J.A.M., Werkmeister J.A., Glattauer V., Howlett C.R. Collagen—Hydroxyapatite composite prepared by biomimetic proces. J. Biomed. Mater. Res. Part A. 2004;68:19–27. doi: 10.1002/jbm.a.20031. PubMed DOI

Narasimha Raghavan R., Muthukumar T., Somanathan N., Sastry T.P. Biomimetic mineralization of novel silane crosslinked collagen. Mater. Sci. Eng. C. 2013;33:1983–1988. doi: 10.1016/j.msec.2013.01.007. PubMed DOI

Li Y., Thula T.T., Jee S., Perkins S.L., Aparicio C., Douglas E.P., Gower L.B. Biomimetic mineralization of woven bone-like nanocomposites: Role of collagen cross-links. Biomacromolecules. 2012;13:49–59. doi: 10.1021/bm201070g. PubMed DOI

Tarik Arafat M., Tronci G., Yin J., Wood D.J., Russell S.J. Biomimetic wet-stable fibres via wet spinning and diacid-based crosslinking of collagen triple helices. Polymer. 2015;77:102–112. doi: 10.1016/j.polymer.2015.09.037. DOI

Bigi A., Boanini E., Panzavolta S., Roveri N. Biomimetic Growth of hydroxyapatite on gelatin films doped with sodium polyacrylate. Biomacromolecules. 2000;1:752–756. doi: 10.1021/bm0055854. PubMed DOI

Kollmann T., Simon P., Carrillo-Cabrera W., Braunbarth C., Poth T., Rosseeva E.V., Kniep R. Calcium phosphate-gelatin nanocomposites: Bulk preparation (shape-and phase-control), characterization, and application as dentine repair material. Chem. Mater. 2010;22:5137–5153. doi: 10.1021/cm101755j. DOI

Bigi A., Boanini E., Cojazzi G., Falini G., Panzavolta S. Morphological and structural investigation of octacalcium phosphate hydrolysis in the presence of polyacrylic acids: Effect of relative molecular weights. Crys. Growth Des. 2001;1:239–244. doi: 10.1021/cg005551f. DOI

Chang M.C., Ko C.C., Douglas W.H. Preparation of hydroxyapatite-gelatin nanocomposite. Biomaterials. 2003;24:2853–2862. doi: 10.1016/S0142-9612(03)00115-7. PubMed DOI

Chang M.C. Organic—Inorganic interaction between hydroxyapatite and gelatin with the aging of gelatin in aqueous phosphoric acid solution. J. Mater. Sci. Mater. Med. 2008;19:3411–3418. doi: 10.1007/s10856-008-3488-0. PubMed DOI

Liu X., Lin K., Wu C., Wang Y., Zou Z., Chang J. Multilevel hierarchically ordered artificial biomineral. Small. 2014;10:152–159. doi: 10.1002/smll.201301633. PubMed DOI

Ito H., Oaki Y., Imai H. Selective synthesis of various nanoscale morphologies of hydroxyapatite via an intermediate phase. Cryst. Growth Des. 2008;8:1055–1059. doi: 10.1021/cg070443f. DOI

Furuichi K., Oaki Y., Imai H. Preparation of nanotextured and nanofibrous hydroxyapatite through dicalcium phosphate with gelatin. Chem. Mater. 2006;18:229–234. doi: 10.1021/cm052213z. DOI

Chang M.C., Douglas W.H., Tanaka J. Organic-inorganic interaction and the growth mechanism of hydroxyapatite crystals in gelatin matrices between 37 and 80 °C. J. Mater. Sci. Mater. Med. 2006;17:387–396. doi: 10.1007/s10856-006-8243-9. PubMed DOI

Kim Y.K., Gu L.S., Bryan T.E., Kim J.R., Chen L., Liu Y., Yoon J.C., Breschi L., Pashley D.H., Tay F.R. Mineralisation of reconstituted collagen using polyvinylphosphonic acid/polyacrylic acid templating matrix protein analogues in the presence of calcium, phosphate and hydroxyl ions. Biomaterials. 2010;31:6618–6627. doi: 10.1016/j.biomaterials.2010.04.060. PubMed DOI PMC

Li N., Luo X., Ye B., Li Z., Wu D., Li L., Li H., Zhou C. Biomimetic mineralization of collagen fibers regulated with “soft template”. J. Funct. Mater. 2016;47:03129–03135. doi: 10.3969/j.issn.1001-9731.2016.03.024. DOI

Yu L., Martin I.J., Kasi R.M., Wei M. Enhanced intrafibrillar mineralization of collagen fibrils induced by brushlike polymers. ACS Appl. Mater. Interfaces. 2018;10:28440–28449. doi: 10.1021/acsami.8b10234. PubMed DOI

Hu C., Zilm M., Wei M. Fabrication of intrafibrillar and extrafibrillar mineralized collagen/apatite scaffolds with a hierarchical structure. J. Biomed. Mater. Res. Part A. 2016;104:1153–1161. doi: 10.1002/jbm.a.35649. PubMed DOI

Thula T.T., Rodriguez D.E., Lee M.H., Pendi L., Podschun J., Gower L.B. In Vitro mineralization of dense collagen substrates: A biomimetic approach toward the development of bone-graft materials. Acta Biomater. 2011;7:3158–3169. doi: 10.1016/j.actbio.2011.04.014. PubMed DOI PMC

Antebi B., Cheng X., Harris J.N., Gower L.B., Chen X.D., Ling J. Biomimetic collagen–hydroxyapatite composite fabricated via a novel perfusion-flow mineralization technique. Tissue Eng. C Methods. 2013;19:487–496. doi: 10.1089/ten.tec.2012.0452. PubMed DOI PMC

Wingender B., Bradley P., Saxena N., Ruberti J.W., Gower L.B. Biomimetic organization of collagen matrices to template bone-like microstructures. Matrix Biol. 2016;52:384–396. doi: 10.1016/j.matbio.2016.02.004. PubMed DOI

Maas M., Guo P., Keeney M., Yang F., Hsu T.M., Fuller G.G., Martin C.R., Zare R.N. Preparation of mineralized nanofibers: Collagen fibrils containing calcium phosphate. Nano Lett. 2011;11:1383–1388. doi: 10.1021/nl200116d. PubMed DOI PMC

Suchý T., Šupová M., Bartoš M., Sedláček R., Piola M., Soncini M., Fiore G.B., Sauerová P., Hubálek Kalbáčová M. Dry versus hydrated collagen scaffolds: Are dry states representative of hydrated states? J. Mater. Sci. Mater. Med. 2018;29:20. doi: 10.1007/s10856-017-6024-2. PubMed DOI

Chang M.C., Tanaka J. FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde. Biomaterials. 2002;23:4811–4818. doi: 10.1016/S0142-9612(02)00232-6. PubMed DOI

Sader M.S., Martins V.C.A., Gomez S., LeGeros R.Z., Soares G.A. Production and In Vitro characterization of 3D porous scaffolds made of magnesium carbonate apatite (MCA)/anionic collagen using a biomimetic approach. Mater. Sci. Eng. C. 2013;33:4188–4196. doi: 10.1016/j.msec.2013.06.006. PubMed DOI

Chang M.C., Ko C.C., Douglas W.H. Conformational change of hydroxyapatite/gelatin nanocomposite by Glutaraldehyde. Biomaterials. 2003;24:3087–3094. doi: 10.1016/S0142-9612(03)00150-9. PubMed DOI

Chang M.C., Douglas W.H. Cross-linkage of hydroxyapatite/gelatin nanocomposite using imide-based zero-length cross-linker. J. Mater. Sci. Mater. Med. 2007;18:2045–2051. doi: 10.1007/s10856-007-3152-0. PubMed DOI

Zhou L., Tan G., Tan Y., Wang H., Liao J., Ning C. Biomimetic mineralization of anionic gelatin hydrogels: Effect of degree of methacrylation. RSC Adv. 2014;4:21997–22008. doi: 10.1039/C4RA02271H. DOI

Šupová M. Substituted hydroxyapatites for biomedical applications: A review. Ceram. Int. 2015;41:9203–9231. doi: 10.1016/j.ceramint.2015.03.316. DOI

Liao S., Watari F., Uo M., Ohkawa S., Tamura K., Wang W., Cui F. The preparation and characteristics of a carbonated hydroxyapatite/collagen composite at room temperature. J. Biomed. Mater. Res. B. 2005;74:817–821. doi: 10.1002/jbm.b.30315. PubMed DOI

Sachlos E., Gotora D., Czernuszka J.T. Collagen scaffolds reinforced with biomimetic composite nano-sized carbonate-substituted hydroxyapatite crystals and shaped by rapid prototyping to contain internal microchannels. Tissue Eng. 2006;12:2479–2487. doi: 10.1089/ten.2006.12.2479. PubMed DOI

Zhang W., Liao S.S., Cui F.Z. Hierarchical self-assembly of nano-fibrils in mineralized collagen. Chem. Mater. 2003;15:3221–3226. doi: 10.1021/cm030080g. DOI

Huang Z., Cui F., Feng Q., Guo X. Incorporation of strontium into hydroxyapatite via biomineralization of collagen fibrils. Ceram. Inter. 2015;41:8773–8778. doi: 10.1016/j.ceramint.2015.03.102. DOI

Minardi S., Corradetti B., Taraballi F., Sandri M., Eps J.V., Cabrera F.J., Weiner B.K., Tampieri A., Tasciotti E. Evaluation of the osteoinductive potential of a bio-inspired scaffold mimicking the osteogenic niche for bone augmentation. Biomaterials. 2015;62:128–137. doi: 10.1016/j.biomaterials.2015.05.011. PubMed DOI

Tampieri A., Sandri M., Landi E., Sprio S., Valentini F., Boskey A. Synthetic biomineralisation yielding HA/collagen hybrid composite. Adv. Appl. Ceram. 2008;107:298–302. doi: 10.1179/174367608X314163. DOI

Yu S.H., Chen S.F. Recent advances in polymer directed crystal growth and mediated self-assembly of nanoparticles. Cur. Nanosci. 2006;2:81–92. doi: 10.2174/157341306776875767. DOI

Tsetsekou A., Brasinika D., Vaou V., Chatzitheodoridis E. On the synthesis of tailored biomimetic hydroxyapatite nanoplates through a bioinspired approach in the presence of collagen or chitosan and L-arginine. Mater. Sci. Eng. C. 2014;43:555–565. doi: 10.1016/j.msec.2014.07.011. PubMed DOI

Luo D., Sang L., Wang X., Xu S., Li X. Low temperature, pH-triggered synthesis of collagen–chitosan–hydroxyapatite nanocomposites as potential bone grafting substitutes. Mater. Lett. 2011;65:2395–2397. doi: 10.1016/j.matlet.2011.05.011. DOI

Chen J., Zhang Y., Pan P., Fan T., Chen M., Zhang Q. In Situ strategy for bone repair by facilitated endogenous tissue engineering. Colloids Surf. B Biointerfaces. 2015;135:581–587. doi: 10.1016/j.colsurfb.2015.08.019. PubMed DOI

Teng S.H., Liang M.H., Wang P., Luo Y. Biomimetic composite microspheres of collagen/chitosan/nano-hydroxyapatite: In-situ synthesis and characterization. Mater. Sci. Eng. C. 2016;58:610–613. doi: 10.1016/j.msec.2015.09.021. PubMed DOI

