Enhancing Guided Bone Regeneration with a Novel Carp Collagen Scaffold: Principles and Applications

. 2024 Jun 01 ; 15 (6) : . [epub] 20240601

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38921524

Bone defects resulting from trauma, surgery, and congenital, infectious, or oncological diseases are a functional and aesthetic burden for patients. Bone regeneration is a demanding procedure, involving a spectrum of molecular processes and requiring the use of various scaffolds and substances, often yielding an unsatisfactory result. Recently, the new collagen sponge and its structural derivatives manufactured from European carp (Cyprinus carpio) were introduced and patented. Due to its fish origin, the novel scaffold poses no risk of allergic reactions or transfer of zoonoses and additionally shows superior biocompatibility, mechanical stability, adjustable degradation rate, and porosity. In this review, we focus on the basic principles of bone regeneration and describe the characteristics of an "ideal" bone scaffold focusing on guided bone regeneration. Moreover, we suggest several possible applications of this novel material in bone regeneration processes, thus opening new horizons for further research.

Zobrazit více v PubMed

Alves A.L., Costa-Gouveia J., de Castro J.V., Sotelo C., Vázquez J., Pérez-Martín R., Torrado E., Neves N., Reis R., Castro A., et al. Study of the immunologic response of marine-derived collagen and gelatin extracts for tissue engineering applications. Acta Biomater. 2022;141:123–131. doi: 10.1016/j.actbio.2022.01.009. PubMed DOI

Pati F., Datta P., Adhikari B., Dhara S., Ghosh K., Das Mohapatra P.K. Collagen scaffolds derived from fresh water fish origin and their biocompatibility. J. Biomed. Mater. Res. A. 2012;100:1068–1079. doi: 10.1002/jbm.a.33280. PubMed DOI

Lambert L., Novakova M., Lukac P., Cechova D., Sukenikova L., Hrdy J., Mlcek M., Chlup H., Suchy T., Grus T. Evaluation of the Immunogenicity of a Vascular Graft Covered with Collagen Derived from the European Carp (Cyprinus carpio) and Bovine Collagen. BioMed Res. Int. 2019;2019:5301405. doi: 10.1155/2019/5301405. PubMed DOI PMC

Pal G.K., Sures P.V. Sustainable valorisation of seafood by-products: Recovery of collagen and development of collagen-based novel functional food ingredients. Innov. Food Sci. Emerg. Technol. 2016;37:201–215. doi: 10.1016/j.ifset.2016.03.015. DOI

Všeobecná fakultní nemocnice v Praze; Ústav struktury a mechaniky hornin AV ČR; České vysoké učení technické v Praze. Sendvičová Kolagenní Pěna pro Řízené Uvolňování Aktivních Látek a Způsob Její Přípravy (Sandwich and Composite Collagen Sponge for Controlled Release of Active Substances, and Method of Preparation Thereof) CZ308862B6. [(accessed on 15 March 2022)];Czech Republic. 2021 June 10; Available online: https://patentimages.storage.googleapis.com/45/50/b0/22aa26de0034a1/CZ308862B6.pdf.

Meganathan G., Balasubramanian B., Meyyazhagan A., Paul J., Chaudhary A., Pappuswamy M. Review on the fish collagen-based scaffolds in wound healing and tissue engineering. Nat. Resour. Hum. Health. 2023;4:1–23. doi: 10.53365/nrfhh/175205. PubMed DOI

Lee K.W., Wang S., Dadsetan M., Yaszemski M.J., Lu L. Enhanced Cell Ingrowth and Proliferation through Three-Dimensional Nanocomposite Scaffolds with Controlled Pore Structures. Biomacromolecules. 2010;11:682–689. doi: 10.1021/bm901260. PubMed DOI PMC

Yang W., Meyers M.A., Ritchie R.O. Structural architectures with toughening mechanisms in Nature: A review of the materials science of Type-I collagenous materials. Prog. Mater. Sci. 2019;103:425–483. doi: 10.1016/j.pmatsci.2019.01.002. DOI

Currey J.D. The Mechanical Adaptations of Bones. Princeton University Press; Princeton, NJ, USA: 1984.

Resnik R.R. Misch’s Contemporary Implant Dentistry. 4th ed. Elsevier; North York, ON, Canada: 2021.