Li H., Zhou C., Zhu M., Tian J., Rong J. In Vitro and In Vivo characterization of homogeneous chitosan-based composite scaffolds. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2012;27:100–106. doi: 10.1007/s11595-012-0416-4. DOI

Kanungo B.P., Gibson L.J. Density–property relationships in mineralized collagen–glycosaminoglycan scaffolds. Acta Biomater. 2009;5:1006–1018. doi: 10.1016/j.actbio.2008.11.029. PubMed DOI

Yang C., Li Y., Nan K. Biologically inspired growth of hydroxyapatite crystals on bio-organics-defined scaffolds. Mater. Res. Bull. 2013;48:1128–1131. doi: 10.1016/j.materresbull.2012.12.005. DOI

Ren X., Tu V., Bischoff D., Weisgerber D.W., Lewis M.S., Yamaguchi D.T., Miller T.A., Harley B.A.C., Lee J.C. Nanoparticulate mineralized collagen scaffolds induce In Vivo bone regeneration independent of progenitor cell loading or exogenous growth factor stimulation. Biomaterials. 2016;89:67–78. doi: 10.1016/j.biomaterials.2016.02.020. PubMed DOI PMC

Kanungo B.P., Silva E., Van Vliet K., Gibson L.J. Characterization of mineralized collagen–glycosaminoglycan scaffolds for bone regeneration. Acta Biomater. 2008;4:490–503. doi: 10.1016/j.actbio.2008.01.003. PubMed DOI

Kaczmarek B., Sionkowska A., Kozlowska J., Osyczka A.M. New composite materials prepared by calcium phosphateprecipitation in chitosan/collagen/hyaluronic acid spongecross-linked by EDC/NHS. Int. J. Biol. Macromol. 2018;107:247–253. doi: 10.1016/j.ijbiomac.2017.08.173. PubMed DOI

Wang J., Zhou W., Hu W., Zhou L., Wang S., Zhang S. Collagen/silk fibroin bi-template induced biomimetic bone-like substitutes. J. Biomed. Mater. Res. A. 2011;99:327–334. doi: 10.1002/jbm.a.32602. PubMed DOI

Chen L., Hu J., Ran J., Shen X., Tong H. Preparation and evaluation of collagen-silk fibroin/hydroxyapatite nanocomposites for bone tissue engineering. Int. J. Biolog. Macromol. 2014;65:1–7. doi: 10.1016/j.ijbiomac.2014.01.003. PubMed DOI

Cai X., Tong H., Zhao Y., Shen X., Hu J. Key Engineering Materials. Volume 361. Trans Tech Publications; Stafa, Zurich, Switzerland: 2008. A novel approach of homogenous inorganic/organic composite through In Situ precipitation in gelatine/poly(acrylic acid) gel; pp. 499–502. DOI

Bera T., Ramachandrarao P. Morphological changes in biomimetically synthesized hydroxyapatite and silver nanoparticles for medical applications. J. Mater. Sci. 2009;44:2264–2270. doi: 10.1007/s10853-008-2861-1. DOI

Wang Y., Manh N.V., Wang H., Zhong X., Zhang X., Li C. Synergistic intrafibrillar/extrafibrillar mineralization of collagen scaffolds based on a biomimetic strategy to promote the regeneration of bone defects. Int. J. Nanomed. 2016;11:2053–2067. doi: 10.2147/IJN.S102844. PubMed DOI PMC

Chen Z., Cao S., Wang H., Li Y., Kishen A., Deng X., Yang X., Wang Y., Cong C., Wang H., et al. Biomimetic remineralization of demineralized dentine using scaffold of CMC/ACP nanocomplexes in an In Vitro tooth model of deep caries. PLoS ONE. 2015;10:e0116553. doi: 10.1371/journal.pone.0116553. PubMed DOI PMC

Huang Z., Feng Q., Yu B., Li S. Biomimetic properties of an injectable chitosan/nano-hydroxyapatite/collagen composite. Mater. Sci. Eng. C. 2011;31:683–687. doi: 10.1016/j.msec.2010.12.014. DOI

Huang Z., Chen Y., Feng Q.L., Zhao W., Yu B., Tian J., Li S.J., Lin B.M. In Vivo bone regeneration with injectable chitosan/hydroxyapatite/collagen composites and mesenchymal stem cells. Front. Mater. Sci. 2011;5:301–310. doi: 10.1007/s11706-011-0142-4. DOI

Huang Z., Yu B., Feng Q., Li S., Chen Y., Luo L. In Situ-forming chitosan/nano-hydroxyapatite/collagen gel for the delivery of bone marrow mesenchymal stem cells. Carbohydr. Pol. 2011;85:261–267. doi: 10.1016/j.carbpol.2011.02.029. DOI

Ehrlich H., Douglas T., Scharnweber D., Hanke T., Born R., Bierbaum S., Worch H. Hydroxyapatite crystal growth on modified collagen I-templates in a model dual membrane diffusion system. Zeitschrift für Anorganische und Allgemeine Chemie. 2005;631:1825–1830. doi: 10.1002/zaac.200500195. DOI

Ehrlich H., Hanke T., Simon P., Born R., Fischer C., Frolov A., Langrock T., Hoffmann R., Schwarzenbolz U., Henle T., et al. Carboxymethylation of the fibrillar collagen with respect to formation of hydroxyapatite. J. Biomed. Mater. Res. B Appl. Biomater. 2010;92:542–551. doi: 10.1002/jbm.b.31551. PubMed DOI

George A., Ravindran S. Protein templates in hard tissue engineering. Nano Today. 2010;5:254–266. doi: 10.1016/j.nantod.2010.05.005. PubMed DOI PMC

Liu X., Mallapragada S.K. Bioinspired synthesis of organic/inorganic nanocomposite materials mediated by biomolecules. In: Pramatarova L.D., editor. Book, on Biomimetics. IntechOpen; London, UK: 2011.

Yusufoglu Y., Hu Y., Kanapathipillai M., Kramer M., Kalay Y.E., Thiyagarajan P., Akinc M., Schmidt-Rohr K., Mallapragada S. Bioinspired synthesis of self-assembled calcium phosphate nanocomposites using block copolymer-peptide conjugates. J. Mater. Res. 2008;23:3196–3212. doi: 10.1557/JMR.2008.0388. DOI

Hu Y.Y., Yusufoglu Y., Kanapathipillai M., Yang C.Y., Wu Y.Q., Thiyagarajan P., Deming T., Akinc M., Schmidt-Rohr K., Mallapragada S. Self-assembled calcium phosphate nanocomposites using block copolypeptide templates. Soft Matter. 2009;5:4311–4320. doi: 10.1039/b904440j. DOI

Wang J.J., Zhou Z.M., Zhang Z.B., Du B., Zhang Z., Wang Q., Yuan P., Liu L.R., Zhang Q.Q. Biomimetic synthesis of platelet-shaped hydroxyapatite mesocrystals in a collagen mimetic peptide–PEG hybrid hydrogel. Mater. Lett. 2015;159:150–153. doi: 10.1016/j.matlet.2015.06.101. DOI

Ramírez-Rodríguez G.B., Delgado-López J.M., Iafisco M., Montesi M., Sandri M., Sprio S., Tampier A. Biomimetic mineralization of recombinant collagen type I derived protein to obtain hybrid matrices for bone regeneration. J. Struct. Biol. 2016;196:138–146. doi: 10.1016/j.jsb.2016.06.025. PubMed DOI

Belén Ramírez-Rodríguez B., Montesi M., Panseri S., Sprio S., Tampieri A., Sandri M. Biomineralized recombinant collagen-based scaffold mimicking native bone enhances mesenchymal stem cell interaction and differentiation. Tis. Eng. A. 2017;23:1423–1435. doi: 10.1089/ten.tea.2017.0028. PubMed DOI

Li Y., Chen X., Fok A., Rodriguez-Cabello J.C., Aparicio C. Biomimetic mineralization of recombinamer-based hydrogels toward controlled morphologies and high mineral density. ACS Appl. Mater. Interfaces. 2015;7:25784–25792. doi: 10.1021/acsami.5b07628. PubMed DOI PMC

Li Y., Rodriguez-Cabello J.C., Aparicio C. Intrafibrillar mineralization of self-assembled elastin-like recombinamer fibrils. ACS Appl. Mater. Interfaces. 2017;9:5838–5846. doi: 10.1021/acsami.6b15285. PubMed DOI

Prieto S., Shkilnyy A., Rumplasch C., Ribeiro A., Arias F.J., Rodríguez-Cabello J.C., Taubert A. biomimetic calcium phosphate mineralization with multifunctional elastin-like recombinamers. Biomacromolecules. 2011;12:1480–1486. doi: 10.1021/bm200287c. PubMed DOI

Chen P.H., Tseng Y.H., Mou Y., Tsai Y.L., Guo S.M., Huang S.J., Yu S.S.F., Chan J.C.C. Adsorption of a statherin peptide fragment on the surface of nanocrystallites of hydroxyapatite. J. Am. Chem. Soc. 2008;130:2862–2868. doi: 10.1021/ja076607y. PubMed DOI

Cui H.G., Webber M.J., Stupp S.I. Self-assembly of peptide amphiphiles: From molecules to nanostructures to biomaterials. Biopolymers. 2010;94:1–18. doi: 10.1002/bip.21328. PubMed DOI PMC

Jain A., Jochum M., Peter C. Molecular dynamics simulations of peptides at the air−water interface: Influencing factors on peptide-templated mineralization. Langmuir. 2014;30:15486–15495. doi: 10.1021/la503549q. PubMed DOI

Hartgerink J.D., Beniash E., Stupp S.I. Selfassembly and mineralization of peptide-amphiphile nanofibers. Science. 2001;294:1684–1688. doi: 10.1126/science.1063187. PubMed DOI

Newcomb C.J., Bitton R., Velichko Y.S., Snead M.L., Stupp S.I. The role of nanoscale architecture in supramolecular templating of biomimetic hydroxyapatite mineralization. Small. 2012;8:2195–2202. doi: 10.1002/smll.201102150. PubMed DOI PMC

Spoerke E.D., Anthony S.G., Stupp S.I. Enzyme directed templating of artificial bone mineral. Adv. Mater. 2009;21:425–430. doi: 10.1002/adma.200802242. PubMed DOI PMC

Mata A., Geng Y., Henrikson K.J., Aparicio C., Stock S.R., Satcher R.L., Stupp S.I. Bone regeneration mediated by biomimetic mineralization of a nanofiber matrix. Biomaterials. 2010;31:6004–6012. doi: 10.1016/j.biomaterials.2010.04.013. PubMed DOI PMC

Gungormus M., Branco M., Fong H., Schneider J.P., Tamerler C., Sarikaya M. Self assembled bi-functional peptide hydrogels with biomineralization-directing peptides. Biomaterials. 2010;31:7266–7274. doi: 10.1016/j.biomaterials.2010.06.010. PubMed DOI PMC

Wei G., Zhang J., Xie L., Jandt K.D. Biomimetic growth of hydroxyapatite on super water-soluble carbon nanotube-protein hybrid nanofibers. Carbon. 2011;49:2216–2226. doi: 10.1016/j.carbon.2011.01.051. DOI

Liu H., Cheng J., Chen F., Bai D., Shao C., Wang J., Xi P., Zeng Z. Gelatin functionalized graphene oxide for mineralization of hydroxyapatite: Biomimetic and In Vitro evaluation. Nanoscale. 2014;6:5315–5322. doi: 10.1039/c4nr00355a. PubMed DOI

Wang J., Ouyang Z., Ren Z., Li J., Zhang P., Wei G., Su Z. Self-assembled peptide nanofibers on graphene oxide as a novel nanohybrid for biomimetic mineralization of hydroxyapatite. Carbon. 2015;89:20–30. doi: 10.1016/j.carbon.2015.03.024. DOI

Yoh R., Matsumoto T., Sasaki J.I., Sohmura T. Biomimetic fabrication of fibrin/apatite composite material. J. Biomed. Mater. Res. A. 2008;87:222–228. doi: 10.1002/jbm.a.31777. PubMed DOI

Zhao H., He W., Wang Y., Zhang X., Li Z., Yan S., Zhou W., Wang G. Biomineralization of large hydroxyapatite particles using ovalbumin as biosurfactant. Mater. Lett. 2008;62:3603–3605. doi: 10.1016/j.matlet.2008.04.007. DOI

Neelakandeswari N., Sangami G., Dharmaraj N. Preparation and characterization of nanostructured hydroxyapatite using a biomaterial. Synth. React. Inorg. Met. Org. Nano Met. Chem. 2011;41:513–516. doi: 10.1080/15533174.2011.568434. DOI

Zhang Y., Liu Y., Ji X., Banks C.E., Song J. Flower-like agglomerates of hydroxyapatite crystals formed on an egg-shell membrane. Coll. Surf. B. 2011;82:490–496. doi: 10.1016/j.colsurfb.2010.10.006. PubMed DOI

Xu Z., Neoh K.G., Kishen A. A biomimetic strategy to form calcium phosphate crystals on type I collagen substrate. Mater. Sci. Eng. C. 2010;30:822–826. doi: 10.1016/j.msec.2010.03.014. DOI

Cui J., Ma C., Li Z., Wu L., Wei W., Chen M., Peng B., Deng Z. Polydopamine-functionalized polymer particles as templates for mineralization of hydroxyapatite: Biomimetic and In Vitro bioactivity. RSC Adv. 2016;6:6747–6755. doi: 10.1039/C5RA24821C. DOI

Ryu J., Ku S.H., Lee H., Park C.B. Mussel-inspired polydopamine coating as a universal route to hydroxyapatite crystallization. Adv. Funct. Mater. 2010;20:2132–2139. doi: 10.1002/adfm.200902347. DOI

Liu Z., Qu S., Zheng X., Xiong X., Fu R., Tang K., Zhong Z., Weng J. Effect of polydopamine on the biomimetic mineralization of mussel-inspired calcium phosphate cement In Vitro. Mater. Sci. Eng. C. 2014;44:44–51. doi: 10.1016/j.msec.2014.07.063. PubMed DOI

Gao X., Song J., Ji P., Zhang X., Li X., Xu X., Wang M., Zhang S., Deng Y., Deng F., et al. Polydopamine-templated hydroxyapatite reinforced polycaprolactone composite nanofibers with enhanced cytocompatibility and osteogenesis for bone tissue engineering. ACS Appl. Mater. Interfaces. 2016;8:3499–3515. doi: 10.1021/acsami.5b12413. PubMed DOI

Kim S., Park C.B. Mussel-inspired transformation of CaCO3 to bone minerals. Biomaterials. 2010;31:6628–6634. doi: 10.1016/j.biomaterials.2010.05.004. PubMed DOI

Deng Y., Sun Y., Bai Y., Gao X., Zhang H., Xu A., Huang E., Deng F., Wei S. In Vitro biocompability/osteogenesis and In Vivo bone formation evalution of peptide-decorated apatite nanocomposites assisted via polydopamine. J. Biomed. Nanotechnol. 2016;12:602–618. doi: 10.1166/jbn.2016.2096. PubMed DOI

Wang L., Nemoto R., Senna M. Microstructure and chemical states of hydroxyapatite/silk fibroin nanocomposites synthesized via a wet-mechanochemical route. J. Nanoparticle Res. 2002;4:535–540. doi: 10.1023/A:1022841507932. DOI

Wang L., Nemoto R., Senna M. Changes in microstructure and physico-chemical properties of hydroxyapatite silk fibroin nanocomposite with varying silk fibroin content. J. Eur. Ceram. Soc. 2004;24:2707–2715. doi: 10.1016/j.jeurceramsoc.2003.09.006. DOI

Furuzono T., Taguchi T., Kishida A., Akashi M., Tamada Y. Preparation and characterization of apatite deposited on silk fabric using an alternate soaking process. J. Biomed. Mater. Res. 2000;50:344–352. doi: 10.1002/(SICI)1097-4636(20000605)50:3<344::AID-JBM8>3.0.CO;2-D. PubMed DOI

Kino R., Ikoma T., Monkawa A., Yunoki S., Munekata M., Tanaka J., Asakura T. Deposition of bone-like apatite on modified silk fibroin films from simulated body fluid. J. Appl. Polym. Sci. 2006;99:2822–2830. doi: 10.1002/app.22910. DOI

Wang L., Li C., Senna M. High-affinity integration of hydroxyapatite nanoparticles with chemically modified silk fibroin. J. Nanopart. Res. 2007;9:919–929. doi: 10.1007/s11051-006-9167-5. DOI

Yang M., He W., Shuai Y., Min S., Zhu L. Nucleation of hydroxyapatite crystals by self-assembled Bombyx mori silk fibroin. J. Polym. Sci. B. 2013;51:742–748. doi: 10.1002/polb.23249. DOI

Lee M.J., Park J.B., Kim H.H., Ki C.S., Park S.Y., Kim H.J., Park Y.H. Surface coating of hydroxyapatite on silk nanofibre through biomineralisation using ten times concentrated simulated body fluid and the evaluation for bone regeneration. Macromol. Res. 2014;22:710–716. doi: 10.1007/s13233-014-2114-x. DOI

Kim H.J., Kim U.J., Kim H.S., Li C., Wada M., Leisk G.G., Kaplan D.L. Bone tissue engineering with premineralised silk scaffolds. Bone. 2008;42:1226–1234. doi: 10.1016/j.bone.2008.02.007. PubMed DOI PMC

Lin F., Li Y., Jin J., Cai Y., Wei K., Yao J. Deposition behavior and properties of silk fibroin scaffolds soaked in simulated body fluid. Mater. Chem. Phys. 2008;111:92–97. doi: 10.1016/j.matchemphys.2008.03.019. DOI

Kong X.D., Cui F.Z., Wang X.M., Zhang M., Zhang W. Silk fibroin regulated mineralisation of hydroxyapatite nanocrystals. J. Cryst. Growth. 2004;270:197–202. doi: 10.1016/j.jcrysgro.2004.06.007. DOI

Huang X., Bai S., Lu Q., Liu X., Liu S., Zhu H. Osteoinductive-nanoscaled silk/HA composite scaffolds for bone tissue engineering application. Biomed. Mater. Res. B. 2015;103:1402–1414. doi: 10.1002/jbm.b.33323. PubMed DOI

Huang X., Liu X., Liu S., Zhang A., Lu Q., Kaplan D.L., Zhu H. Biomineralization regulation by nano-sized features in silk fibroin proteins: Synthesis of water-dispersible nano-hydroxyapatite. J. Biomed. Mater. Res. B. 2014;102:1720–1729. doi: 10.1002/jbm.b.33157. PubMed DOI

Midha S., Tripathi R., Geng H., Lee P.D., Ghosh S. Elucidation of differential mineralisation on native and regenerated silk matrices. Mater. Sci. Eng. C. 2016;68:663–674. doi: 10.1016/j.msec.2016.06.041. PubMed DOI

Li C., Jin H.J., Botsaris G.D., Kaplan D.L. Silk apatite composites from electrospun fibers. J. Mater. Res. 2005;20:3374–3384. doi: 10.1557/jmr.2005.0425. DOI

Shao W., He J., Sang F., Ding B., Chen L., Cui S., Li K., Han Q., Tan W. Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite–tussah silk fibroin nanoparticles for bone tissue engineering. Mater. Sci. Eng. C. 2016;58:342–351. doi: 10.1016/j.msec.2015.08.046. PubMed DOI

Jin Y., Kundu B., Cai Y., Kundu S.C., Yao J. Bio-inspired mineralization of hydroxyapatite in 3D silk fibroin hydrogel for bone tissue engineering. Colloids Surf. B. 2015;134:339–345. doi: 10.1016/j.colsurfb.2015.07.015. PubMed DOI

Ming J., Jiang Z., Wang P., Bie S., Zuo B. Silk fibroin/sodium alginate fibrous hydrogels regulated hydroxyapatite crystal growth. Mater. Sci. Eng. C. 2015;51:287–293. doi: 10.1016/j.msec.2015.03.014. PubMed DOI

Ming J.F., Bie S.Y., Jiang Z.J., Wang P., Zuo B.Q. Novel hydroxyapatite nanorods crystal grow in silk fibroin/sodium alginate nanofiber hydrogel. Mater. Lett. 2014;126:169–173. doi: 10.1016/j.matlet.2014.04.025. DOI

Utku F.S., Basaran K., Sunar Y., Celebioglu H., Kapici I. Generation of silk fibroin-Ca-P composite biomimetic bone replacement material using electrochemical deposition. J. Elect. Electron. Eng. 2017;17:3439–3443.

Panda N., Bissoyi A., Pramanik K., Biswas A. Development of novel electrospun nanofibrous scaffold from P. ricini and a. mylitta silk fibroin blend with improved surface and biological properties. Mater. Sci. Eng. C. 2015;48:521–532. doi: 10.1016/j.msec.2014.12.010. PubMed DOI

Hu J.X., Cai X., Mo S.B., Chen L., Shen X.Y., Tong H. Fabrication and characterization of chitosan-silk fibroin/hydroxyapatite composites via In Situ precipitation for bone tissue engineering. Chin. J. Polym. Sci. 2015;33:1661–1671. doi: 10.1007/s10118-015-1710-3. DOI

Polak R., Rodas A.C.D., Chicoma D.L., Giudici R., Beppu M.M., Higa O.Z., Pitombo R.N.M. Inhibition of calcification of bovine pericardium after treatment with biopolymers, E-beam irradiation and In Vitro endothelization. Mater. Sci. Eng. C. 2013;33:85–90. doi: 10.1016/j.msec.2012.08.009. PubMed DOI

Nogueira G.M., Rodas A.C.D., Weska R.F., Aimoli C.G., Higa O.Z., Maizato M., Leiner A.A., Pitombo R.N.M., Polakiewicz B., Beppu M.M. Bovine pericardium coated with biopolymeric films as an alternative to prevent calcification: In Vitro calcification and cytotoxicity results. Mater. Sci. Eng. C. 2010;30:575–582. doi: 10.1016/j.msec.2010.02.011. DOI

Cao B., Mao C. Oriented nucleation of hydroxylapatite crystals on spider dragline silks. Langmuir. 2007;23:10701–10705. doi: 10.1021/la7014435. PubMed DOI