Roberts W.E., Smith R.K., Zilberman Y., Mozsary P.G., Smith R.S. Osseous adaptation to continuous loading of rigid endosseous implants. Am. J. Orthod. 1984;86:95–111. doi: 10.1016/0002-9416(84)90301-4. PubMed DOI

Enlow D.H. Principles of bone remodeling. Arthritis Rheum. 1963;7:455–613. doi: 10.1002/art.1780070513. DOI

Kaderly R.E. Primary bone healing. Semin. Vet. Med. Surg. Small Anim. 1991;6:21–25. PubMed

Einhorn T.A. The cell and molecular biology of fracture healing. Clin. Orthop. Relat. Res. 1998;355:S7–S21. doi: 10.1097/00003086-199810001-00003. PubMed DOI

Bolamperti S., Villa I., Rubinacci A. Bone remodeling: An operational process ensuring survival and bone mechanical competence. Bone Res. 2022;10:48. doi: 10.1038/s41413-022-00219-8. PubMed DOI PMC

Jilka R.L. Biology of the basic multicellular unit and the pathophysiology of osteoporosis. Med. Pediatr. Oncol. 2003;41:182–185. doi: 10.1002/mpo.10334. PubMed DOI

Eriksen E.F. Cellular mechanisms of bone remodeling. Rev. Endocr. Metab. Disord. 2010;11:219–227. doi: 10.1007/s11154-010-9153-1. PubMed DOI PMC

ElHawary H., Baradaran A., Abi-Rafeh J., Vorstenbosch J., Xu L., Efanov J.I. Bone Healing and Inflammation: Principles of Fracture and Repair. Semin. Plast. Surg. 2021;35:198–203. doi: 10.1055/s-0041-1732334. PubMed DOI PMC

Breur G.J., Vanenkevort B.A., Farnum C.E., Wilsman N.J. Linear relationship between the volume of hypertrophic chondrocytes and the rate of longitudinal bone growth in growth plates. J. Orthop. Res. 1991;9:348–359. doi: 10.1002/jor.1100090306. PubMed DOI

Overmann A.L., Aparicio C., Richards J.T., Mutreja I., Fischer N.G., Wade S.M., Potter B.K., Davis T.A., Bechtold J.E., Forsberg J.A., et al. Orthopaedic osseointegration: Implantology and future directions. J. Orthop. Res. 2020;38:1445–1454. doi: 10.1002/jor.24576. PubMed DOI

Benayahu D., Pomeraniec L., Shemesh S., Heller S., Rosenthal Y., Rath-Wolfson L., Benayahu Y. Biocompatibility of a Marine Collagen-Based Scaffold In Vitro and In Vivo. Mar. Drugs. 2020;18:420. doi: 10.3390/md18080420. PubMed DOI PMC

Melcher A.H. On the repair potential of periodontal tissues. J. Periodontol. 1976;47:256–260. doi: 10.1902/jop.1976.47.5.256. PubMed DOI

Wang H.-L., Boyapati L. “PASS” principles for predictable bone regeneration. Implant. Dent. 2006;15:8–17. doi: 10.1097/01.id.0000204762.39826.0f. PubMed DOI

Schell H., Epari D.R., Kassi J.P., Bragulla H., Bail H.J., Duda G.N. The course of bone healing is influenced by the initial shear fixation stability—PubMed. J. Orthop. Res. 2005;23:1022–1028. doi: 10.1016/j.orthres.2005.03.005. PubMed DOI

Jagodzinski M., Krettek C. Effect of mechanical stability on fracture healing—An update. Injury. 2007;38:3–10. doi: 10.1016/j.injury.2007.02.005. PubMed DOI

Park J.Y., Chung H.-M., Strauss F.-J., Lee J.-S. Dimensional changes after horizontal and vertical guided bone regeneration without membrane fixation using the retentive flap technique: A 1-year retrospective study. Clin. Implant Dent. Relat. Res. 2023;25:871–880. doi: 10.1111/cid.13237. PubMed DOI

Carpio L., Loza J., Lynch S., Genco R. Guided bone regeneration around endosseous implants with anorganic bovine bone mineral. A randomized controlled trial comparing bioabsorbable versus non-resorbable barriers. J. Periodontol. 2000;71:1743–1749. doi: 10.1902/jop.2000.71.11.1743. PubMed DOI

Wang W., Yeung K.W.K. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact. Mater. 2017;2:224–247. doi: 10.1016/j.bioactmat.2017.05.007. PubMed DOI PMC

Claes L., Eckert-Hübner K., Augat P. The effect of mechanical stability on local vascularization and tissue differentiation in callus healing. J. Orthop. Res. 2002;20:1099–1105. doi: 10.1016/S0736-0266(02)00044-X. PubMed DOI

Lienau J., Schell H., Duda G.N., Seebeck P., Muchow S., Bail H.J. Initial vascularization and tissue differentiation are influenced by fixation stability. J. Orthop. Res. 2005;23:639–645. doi: 10.1016/j.orthres.2004.09.006. PubMed DOI

Zhang M., Zhou Z., Yun J., Liu R., Li J., Chen Y., Cai H., Jiang H.B., Lee E.-S., Han J., et al. Effect of Different Membranes on Vertical Bone Regeneration: A Systematic Review and Network Meta-Analysis. BioMed Res. Int. 2022;2022:7742687. doi: 10.1155/2022/7742687. PubMed DOI PMC