Ajeesh M., Francis B.F., Annie J., Harikrishna Varma P.R. Nano iron oxide hydroxyapatite composite ceramics with enhanced radiopacity. J. Mater. Sci. Mater. Med. 2010;21:1427–1434. doi: 10.1007/s10856-010-4005-9. PubMed DOI

Heidari F., Bahrololoom M.E., Vashaee D., Tayebi L. In Situ preparation of iron oxide nanoparticles in natural hydroxyapatite/chitosan matrix for bone tissue engineering application. Ceram. Int. 2015;41:3094–3100. doi: 10.1016/j.ceramint.2014.10.153. DOI

Cojocaru F.D., Balan V., Popa M.I., Lobiuc A., Antoniac A., Antoniac I.V., Verestiuc L. Biopolymers—Calcium phosphates composites with inclusions of magnetic nanoparticles for bone tissue engineering. Inter. J. Biol. Macromol. 2019;125:612–620. doi: 10.1016/j.ijbiomac.2018.12.083. PubMed DOI

Salama A., El-Sakhawy M. Regenerated cellulose/wool blend enhanced biomimetic hydroxyapatite mineralization. Inter. J. Biol. Macromol. 2016;92:920–925. doi: 10.1016/j.ijbiomac.2016.07.077. PubMed DOI

Salama A., Shukry N., El-Gendy A., El-Sakhawy M. Bioactive cellulose grafted soy protein isolate towards biomimetic calcium phosphate mineralization. Ind. Crops Prod. 2017;95:170–174. doi: 10.1016/j.indcrop.2016.10.019. DOI

Zhang C.Y., Zhang W., Yao H.B., Zhu H.Z., Mao L.B., Yu S.H. Bioinspired crystallization of continuous calcium phosphate films on a Langmuir monolayer of zein protein: Their mechanical performance, hydrophilicity, and biocompatibility. Cryst. Growth Des. 2013;13:3505–3513. doi: 10.1021/cg400445s. DOI

Shahlori R., Waterhouse G.I.N., Nelson A.R.J., McGillivray D.J. Morphological, chemical and kinetic characterisation of zein protein-induced biomimetic calcium phosphate films. J. Mater. Chem. B. 2015;3:6213–6223. doi: 10.1039/C5TB00702J. PubMed DOI

Selvakumar R., Seethalakshmi N., Thavamani P., Naidu R., Megharaj M. Recent advances in the synthesis of inorganic nano/microstructures using microbial biotemplates and their applications. RSC Adv. 2014;4:52156–52169. doi: 10.1039/C4RA07903E. DOI

Kajander E.O., Ciftçioglu N. Nanobacteria: An alternative mechanism for pathogenic intra-and extracellular calcification and stone formation. Proc. Natl. Acad. Sci. USA. 1998;95:8274–8279. doi: 10.1073/pnas.95.14.8274. PubMed DOI PMC

Kajander E.O. Nanobacteria—Propagating calcifying nanoparticles. Lett. Appl. Microbiol. 2006;42:549–552. doi: 10.1111/j.1472-765X.2006.01945.x. PubMed DOI

Kumara M.T., Muralidharan S., Tripp B.C. Generation and characterization of inorganic and organic nanotubes on bioengineered Flagella of Mesophilic bacteria. J. Nanosci. Nanotechnol. 2007;7:2260–2272. doi: 10.1166/jnn.2007.641. PubMed DOI

Cervantes E.R., Torres M.G., Muñoz S.V., Rosas E.R., Vázquez C., Rodríguez Talavera R. Growth of hydroxyapatite on the cellular membrane of the bacterium Bacillus thuringiensis for the preparation of hybrid biomaterials. Mater. Sci. Eng. C. 2016;58:614–621. doi: 10.1016/j.msec.2015.09.001. PubMed DOI

Li D., Newton S.M.C., Klebba P.E., Mao C. Flagellar display of bone-protein-derived peptides for studying peptide-mediated biomineralization. Langmuir. 2012;28:16338–16346. doi: 10.1021/la303237u. PubMed DOI PMC

Wang F., Cao B., Mao C. Bacteriophage bundles with prealigned Ca2+ initiate the oriented nucleation and growth of hydroxylapatite. Chem. Mater. 2010;22:3630–3636. doi: 10.1021/cm902727s. PubMed DOI PMC

Šupová M. Isolation and preparation of nanoscale bioapatites from natural sources: A Review. J. Nanosci. Nanotechnol. 2014;14:546–563. doi: 10.1166/jnn.2014.8895. PubMed DOI

Akram M., Ahmed R., Shakir I., Ibrahim W.A.W., Hussain R. Extracting hydroxyapatite and its precursors from natural resources. J. Mater. Sci. 2014;49:1461–1475. doi: 10.1007/s10853-013-7864-x. DOI

Banerjee P., Madhu S., Chandra Babu N.K., Shanthi C. Bio-mimetic mineralization potential of collagen hydrolysate obtained from chromium tanned leather waste. Mater. Sci. Eng. C. 2015;49:338–347. doi: 10.1016/j.msec.2015.01.027. PubMed DOI

Nayar S., Guha A. Waste utilization for the controlled synthesis of nanosized hydroxyapatite. Mater. Sci. Eng. C. 2009;29:1326–1329. doi: 10.1016/j.msec.2008.10.002. DOI

Lin K., Wu C., Chang J. Advances in synthesis of calcium phosphate crystals with controlled size and shape. Acta Biomater. 2014;10:4071–4102. doi: 10.1016/j.actbio.2014.06.017. PubMed DOI

Meldrum F.C., Cölfen H., Cölfen H. Controlling mineral morphologies and structures in biological and synthetic systems. Chem. Rev. 2008;108:4332–4432. doi: 10.1021/cr8002856. PubMed DOI

Teng S., Shi J., Chen L. Formation of calcium phosphates in gelatin with a novel diffusion system. Coll. Surf. B. 2006;49:87–92. doi: 10.1016/j.colsurfb.2006.03.005. PubMed DOI

Deng Y., Wang H., Zhang L., Li Y., Wei S. In Situ synthesis and In Vitro biocompatibility of needle-like nano-hydroxyapatite in agar–gelatin-co-hydrogel. Mater. Lett. 2013;104:8–12. doi: 10.1016/j.matlet.2013.03.145. DOI

Han Y., Li S., Wang X. A novel thermolysis method of colloidal protein precursors to prepare hydroxyapatite nanocrystals. Cryst. Res. Technol. 2009;44:336–340. doi: 10.1002/crat.200800404. DOI

Han Y., Li S., Wang X., Jia L., He J. Preparation of hydroxyapatite rod-like crystals by protein precursor method. Mater. Res. Bull. 2007;42:1169–1177. doi: 10.1016/j.materresbull.2006.09.003. DOI

Zhao H., He W., Wang Y., Zhang X., Li Z., Yan S., Zhou W. Biomimetic synthesis and characterization of hydroxyapatite crystal with low phase transformation temperature. J. Chem. Eng. Data. 2008;53:2735–2738. doi: 10.1021/je800058d. DOI

Gang Z.H., Qingshan Z. Glutamic acid-mediated synthesis of ultralong hydroxyapatite nanoribbons under hydrothermal conditions. Chem. Lett. 2005;34:788–789. doi: 10.1246/cl.2005.788. DOI

Gopi D., Indira J., Collins Arun Prakash V., Kavitha L. Spectroscopic characterization of porous nanohydroxyapatite synthesized by a novel amino acid soft solution freezing method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2009;74:282–284. doi: 10.1016/j.saa.2009.05.021. PubMed DOI

Cai Q., Feng Q., Liu H., Yang X. Preparation of biomimetic hydroxyapatite by biomineralization and calcination using poly(L-lactide)/gelatin composite fibrous mat as template. Mater. Lett. 2013;91:275–278. doi: 10.1016/j.matlet.2012.09.101. DOI

Mohandes F., Salavati-Niasari M., Fereshteh Z., Fathi M. Novel preparation of hydroxyapatite nanoparticles and nanorods with the aid of complexing agents. Ceram. Int. 2014;40:12227–12233. doi: 10.1016/j.ceramint.2014.04.066. DOI

Sudo S.Z., Schotzko N.K., Folke L.E.A. Use of hydroxyapatite coated glass beads for preclinical testing of potential antiplaque agents. Appl. Environ. Microbiol. 1976;32:428–437. doi: 10.1128/AEM.32.3.428-432.1976. PubMed DOI PMC

Dorozhkin S.V. Calcium orthophosphate coatings, films and layers. Prog. Biomater. 2012;1:1. doi: 10.1186/2194-0517-1-1. PubMed DOI PMC

Heimann R.B. The challenge and promise of low-temperature bioceramic coatings: An editorial. Surf. Coat. Technol. 2016;301:1–5. doi: 10.1016/j.surfcoat.2015.12.082. DOI

Koju N., Sikder P., Ren Y., Zhou H., Bhaduri S.B. Biomimetic coating technology for orthopedic implants. Cur. Opin. Chem. Eng. 2017;15:49–55. doi: 10.1016/j.coche.2016.11.005. DOI

Zhao W., Lemaître J., Bowen P. A comparative study of simulated body fluids in the presence of proteins. Acta Biomater. 2017;53:506–514. doi: 10.1016/j.actbio.2017.02.006. PubMed DOI

Tas A.C. The use of physiological solutions or media in calcium phosphate synthesis and processing. Acta Biomater. 2014;10:1771–1792. doi: 10.1016/j.actbio.2013.12.047. PubMed DOI

Chakraborty J., Sinha M.K., Basu D. Biomolecular template-induced biomimetic coating of hydroxyapatite on an SS 316 L substrate. J. Am. Ceram. Soc. 2007;90:1258–1261. doi: 10.1111/j.1551-2916.2007.01596.x. DOI

Ao H., Xie Y., Tan H., Wu X., Liu G., Qin A., Zheng X., Tang T. Improved hMSC functions on titanium coatings by type I collagen immobilization. J. Biomed. Mater. Res. A. 2014;102:204–214. doi: 10.1002/jbm.a.34682. PubMed DOI

Tapsir Z., Saidin S. Synthesis and characterization of collagen–hydroxyapatite immobilized on polydopamine grafted stainless steel. Surf. Coat. Technol. 2016;285:11–16. doi: 10.1016/j.surfcoat.2015.11.024. DOI

Kirmanidou Y., Sidira M., Drosou M.E., Bennani V., Bakopoulou A., Tsouknidas A., Michailidis N., Michalakis K. New Ti-alloys and surface modifications to improve the mechanical properties and the biological response to orthopedic and dental implants: A review. Biomed. Res. Int. 2016:2908570. doi: 10.1155/2016/2908570. PubMed DOI PMC

Iafisco M., Foltran I., Sabbatini S., Tosi G., Roveri N. Electrospun nanostructured fibers of collagen-biomimetic apatite on titanium alloy. Bioinorg. Chem. Appl. 2012:123953. doi: 10.1155/2012/123953. PubMed DOI PMC

Sukhodub L.F. Materials and coatings based on biopolymerapatite nanocomposites: Obtaining, structural characterization and In Vivo tests. Mater. und Werkst. Entwickl. Fert. Prüfung Eig. und Anwend. Tech. Werkst. 2009;40:318–325. doi: 10.1002/mawe.200800449. DOI