Ren Y., Fan L., Alkildani S., Liu L., Emmert S., Najman S., Rimashevskiy D., Schnettler R., Jung O., Xiong X., et al. Barrier Membranes for Guided Bone Regeneration (GBR): A Focus on Recent Advances in Collagen Membranes. Int. J. Mol. Sci. 2022;23:14987. doi: 10.3390/ijms232314987. PubMed DOI PMC

Wang Y., Zhang X., Zhang S., Yang G., Li Y., Mao Y., Yang L., Chen J., Wang J. Development of a rapid-shaping and user-friendly membrane with long-lasting space maintenance for guided bone regeneration. J. Mater. Chem. B. 2024;12:1495–1511. doi: 10.1039/D3TB02137H. PubMed DOI

Kapogianni E., Alkildani S., Radenkovic M., Xiong X., Krastev R., Stöwe I., Bielenstein J., Jung O., Najman S., Barbeck M., et al. The Early Fragmentation of a Bovine Dermis-Derived Collagen Barrier Membrane Contributes to Transmembraneous Vascularization—A Possible Paradigm Shift for Guided Bone Regeneration. Membranes. 2021;11:185. doi: 10.3390/membranes11030185. PubMed DOI PMC

Barbeck M., Lorenz J., Kubesch A., Böhm N., Booms P., Choukroun J., Sader R., Kirkpatrick C.J., Ghanaati S. Porcine Dermis-Derived Collagen Membranes Induce Implantation Bed Vascularization via Multinucleated Giant Cells: A Physiological Reaction? J. Oral Implantol. 2015;41:e238–e251. doi: 10.1563/aaid-joi-D-14-00274. PubMed DOI

Xie Y., Li S., Zhang T., Wang C., Cai X. Titanium mesh for bone augmentation in oral implantology: Current application and progress. Int. J. Oral Sci. 2020;12:37. doi: 10.1038/s41368-020-00107-z. PubMed DOI PMC

Omar O., Elgali I., Dahlin C., Thomsen P. Barrier membranes: More than the barrier effect? J. Clin. Periodontol. 2019;46:103–123. doi: 10.1111/jcpe.13068. PubMed DOI PMC

Turri A., Elgali I., Vazirisani F., Johansson A., Emanuelsson L., Dahlin C., Thomsen P., Omar O. Guided bone regeneration is promoted by the molecular events in the membrane compartment. Biomaterials. 2016;84:167–183. doi: 10.1016/j.biomaterials.2016.01.034. PubMed DOI

Elgali I., Omar O., Dahlin C., Thomsen P. Guided bone regeneration: Materials and biological mechanisms revisited. Eur. J. Oral Sci. 2017;125:315–337. doi: 10.1111/eos.12364. PubMed DOI PMC

Troen B.R. Molecular mechanisms underlying osteoclast formation and activation. Exp. Gerontol. 2003;38:605–614. doi: 10.1016/s0531-5565(03)00069-x. PubMed DOI

Sinclair S.S.K., Burg K.J.L. Effect of osteoclast co-culture on the differentiation of human mesenchymal stem cells grown on bone graft granules. J. Biomater. Sci. Polym. Ed. 2011;22:789–808. doi: 10.1163/092050610X496260. PubMed DOI

Kreja L., Brenner R., Tautzenberger A., Liedert A., Friemert B., Ehrnthaller C., Huber-Lang M., Ignatius A. Non-resorbing osteoclasts induce migration and osteogenic differentiation of mesenchymal stem cells. J. Cell. Biochem. 2010;109:347–355. doi: 10.1002/jcb.22406. PubMed DOI

Teti A. Mechanisms of osteoclast-dependent bone formation. Bonekey Rep. 2013;2:449. doi: 10.1038/bonekey.2013.183. PubMed DOI PMC

Barboza E.P., Stutz B., Ferreira V.F., Carvalho W. Guided bone regeneration using nonexpanded polytetrafluoroethylene membranes in preparation for dental implant placements—A report of 420 cases. Implant Dent. 2010;19:2–7. doi: 10.1097/ID.0b013e3181cda72c. PubMed DOI

Yang Z., Wu C., Shi H., Luo X., Sun H., Wang Q., Zhang D. Advances in Barrier Membranes for Guided Bone Regeneration Techniques. Front. Bioeng. Biotechnol. 2022;10:921576. doi: 10.3389/fbioe.2022.921576. PubMed DOI PMC

Bruinink A., Luginbuehl R. Evaluation of biocompatibility using in vitro methods: Interpretation and limitations. Adv. Biochem. Eng. Biotechnol. 2012;126:117–152. doi: 10.1007/10_2011_111. PubMed DOI