Ciobanu G., Ciobanu O. Investigation on the effect of collagen and vitamins on biomimetic hydroxyapatite coating formation on titanium surfaces. Mater. Sci. Eng. C. 2013;33:1683–1688. doi: 10.1016/j.msec.2012.12.080. PubMed DOI

Tan G., Zhou L., Ning C., Tan C., Ni G., Liao J., Yu P., Chen X. Biomimetically-mineralized composite coatings on titanium functionalized with gelatin methacrylate hydrogels. Appl. Surf. Sci. 2013;279:293–299. doi: 10.1016/j.apsusc.2013.04.088. DOI

Pan M., Kong X., Cai Y., Yao J. Hydroxyapatite coating on the titanium substrate modulated by a recombinant collagen-like protein. Mater. Chem. Phys. 2011;126:811–817. doi: 10.1016/j.matchemphys.2010.12.037. DOI

Ceylan H., Kocabey S., Gulsuner H.U., Balcik O.S., Guler M.O., Tekinay A.B. Bone-like mineral nucleating peptide nanofibers induce differentiation of human mesenchymal stem cells into mature osteoblasts. Biomacromolecules. 2014;15:2407–2418. doi: 10.1021/bm500248r. PubMed DOI

Sargeant T.D., Guler M.O., Oppenheimer S.M., Mata A., Satcher L.R., Dunand D.C., Stupp S.I. Hybrid bone implants: Self-assembly of peptide amphiphile nanofiberswithin porous titanium. Biomaterials. 2008;29:161–171. doi: 10.1016/j.biomaterials.2007.09.012. PubMed DOI

Combes C., Rey C., Freche M. In vitro crystallization of octacalcium phosphate on type I collagen: Influence of serum albumin. J. Mater. Sci. Mater. Med. 1999;10:153–160. doi: 10.1023/A:1008933406806. PubMed DOI

Stenport V., Kjellin P., Andersson M., Currie F., Sul Y.T., Wennerberg A., Arvidsson A. Precipitation of calcium phosphate in the presence of albumin on titanium implants with four different possibly bioactive surface preparations. An In Vitro study. J. Mater. Sci. Mater. Med. 2008;19:3497–3505. doi: 10.1007/s10856-008-3517-z. PubMed DOI

Ikeda Y., Neshatian M., Holcroft J., Ganss B. The enamel protein ODAM promotes mineralization in a collagen matrix. Con. Tis. Res. 2018;59:62–66. doi: 10.1080/03008207.2017.1408603. PubMed DOI

Schickle K., Spitz J., Neuss S., Telle R. Biomimetic In Situ nucleation of calcium phosphates by protein immobilization on high strength ceramic materials. J. Europ. Ceram. Soc. 2018;38:271–277. doi: 10.1016/j.jeurceramsoc.2017.07.025. DOI

Petrakova N.V., Kuvshinova E.A., Ashmarin A.A., Konovalov A.A., Nikitina Y.O., Egorov A.A., Sviridova I.K., Barinov S.M., Komlev V.S. IOP Conference Series: Materials Science and Engineering. Volume 525. IOP Publishing; Barcelona, Spain: 2019. Calcium phosphate ceramic surface coating via precipitation approach; p. 012101.

Andersson M., Currie F., Kjellin P., Sul Y.T., Stenport V. Nucleation and growth of calcium phosphates in the presence of fibrinogen on titanium implants with four potentially bioactive surface preparations. An In Vitro study. J. Mater. Sci. Mater. Med. 2009;20:1869–1879. doi: 10.1007/s10856-009-3755-8. PubMed DOI

Areva S., Paldan H., Peltola T., Närhi T., Jokinen M., Lindén M. Use of sol–gel-derived titania coating for direct soft tissue attachment. J. Biomed. Mater. Res A. 2004;70:169–178. doi: 10.1002/jbm.a.20120. PubMed DOI

Shou G., Dong L., Liu Z., Cheng K., Weng W. Facet-specific mineralization behavior of nano-CaP on anatase polyhedral microcrystals. ACS Biomater. Sci. Eng. 2017;3:875–881. doi: 10.1021/acsbiomaterials.7b00234. PubMed DOI

Chakraborty J., Chatterjee S., Sinha M.K., Basu D. Effect of albumin on the growth characteristics of hydroxyapatite coatings on alumina substrates. J. Am. Ceram. Soc. 2007;90:3360–3363. doi: 10.1111/j.1551-2916.2007.01927.x. DOI

Kokubo T. Implants for Surgery—In Vitro Evaluation for Apatite-Forming Ability of Implant Materials. ISO; Geneva, Switzerland: 2014. p. STD-917469.

Zhuang J., Lin J., Li J., Wang H., Cheng K., Weng W. Electrochemical deposition of mineralized BSA/collagen coating. Mater. Sci. Eng. C. 2016;66:66–76. doi: 10.1016/j.msec.2016.04.088. PubMed DOI

D´Elia N.L., Gravina N., Ruso J.M., Marco-Brown J.L., Sieben J.M., Messina P.V. Albumin-mediated deposition of bone-like apatite onto nano-sized surfaces: Effect of surface reactivity and interfacial hydration. J. Coll. Inter. Sci. 2017;494:345–354. doi: 10.1016/j.jcis.2017.01.047. PubMed DOI

Romanò C.L., Scarponi S., Gallazzi E., Romanò D., Drago L. Antibacterial coating of implants in orthopaedics and trauma: A classification proposal in an evolving panorama. J. Orthop. Surg. Res. 2015;10:157. doi: 10.1186/s13018-015-0294-5. PubMed DOI PMC

Gallo J., Holinka M., Moucha C.S. Antibacterial surface treatment for orthopaedic implants. Int. J. Mol. Sci. 2014;15:13849–13880. doi: 10.3390/ijms150813849. PubMed DOI PMC

Damiati L., Eales M.G., Nobbs A.H., Su B., Tsimbouri P.M., Salmeron-Sanchez M., Dalby M.J. Impact of surface topography and coating on osteogenesis and bacterial attachment on titanium implants. J. Tissue Eng. 2018;9:1–16. doi: 10.1177/2041731418790694. PubMed DOI PMC

Sun T., Wang M. Electrochemical deposition of apatite/collagen composite coating on NiTi shape memory alloy and coating properties; Proceedings of the Materials Research Society Symposium, MRS Fall Meeting; Boston, MA, USA. 1–4 December 2009; pp. 141–146. DOI

Graf H.L., Stoeva S., Armbruster F.P., Neuhaus J., Hilbig H. Effect of bone sialoprotein and collagen coating on cell attachment to TICER and pure titanium implant surfaces. Int. J. Oral Maxillofac. Surg. 2008;37:634–640. doi: 10.1016/j.ijom.2008.01.021. PubMed DOI

Sano K.I., Shiba K. A hexapeptide motif that electrostatically binds to the surface of titanium. J. Am. Chem. Soc. 2003;125:14234–14235. doi: 10.1021/ja038414q. PubMed DOI

Kelly M., Williams R., Aojula A., O’Neill J., Trzińscka Z., Grover L., Scott R.A.H., Peacock A.F.A., Logan A., Stamboulis A., et al. Peptide aptamers: Novel coatings for orthopaedic implants. Mater. Sci. Eng. C. 2015;54:84–93. doi: 10.1016/j.msec.2015.04.021. PubMed DOI

Dehghanghadikolaei A., Ibrahim H., Amerinatanzi A., Elahinia M. Metals for Biomedical Devices. 2nd ed. Woodhead Publishing Series in Biomaterials; Cambridge, UK: Elsevier; Amsterdam, The Netherlands: 2019. Biodegradable magnesium alloys; pp. 265–289. DOI

Hornberger H., Virtanen S., Boccaccini A.R. Biomedical coatings on magnesium alloys—A review. Acta Biomater. 2012;8:2442–2455. doi: 10.1016/j.actbio.2012.04.012. PubMed DOI

Lin B., Zhong M., Zheng C., Cao L., Wang D., Wang L., Liang J., Cao B. Preparation and characterization of dopamine-induced biomimetic hydroxyapatite coatings on the AZ31 magnesium alloy. Surf. Coat. Technol. 2015;281:82–88. doi: 10.1016/j.surfcoat.2015.09.033. DOI

Cui W., Beniash E., Gawalt E., Xu Z., Sfeir C. Biomimetic coating of magnesium alloy for enhanced corrosionresistance and calcium phosphate deposition. Acta Biomater. 2013;9:8650–8659. doi: 10.1016/j.actbio.2013.06.031. PubMed DOI

Abdelkebir K., Morin-Grognet S., Gaudière F., Coquerel G., Labat B., Atmani H., Ladam G. Biomimetic layer-by-layer templates for calcium phosphate biomineralization. Acta Biomater. 2012;8:3419–3428. doi: 10.1016/j.actbio.2012.05.035. PubMed DOI

Zhao M.Y., Altankov G., Grabiec U., Bennett M., Salmeron-Sanchez M., Dehghani F., Groth T. Molecular composition of GAG-collagen I multilayers affects remodeling of terminal layers and osteogenic differentiation of adipose-derived stem cells. Acta Biomater. 2016;41:86–99. doi: 10.1016/j.actbio.2016.05.023. PubMed DOI

Zhao M.Y., Li L.H., Zhou C.R., Heyroth F., Fuhrmann B., Maeder K., Groth T. Improved stability and cell response by intrinsic cross-linking of multilayers from collagen I and oxidized glycosaminoglycans. Biomacromolecules. 2014;15:4272–4280. doi: 10.1021/bm501286f. PubMed DOI

Kong J., Wei B., Groth T., Chen Z., Li L., He D., Huang R., Chu J., Zhao M. Biomineralization improves mechanical and osteogenic properties of multilayer-modified PLGA porous scaffolds. J. Biomed. Mater. Res. A. 2018;106:2714–2725. doi: 10.1002/jbm.a.36487. PubMed DOI

Li X., Xie J., Yuan X., Xia Y. Coating Electrospun Poly(ε-caprolactone) Fibers with gelatin and calcium phosphate and their use as biomimetic scaffolds for bone tissue engineering. Langmuir. 2008;24:14145–14150. doi: 10.1021/la802984a. PubMed DOI

Tarik Arafat M., Lam C.X.F., Ekaputra A.K., Wong S.Y., Li X., Gibson I. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering. Acta Biomater. 2011;7:809–820. doi: 10.1016/j.actbio.2010.09.010. PubMed DOI

Hashizume M., Sakai A., Sakamoto Y., Matsuno H., Serizawa T. Facile surface functionalization of polystyrene substrates with biomimetic apatite by utilizing serum proteins. Chem. Lett. 2010;39:220–222. doi: 10.1246/cl.2010.220. DOI

Iijima K., Sakai A., Komori A., Sakamoto Y., Matsuno H., Serizawa T., Hashizume M. Control of biomimetic hydroxyapatite deposition on polymer substrates using different protein adsorption abilities. Col. Surf. B. 2015;130:77–83. doi: 10.1016/j.colsurfb.2015.04.010. PubMed DOI

Iijima K., Suzuki R., Iizuka A., Ueno-Yokohata H., Kiyokawa N., Hashizume M. Surface functionalization of tissue culture polystyrene plates with hydroxyapatite under body fluid conditions and its effect on differentiation behaviors of mesenchymal stem cells. Colloids Surf. B. 2016;147:351–359. doi: 10.1016/j.colsurfb.2016.08.020. PubMed DOI

Iijima K., Iizuka A., Suzuki R., Ueno-Yokohata H., Kiyokawa N., Hashizume M. Effect of protein adsorption layers and solution treatments on hydroxyapatite deposition on polystyrene plate surfaces in simulated body fluids. J. Mater. Sci. Mater. Med. 2017;28:193. doi: 10.1007/s10856-017-6003-7. PubMed DOI

Iijima K., Iizuka A., Suzuki R., Ueno-Yokohata H., Kiyokawa N., Hashizume M. Preparation of 3D porous hydroxyapatite cell scaffolds using polystyrene templates under biomimetic conditions. J. Ceram. Soc. Jpn. 2018;126:956–958. doi: 10.2109/jcersj2.18144. DOI

Chen Q., Cao L., Wang J., Jiang L., Zhao H., Yishake M., Fan Z. Bioinspired modification of poly(L-lactic acid)/nano-sized β-tricalcium phosphate composites with gelatin/hydroxyapatite coating for enhanced osteointegration and osteogenesis. J. Biomed. Nanotechnol. 2018;14:884–899. doi: 10.1166/jbn.2018.2576. PubMed DOI

Elkassas D., Arafa A. The innovative applications of therapeutic nanostructures in dentistry. Nanomed. Nanotechnol. Biol. Med. 2017;13:1543–1562. doi: 10.1016/j.nano.2017.01.018. PubMed DOI

Gómez-Morales J., Iafisco M., Delgado-López J.M., Sarda S., Drouet C. Progress on the preparation of nanocrystalline apatites and surface characterization: Overview of fundamental and applied aspects. Prog. Cryst. Growth Charact. Mater. 2013;59:1–46. doi: 10.1016/j.pcrysgrow.2012.11.001. DOI

Green D.W., Goto T.K., Kim K.S., Jung H.S. Calcifying tissue regeneration via biomimetic materials chemistry. J. R. Soc. Interface. 2014;11:20140537. doi: 10.1098/rsif.2014.0537. PubMed DOI PMC

Featherstone J.D. Dental caries: A dynamic disease process. Aust. Dent. J. 2008;53:286–291. doi: 10.1111/j.1834-7819.2008.00064.x. PubMed DOI

Luz G.M., Mano J.F. Mineralized structures in nature: Examples and inspirations for the design of new composite materials and biomaterials. Compos. Sci. Technol. 2010;70:1777–1788. doi: 10.1016/j.compscitech.2010.05.013. DOI

Hao J., Zou B., Narayanan K., George A. Differential expression patterns of the dentin matrix proteins during mineralized tissue formation. Bone. 2004;34:921–932. doi: 10.1016/j.bone.2004.01.020. PubMed DOI

Sofan E., Sofan A., Palaia G., Tenore G., Romeo U., Migliau G. Classification review of dental adhesive systems: From the IV generation to the universal type. Ann. Stomatol. 2017;8:1. doi: 10.11138/ads/2017.8.1.001. PubMed DOI PMC

Sauro S., Pashley D.H. Strategies to stabilise dentine-bonded interfaces through remineralising operative approaches – State of The Art. In. J. Adhes. Adhes. 2016;69:39–57. doi: 10.1016/j.ijadhadh.2016.03.014. DOI

Bonchev A., Simeonov M., Vassileva R. Review: Biomimetic approach for remineralization of human enamel. Int. J. Sci. Res. 2018;7:1416–1420. doi: 10.21275/ART20192197. DOI

Cao C.Y., Mei M.L., Li Q., Lo E.C.M., Chu C.H. Methods for biomimetic mineralisation of human enamel: A systematic review. Materials. 2015;8:2873–2886. doi: 10.3390/ma8062873. DOI

Firth A., Aggeli A., Burke J., Yang X., Kirkham J. Biomimetic selfassembling peptides as injectable scaffolds for hard tissue engineering. Nanomedicine. 2006;1:189–199. doi: 10.2217/17435889.1.2.189. PubMed DOI

Fan Y., Nelson J.R., Alvarez J.R., Hagan J., Berrier A., Xu X. Amelogenin assisted Ex Vivo remineralization of human enamel: Effects of supersaturation degree and fluoride concentration. Acta Biomater. 2011;7:2293–2302. doi: 10.1016/j.actbio.2011.01.028. PubMed DOI PMC

Yang X., Wang L., Quin Y., Sun Z., Henneman Z., Moradian-Oldak J., Nancollas G.H. How amelogenin orchestrates the organization of hierarchical elongated microstructures of apatite. J. Phys. Chem. B. 2010;114:2293–2300. doi: 10.1021/jp910219s. PubMed DOI PMC

Martinez-Avila O., Wu S., Kim S.J., Cheng Y., Khan F., Samudrala R., Sali A., Horst J.A., Habelitz S. Self-assembly of filamentous amelogenin requires calcium and phosphate: From dimers via nanoribbons to fibrils. Biomacromolecules. 2012;13:3494–3502. doi: 10.1021/bm300942c. PubMed DOI PMC

Friddle R.W., Battle K., Trubetskoy V., Tao J., Salter E.A., Moradian-Oldak J., De Yoreo J.J., Wierzbicki A. Single-molecule determination of the face-specific adsorption of amelogenin’s C-terminus on hydroxyapatite. Angew. Chem. Int. Ed. Engl. 2011;50:7541–7545. doi: 10.1002/anie.201100181. PubMed DOI PMC

Wen H.B., Moradian-Oldak J., Fincham A.G. Dose-dependent modulation of octacalcium phosphate crystal habit by amelogenins. J. Dent. Res. 2000;79:1902–1906. doi: 10.1177/00220345000790111501. PubMed DOI

Iijima M., Moriwaki Y., Takagi T., Moradian-Oldak J. Effects of bovine amelogenins on the crystal morphology of octacalcium phosphate in a model system of tooth enamel formation. J. Cryst. Growth. 2001;222:615–626. doi: 10.1016/S0022-0248(00)00984-2. DOI

Ruan Q., Moradian-Oldak J. Amelogenin and enamel biomimetics. J. Mater. Chem. B Mater. Biol. Med. 2015;3:3112–3129. doi: 10.1039/C5TB00163C. PubMed DOI PMC

Kwak S.Y., Litman A., Margolis H.C., Yamakoshi Y., Simmer J.P. Biomimetic enamel regeneration mediated by leucine-rich amelogenin peptide. J. Dent. Res. 2017;96:524–530. doi: 10.1177/0022034516688659. PubMed DOI PMC

Li Q.L., Ning T.Y., Cao Y., Zhang W.B., Mei M.L., Chu C.H. A novel self-assembled oligopeptide amphiphile for biomimetic mineralization of enamel. BMC Biotechnol. 2014;14:32. doi: 10.1186/1472-6750-14-32. PubMed DOI PMC

Uskoković V., Li W., Habelitz S. Amelogenin as a promoter of nucleation and crystal growth of apatite. J. Cryst. Growth. 2011;316:106–117. doi: 10.1016/j.jcrysgro.2010.12.005. PubMed DOI PMC

Kwak S.Y., Green S., Wiedemann-Bidlack F.B., Beniash E., Yamakoshi Y., Simmer J.P., Margolis H.C. Regulation of calcium phosphate formation by amelogenins under physiological conditions. Eur. J. Oral Sci. 2011;119:103–111. doi: 10.1111/j.1600-0722.2011.00911.x. PubMed DOI PMC

Dogan S., Fong H., Yucesoy D.T., Cousin T., Gresswell C., Dag S., Huang G., Sarikaya M. Biomimetic tooth repair: Amelogenin-derived peptide enables In Vitro remineralization of human enamel. ACS Biomater. Sci. Eng. 2018;4:1788–1796. doi: 10.1021/acsbiomaterials.7b00959. PubMed DOI

Wang H., Xiao Z., Yang J., Lu D., Kishen A., Li Y., Chen Z., Que K., Zhang Q., Deng X., et al. Oriented and ordered biomimetic remineralization of the surface of demineralized dental enamel using HAP@ACP nanoparticles guided by glycine. Sci. Rep. 2017;7:40701. doi: 10.1038/srep40701. PubMed DOI PMC

Pan H., Tao J., Xu X., Tang R. Adsorption processes of Gly and Glu amino acids on hydroxyapatite surfaces at the atomic level. Langmuir. 2007;23:8972–8981. doi: 10.1021/la700567r. PubMed DOI

Gopi D., Indira J., Kavitha L., Sekar M., Kamachi Mudali U. Synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted with mixed hollow sphere template method. Spectrochim. Acta A. 2012;93:131–134. doi: 10.1016/j.saa.2012.02.033. PubMed DOI

Gopi D., Nithiya S., Shinyjoy E., Kavitha L. Spectroscopic investigation on formation and growth of mineralized nanohydroxyapatite for bone tissue engineering applications. Spectrochim. Acta A. 2012;92:194–200. doi: 10.1016/j.saa.2012.02.069. PubMed DOI

Tao J., Pan H., Zeng Y., Xu X., Tang R. Roles of amorphous calcium phosphate and biological additives in the assembly of hydroxyapatite nanoparticles. J. Phys. Chem. B. 2007;111:13410–13418. doi: 10.1021/jp0732918. PubMed DOI

Li L., Mao C., Wang J., Xu X., Pan H., Deng Y., Gu X., Tang R. Bio-inspired enamel repair via Glu-directed assembly of apatite nanoparticles: An approach to biomaterials with optimal characteristics. Adv. Mater. 2011;23:4695–4701. doi: 10.1002/adma.201102773. PubMed DOI

Zhou Y.Z., Cao Y., Liu W., Chu C.H., Li Q.L. Polydopamine-induced tooth remineralization. ACS Appl. Mater. Interfaces. 2012;4:6901–6910. doi: 10.1021/am302041b. PubMed DOI

Cai Y., Jin J., Mei D., Xia N., Yao J. Effect of silk sericin on assembly of hydroxyapatite nanocrystals into enamel prism-like structure. J. Mater. Chem. 2009;19:5751–5758. doi: 10.1039/b901620a. DOI

Cai Y., Mei D., Jiang T., Yao J. Synthesis of oriented hydroxyapatite crystals: Effect of reaction conditions in the presence or absence of silk sericin. Mater. Lett. 2010;64:2676–2678. doi: 10.1016/j.matlet.2010.08.071. DOI

Reynolds E.C., Black C.L., Cai F., Cross K.J., Eakins D., Huq N.L. Advances in enamel remineralisation: Casein phosphopeptide-amorphous calcium phosphate. J. Clin. Dent. 1999;10:86–88.

Rahiotis C., Vougiouklakis G. Effect of a CPP-ACP agent on the demineralization andremineralization of dentine In Vitro. J. Dent. 2007;35:695–698. doi: 10.1016/j.jdent.2007.05.008. PubMed DOI

Cao Y., Mei M.L., Xu J., Lo E.C.M., Li Q., Chu C.H. Biomimetic mineralisation of phosphorylated dentine by CPP-ACP. J. Dent. 2013;41:818–825. doi: 10.1016/j.jdent.2013.06.008. PubMed DOI

Rad-Malekshahi M., Lempsink L., Amidi M., Hennink W.E., Mastrobattista E. Biomedical applications of self-assembling peptides. Bioconjugate Chem. 2016;27:3–18. doi: 10.1021/acs.bioconjchem.5b00487. PubMed DOI

Hosseinkhani H., Hong P.D., Yu D.S. Self-assembled proteins and peptides for regenerative medicine. Chem. Rev. 2013;113:4837–4861. doi: 10.1021/cr300131h. PubMed DOI

Zhou B., Liu Y., Wei W., Mao J. GEPIs-HA hybrid: A novel biomaterial for tooth repair. Med. Hypotheses. 2008;71:591–593. doi: 10.1016/j.mehy.2008.04.024. PubMed DOI

Zhou Y., Zhou Y., Gao L., Wu C., Chang J. Synthesis of artificial dental enamel by an elastin-like polypeptide assisted biomimetic approach. J. Mater. Chem. B. 2018;5:844–853. doi: 10.1039/C7TB02576A. PubMed DOI

Mao J., Shi X., Wu Y.B., Gong S.Q. Identification of specific hydroxyapatite {001} binding heptapeptide by phage display and its nucleation effect. Materials. 2016;9:700. doi: 10.3390/ma9080700. PubMed DOI PMC

Wang Q., Wang X.M., Tian L.L., Cheng Z.J., Cui F.Z. In Situ remineralizaiton of partially demineralized human dentine mediated by a biomimetic non-collagen peptide. Soft Matter. 2011;20:9673–9680. doi: 10.1039/c1sm05018d. DOI

He G., Gajjeraman S., Schultz D., Cookson D., Qin C., Butler W.T., Hao J., George A. Spatially and temporally controlled biomineralization is facilitated by interaction between self-assembled dentin matrix protein 1 and calcium phosphate nuclei in solution. Biochemistry. 2005;44:16140–16148. doi: 10.1021/bi051045l. PubMed DOI PMC

Beniash E., Deshpande A.S., Fang P.A., Lieb N.S., Zhang X., Sfeir C.S. Possible role of DMP1 in dentin mineralization. J. Struc. Biol. 2011;174:100–106. doi: 10.1016/j.jsb.2010.11.013. PubMed DOI PMC

Chung H.Y., Li C.C., Hsu C.C. Characterization of the effects of 3DSS peptide on remineralized enamel in artificial saliva. J. Mech. Behav. Biomed. Mater. 2012;6:74–79. doi: 10.1016/j.jmbbm.2011.10.008. PubMed DOI

Hsu C.C., Chung H.Y., Yang J.M., Shi W., Wu B. Influence of 8DSS peptide on nano-mechanical behavior of human enamel. J. Dent. Res. 2011;90:88–92. doi: 10.1177/0022034510381904. PubMed DOI

Chung H.Y., Li C.C. Asparagine-serine-serine peptide regulates enamel remineralization In Vitro. J. Mater. Res. 2013;28:2890–2896. doi: 10.1557/jmr.2013.292. DOI

Chung H.Y., Li C.C. Microstructure and nanomechanical properties of enamel remineralized with asparagine–serine–serine peptide. Mater. Sci. Eng. C. 2013;33:969–973. doi: 10.1016/j.msec.2012.11.031. PubMed DOI

Melcher M., Facey S.J., Henkes T.M., Subkowski T., Hauer B. Accelerated nucleation of hydroxyapatite using an engineered hydrophobin fusion protein. Biomacromolecules. 2016;17:1716–1726. doi: 10.1021/acs.biomac.6b00135. PubMed DOI

Ma B., Gong S., Zhou B., Mao J. Self-assembled nanofiber networks formed from biomineralization-directing genetically engineered peptides. J. Biomater. Tissue Eng. 2017;7:355–362. doi: 10.1166/jbt.2017.1584. DOI

Kind L., Stevanovic S., Wuttig S., Wimberger S., Hofer J., Müller B., Pieles U. Biomimetic remineralization of carious lesions by self-assembling peptide. J. Dent. Res. 2017;96:790–797. doi: 10.1177/0022034517698419. PubMed DOI

Kirkham J., Firth A., Vernals D., Boden N., Robinson C., Shore R.C., Brookes S.J., Aggeli A. A Self-assembling peptide scaffolds promote enamel remineralization. J. Dent. Res. 2007;86:426–430. doi: 10.1177/154405910708600507. PubMed DOI

Wierichs R.J., Kogel J., Lausch J., Esteves-Oliveira M., Meyer-Lueckel H. Effects of self-assembling peptide P11-4, fluorides, and caries infiltration on artificial enamel caries lesions In Vitro. Caries Res. 2017;51:451–459. doi: 10.1159/000477215. PubMed DOI

Huang Z., Newcomb C.J., Bringas C., Jr., Stupp S.I., Snead M.L. Biological synthesis of tooth enamel instructed by an artificial matrix. Biomaterials. 2010;31:9202–9211. doi: 10.1016/j.biomaterials.2010.08.013. PubMed DOI PMC

Zhou Z.H., Zhou P.L., Yang S.P., Yu X.B., Yang L.Z. Controllable synthesis of hydroxyapatite nanocrystals via a dendrimer-assisted hydrothermal process. Mater. Res. Bull. 2007;42:1611–1618. doi: 10.1016/j.materresbull.2006.11.041. DOI

Yan S., Zhou Z.H., Zhang F., Yang S.P., Yang L., Yu X.B. Effect of anionic PAMAM with amido groups starburst dendrimers on the crystallization of Ca10(PO4)6(OH)2 by hydrothermal method. Mater. Chem. Phys. 2006;99:164–169. doi: 10.1016/j.matchemphys.2005.10.009. DOI

Zhang F., Zhou Z., Yang S.P., Mao L., Chen H., Yu X. Hydrothermal synthesis of hydroxyapatite nanorods in the presence of anionic starburst dendrimer. Mater. Lett. 2005;59:1422–1425. doi: 10.1016/j.matlet.2004.11.058. DOI

Pramanik N., Imae T. Fabrication and characterization of dendrimer functionalized mesoporous hydroxyapatite. Langmuir. 2012;28:14018–14027. doi: 10.1021/la302066e. PubMed DOI

Chen H., Holl M.M.B., Orr B.G., Majoros I., Clarkson B.H. Interaction of dendrimers (artificial proteins) with biological hydroxyapatite crystals. J. Dent. Res. 2003;82:443–448. doi: 10.1177/154405910308200608. PubMed DOI

Chen H., Chen Y., Orr B.G., Holl M.M.B., Majoros I., Clarkson B.H. Nanoscale probing of the enamel nanorod surface using polyamidoamine dendrimers. Langmuir. 2004;20:4168–4171. doi: 10.1021/la0303005. PubMed DOI

Chen L., Liang K., Li J., Wu D., Zhou X., Li J. Regeneration of biomimetic hydroxyapatite on etched human enamel by anionic PAMAM template In Vitro. Arch. Oral Biol. 2013;58:975–980. doi: 10.1016/j.archoralbio.2013.03.008. PubMed DOI

Chen L., Yuan H., Tang B., Liang K., Li J. Biomimetic remineralization of human enamel in the presence of polyamidoamine dendrimers In Vitro. Caries Res. 2015;49:282–290. doi: 10.1159/000375376. PubMed DOI

Li J., Yang J., Li J., Chen L., Liang K., Wu W., Chen X., Li J. Bioinspired intrafibrillar mineralization of human dentinen by PAMAM dendrimer. Biomaterials. 2013;34:6738–6747. doi: 10.1016/j.biomaterials.2013.05.046. PubMed DOI

Yang S., He H., Wang L., Jia X., Feng H. Oriented crystallization of hydroxyapatite by the biomimetic amelogenin nanospheres from self-assemblies of amphiphilic dendrons. Chem. Commun. 2011;47:10100–10102. doi: 10.1039/c1cc13661e. PubMed DOI

Wang J.M., Chen Y., Li L., Sun J., Gu X.H., Xu X.R., Pan H.H., Tang R.K. Remineralization of dentin collagen by meta-stabilized amorphous calcium phosphate. Cryst. Eng. Commun. 2013;15:6151–6158. doi: 10.1039/c3ce40449h. DOI

Chen Y., Wang J., Sun J., Mao C., Wang W., Pan H., Tang R., Gu X. Hierarchical structure and mechanical properties of remineralized dentin. J. Mech. Behav. Biomed. Mater. 2014;40:297–306. doi: 10.1016/j.jmbbm.2014.08.024. PubMed DOI

Kim J., Arola D.D., Gu L., Kim Y.K., Mai S., Liu Y., Pashley D.H., Tay F.R. Functional biomimetic analogs help remineralize apatite-depleteddemineralized resin-infiltrated dentin via a bottom–up approach. Acta Biomater. 2010;6:2740–2750. doi: 10.1016/j.actbio.2009.12.052. PubMed DOI PMC

Liu Y., Mai S., Li N., Yiu C.K.Y., Mao J., Pashley D.H., Tay F.R. Differences between top-down and bottom-up approaches in mineralizing thick, partially demineralized collagen scaffolds. Acta Biomater. 2011;7:1742–1751. doi: 10.1016/j.actbio.2010.11.028. PubMed DOI PMC

Abuna G., Feitosa V.P., Correr A.B., Cama G., Giannini M., Sinhoreti M.A., Pashley D.H., Sauro S. Bonding performance of experimental bioactive/biomimetic self-etch adhesives doped with calcium-phosphate fillers and biomimetic analogs of phosphoproteins. J. Dent. 2016;52:79–86. doi: 10.1016/j.jdent.2016.07.016. PubMed DOI

Tay F.R., Pashley D.H. Biomimetic remineralization of resin-bonded acid-etched dentin. J. Dent. Res. 2009;88:719–724. doi: 10.1177/0022034509341826. PubMed DOI PMC

Liu Y., Li N., Qi Y., Niu L.N., Elshafiy S., Mao J., Breschi L., Pashley D.H., Tay F.R. The use of sodium trimetaphosphate as a biomimetic analog of matrix phosphoproteins for remineralization of artificial caries-like dentin. Dent. Mater. 2011;27:465–477. doi: 10.1016/j.dental.2011.01.008. PubMed DOI PMC

Wu S., Gu L., Huang Z., Sun Q., Chen H., Ling J., Mai S. Intrafibrillar mineralization of polyacrylic acid-bound collagen fibrils using a two-dimensional collagen model and Portland cement-based resins. Eur. J. Oral Sci. 2017;125:72–80. doi: 10.1111/eos.12319. PubMed DOI

Busch S. Regeneration of human tooth enamel. Angew. Chem. Int. Edit. 2004;43:1428–1431. doi: 10.1002/anie.200352183. PubMed DOI

Golomb G., Schoen F.J., Smith M.S., Linden J., Dixion M., Levy R.J. The role of glutaraldehyde-induced cross-links in calcification of bovine pericardum used in cardiac-valve bioprostheses. Am. J. Pathol. 1987;127:122–130. PubMed PMC

Levy R.J., Schoen F.J., Sherman F.S., Nichols J., Hawley M.A., Lund S.A. Calcification of subcutaneously implanted type I collagen sponges. Effects of formaldehyde and glutaraldehyde pretreatments. Am. J. Pathol. 1986;122:71–82. PubMed PMC

Cilli R., Prakki A., de Araujo P.A., Pereira J.C. Influence of glutaraldehyde priming on bond strength of an experimental adhesive system applied to wet and dry dentine. J. Dent. 2009;37:212–218. doi: 10.1016/j.jdent.2008.11.017. PubMed DOI

Bedran-Russo A.K., Pereira P.N., Duarte W.R., Drummond J.L., Yamauchi M. Application of crosslinkers to dentin collagen enhances the ultimate tensile strength. J. Biomed. Mater. Res. B Appl. Biomater. 2007;80:268–272. doi: 10.1002/jbm.b.30593. PubMed DOI

Al-Ammar A., Drummond J.L., Bedran-Russo A.K. The use of collagen cross-linking agents to enhance dentin bond strength. J. Biomed. Mater. Res. B Appl. Biomater. 2009;91:419–424. doi: 10.1002/jbm.b.31417. PubMed DOI PMC

Chen C., Mao C., Sun J., Chen Y., Wang W., Pan H., Tang R., Gu X. Glutaraldehyde-induced remineralization improves the mechanical properties and biostability of dentin collagen. Mater. Sci. Eng. C. 2016;67:657–665. doi: 10.1016/j.msec.2016.05.076. PubMed DOI

Shin K., Acri T., Geary S., Salem A.K. Biomimetic mineralization of biomaterials using simulated body fluids for bone tissue engineering and regenerative medicine. Tissue Eng. A. 2017;23:1169–1180. doi: 10.1089/ten.tea.2016.0556. PubMed DOI PMC

Von der Mark K., Park J., Bauer S., Schmuki P. Nanoscale engineering of biomimetic surfaces: Cues from the extracellular matrix. Cell. Tissue Res. 2010;339:131–153. doi: 10.1007/s00441-009-0896-5. PubMed DOI

Gomes S., Leonor I.B., Mano J.F., Reis R.L., Kaplan D.L. Natural and genetically engineered proteins for tissue engineering. Prog. Polym. Sci. 2012;37:1–17. doi: 10.1016/j.progpolymsci.2011.07.003. PubMed DOI PMC

Zhu X., Zhang H., Zhang X., Ning C., Wang Y. In Vitro study on the osteogenesis enhancement effect of BMP-2 incorporated biomimetic apatite coating on titanium surfaces. Dent. Mater. J. 2017;36:677–685. doi: 10.4012/dmj.2016-189. PubMed DOI

Hunziker E.B., Enggist L., Kuffer A., Buser D., Liu Y. Osseointegration: The slow delivery of BMP-2 enhances osteoinductivity. Bone. 2012;51:98–106. doi: 10.1016/j.bone.2012.04.004. PubMed DOI

Zheng Y., Wu G., Liu Y., Wismeijer D., Liu Y. A novel BMP2-coprecipitated, layer-by-layer assembled biomimetic calcium phosphate particle: A biodegradable and highly-efficient osteoinducer. Clin. Implant Dent. Relat. Res. 2014;16:643–654. doi: 10.1111/cid.12050. PubMed DOI

Wang D., Tabassum A., Wu G., Deng L., Wismeijer D., Liu Y. Bone regeneration in critical-sized bone defect enhanced by introducing osteoinductivity to biphasic calcium phosphate granules. Clin. Oral Implant. Res. 2017;28:251–260. doi: 10.1111/clr.12791. PubMed DOI

Liu T., Zheng Y., Wu G., Wismeijer D., Pathak J.L., Liu Y. BMP2-coprecipitated calcium phosphate granules enhance osteoinductivity of deproteinized bovine bone, and bone formation during critical-sized bone defect healing. Sci. Rep. 2017;7:41800. doi: 10.1038/srep41800. PubMed DOI PMC

Karageorgiou V., Tomkins M., Fajardo R., Meinel L., Snyder B., Wade K., Chen J., Vunjak-Novakovic G., Kaplan D.L. Porous silk fibroin 3-D scaffolds for delivery of bone morphogenetic protein-2 In Vitro and In Vivo. J. Biomed. Mater. Res. A. 2006;78:324–334. doi: 10.1002/jbm.a.30728. PubMed DOI

La W.G., Kang S.W., Yang H.S., Bhang S.H., Lee S.H., Park J.H., Kim B.S. The efficacy of bone morphogenetic protein-2 depends on its mode of delivery. Artif. Organs. 2010;34:1150–1153. doi: 10.1111/j.1525-1594.2009.00988.x. PubMed DOI

Murphy C.M., Schindeler A., Gleeson J.P., Yu N.Y.C., Cantrill L.C., Mikulec K., Peacock L., O’Brien F.J., Little D.G. A collagen–hydroxyapatite scaffold allows for binding and co-delivery of recombinant bone morphogenetic proteins and bisphosphonates. Acta Biomater. 2014;10:2250–2258. doi: 10.1016/j.actbio.2014.01.016. PubMed DOI

Yang H.S., La W.G., Bhang S.H., Lee T.J., Lee M., Kim B.S. Apatite-coated collagen scaffold for bone morphogenetic protein-2 delivery. Tissue Eng. A. 2011;17:2153–2164. doi: 10.1089/ten.tea.2010.0702. PubMed DOI

Sotome S., Uemura T., Kikuchi M., Chen J., Itoh S., Tanaka J., Tateishi T., Shinomiya K. Synthesis and In Vivo evaluation of a novel hydroxyapatite/collagen–alginate as a bone filler and a drug delivery carrier of bone morphogenetic protein. Mater. Sci. Eng. C. 2004;24:341–347. doi: 10.1016/j.msec.2003.12.003. DOI

Leeuwenburgh S.C.G., Jo J., Wang H., Yamamoto M., Jansen J.A., Tabata Y. Mineralization, biodegradation, and drug release behavior of gelatin/apatite composite microspheres for bone regeneration. Biomacromolecules. 2010;11:2653–2659. doi: 10.1021/bm1006344. PubMed DOI

Zhao J.Y., Shinkai M., Takezawa T., Ohba S., Chung U., Nagamune T. Bone regeneration using collagen type I vitrigel with bone morphogenetic protein-2. J. Biosci. Bioeng. 2009;107:318–323. doi: 10.1016/j.jbiosc.2008.10.007. PubMed DOI

Jacobs E.E., Gronowicz G., Hurley M.M., Kuhn L.T. Biomimetic calcium phosphate/polyelectrolyte multilayer coatings for sequential delivery of multiple biological factors. J. Biomed. Mater. Res. A. 2017;105:1500–1509. doi: 10.1002/jbm.a.35985. PubMed DOI PMC

Charles L.F., Woodman J.L., Ueno D., Gronowicz G., Hurley M.M., Kuhn L.T. Effects of low dose FGF-2 and BMP-2 on healing of calvarial defects in old mice. Exp. Gerontol. 2015;64:62–69. doi: 10.1016/j.exger.2015.02.006. PubMed DOI PMC

Gronowicz G., Jacobs E., Peng T., Zhu L., Hurley M., Kuhn L.T. Calvarial bone regeneration is enhanced by sequential delivery of FGF-2 and BMP-2 from layer-by-layer coatings with a biomimetic calcium phosphate barrier layer. Tissue Eng. A. 2017;23:1490–1501. doi: 10.1089/ten.tea.2017.0111. PubMed DOI PMC

Alhamdi J., Jacobs E., Gronowicz G., Benkirane-Jessel N., Hurley M., Kuhn L. Cell Type influences local delivery of biomolecules from a bioinspired apatite drug delivery system. Materials. 2018;11:1703. doi: 10.3390/ma11091703. PubMed DOI PMC

Zhang X., Lin X., Liu T., Deng L., Huang Y., Liu Y. Osteogenic enhancement between icariin and bone morphogenetic protein 2: A potential osteogenic compound for bone tissue engineering. Front. Pharm. 2019;10:201. doi: 10.3389/fphar.2019.00201. PubMed DOI PMC

Suchý T., Šupová M., Klapková E., Horný L., Rýglová Š., Žaloudková M., Braun M., Sucharda Z., Ballay R., Veselý J., et al. The sustainable release of vancomycin and its degradation products from nanostructured collagen/hydroxyapatite composite layers. J. Pharm. Sci. 2016;105:1288–1294. doi: 10.1016/S0022-3549(15)00175-6. PubMed DOI

Suchý T., Šupová M., Klapková E., Adámková V., Závora J., Žaloudková M., Rýglová Š., Ballay R., Denk F., Pokorný M., et al. The release kinetics, antimicrobial activity and cytocompatibility of differently prepared collagen/hydroxyapatite/vancomycin layers: Microstructure vs. Nanostructure. Europ. J. Pharm. Sci. 2017;100:219–229. doi: 10.1016/j.ejps.2017.01.032. PubMed DOI

Suchý T., Šupová M., Sauerová P., Hubálek-Kalbáčová M., Klapková E., Pokorný M., Horný L., Závora J., Ballay R., Denk F., et al. Evaluation of collagen/hydroxyapatite electrospun layers loaded with vancomycin, gentamicin and their combination: Comparison of release kinetics, antimicrobial activity and cytocompatibility. Europ. J. Pharm. Biopharm. 2019;140:50–59. doi: 10.1016/j.ejpb.2019.04.021. PubMed DOI

Pon-On W., Charoenphandhu N., Teerapornpuntakit J., Thongbunchoo J., Krishnamra N., Tang I.M. In Vitro study of vancomycin release and osteoblast-like cell growth on structured calcium phosphate-collagen. Mater. Sci. Eng. C. 2013;33:1423–1431. doi: 10.1016/j.msec.2012.12.046. PubMed DOI

Wang Y., Hao H., Zhang S. Biomimetic coprecipitation of silk fibrin and calcium phosphate: Influence of selenite ions. Biol. Trace Elem. Res. 2017;178:338–347. doi: 10.1007/s12011-017-0933-2. PubMed DOI

Kang T., Huang Y., Zhu Q., Cheng H., Pei Y., Feng J., Xu M., Jiang G., Song Q., Jiang T., et al. Necroptotic cancer cells-mimicry nanovaccine boosts anti-tumor immunity with tailored immune-stimulatory modality. Biomaterials. 2018;164:80–97. doi: 10.1016/j.biomaterials.2018.02.033. PubMed DOI

Lee S.U., Min K.H., Jeong S.Y., Bae H., Lee S.C. Calcium phosphate-reinforced photosensitizer-loaded polymer nanoparticles for photodynamic therapy. Chem. Asian J. 2013;8:3222–3229. doi: 10.1002/asia.201300840. PubMed DOI

Bock N., Riminucci A., Dionigi C., Russo A., Tampieri A., Landi E., Goranov V.A., Marcacci M., Dediu V. A novel route in bone tissue engineering: Magnetic biomimetic scaffolds. Acta Biomater. 2010;6:786–796. doi: 10.1016/j.actbio.2009.09.017. PubMed DOI

Chung R.J. Study of hydroxyapatite nano composites with photoluminescence properties. Biomed. Eng. Appl. Basis Commun. 2011;23:107–112. doi: 10.4015/S1016237211002451. DOI

Xu Y.M., Meng Z.Y., Zhai J. pH and calcium cooperative regulation nanofluidic gating device. Acta Chim. Sin. 2016;74:538–544. doi: 10.6023/A16010053. DOI

Qu T., Tomar V. An analysis of the effects of temperature and structural arrangements on the thermal conductivity and thermal diffusivity of tropocollagen–hydroxyapatite interfaces. Mater. Sci. Eng. C. 2014;38:28–38. doi: 10.1016/j.msec.2014.01.039. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...