Vert M., Doi Y., Hellwich K.-H., Hess M., Hodge P., Kubisa P., Rinaudo M., Schué F. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012) Pure Appl. Chem. 2012;84:377–410. doi: 10.1351/PAC-REC-10-12-04. DOI

Abdelaziz D., Hefnawy A., Al-Wakeel E., El-Fallal A., El-Sherbiny I.M. New biodegradable nanoparticles-in-nanofibers based membranes for guided periodontal tissue and bone regeneration with enhanced antibacterial activity. J. Adv. Res. 2021;28:51–62. doi: 10.1016/j.jare.2020.06.014. PubMed DOI PMC

Urban I. Vertical and Horizontal Ridge Augmentation: New Perspective. Quintessenz Publishing; New Malden, UK: 2017.

Bai L., Ji P., Li X., Gao H., Li L., Wang C. Mechanical Characterization of 3D-Printed Individualized Ti-Mesh (Membrane) for Alveolar Bone Defects. J. Healthc. Eng. 2019;2019:4231872. doi: 10.1155/2019/4231872. PubMed DOI PMC

Guo H., Xia D., Zheng Y., Zhu Y., Liu Y., Zhou Y. A pure zinc membrane with degradability and osteogenesis promotion for guided bone regeneration: In vitro and in vivo studies. Acta Biomater. 2020;106:396–409. doi: 10.1016/j.actbio.2020.02.024. PubMed DOI

Rahman M., Dutta N.K., Choudhury N.R. Magnesium Alloys With Tunable Interfaces as Bone Implant Materials. Front. Bioeng. Biotechnol. 2020;8:564. doi: 10.3389/fbioe.2020.00564. PubMed DOI PMC

Rider P., Kačarević P., Elad A., Rothamel D., Sauer G., Bornert F., Windisch P., Hangyási D., Molnar B., Hesse B., et al. Analysis of a Pure Magnesium Membrane Degradation Process and Its Functionality When Used in a Guided Bone Regeneration Model in Beagle Dogs. Materials. 2022;15:3106. doi: 10.3390/ma15093106. PubMed DOI PMC

Taguchi Y., Amizuka N., Nakadate M., Ohnishi H., Fujii N., Oda K., Nomura S., Maeda T. A histological evaluation for guided bone regeneration induced by a collagenous membrane. Biomaterials. 2005;26:6158–6166. doi: 10.1016/j.biomaterials.2005.03.023. PubMed DOI

Zubery Y., Amizuka N., Nakadate M., Ohnishi H., Fujii N., Oda K., Nomura S., Maeda T. Ossification of a novel cross-linked porcine collagen barrier in guided bone regeneration in dogs. J. Periodontol. 2007;78:112–121. doi: 10.1902/jop.2007.060055. PubMed DOI

Alkildani S., Ren Y., Liu L., Rimashevskiy D., Schnettler R., Radenković M., Najman S., Stojanović S., Jung O., Barbeck M. Analyses of the Cellular Interactions between the Ossification of Collagen-Based Barrier Membranes and the Underlying Bone Defects. Int. J. Mol. Sci. 2023;24:6833. doi: 10.3390/ijms24076833. PubMed DOI PMC

Saarani N.N., Jamuna-Thevi K., Shahab N., Hermawan H., Saidin S. Antibacterial efficacy of triple-layered poly(lactic-co-glycolic acid)/nanoapatite/lauric acid guided bone regeneration membrane on periodontal bacteria. Dent. Mater. J. 2017;36:260–265. doi: 10.4012/dmj.2016-177. PubMed DOI

Suchy T., Supova M., Bartos M., Sedlacek R., Piola M., Soncini M., Fiore G.B., Sauerova P., Kalbacova M.H. Dry versus hydrated collagen scaffolds: Are dry states representative of hydrated states? J. Mater. Sci. Mater. Med. 2018;29:20. doi: 10.1007/s10856-017-6024-2. PubMed DOI

Suchy T., Šupová M., Sauerová P., Verdanova M., Sucharda Z., Rýglová S., Žaloudková M., Sedláček R., Kalbacova M.H. The effects of different cross-linking conditions on collagen-based nanocomposite scaffolds-an in vitro evaluation using mesenchymal stem cells. Biomed. Mater. 2015;10:065008. doi: 10.1088/1748-6041/10/6/065008. PubMed DOI

Kemppainen J.M., Hollister S.J. Differential effects of designed scaffold permeability on chondrogenesis by chondrocytes and bone marrow stromal cells. Biomaterials. 2010;31:279–287. doi: 10.1016/j.biomaterials.2009.09.041. PubMed DOI

Schulze F., Lang A., Schoon J., Wassilew G.I., Reichert J. Scaffold Guided Bone Regeneration for the Treatment of Large Segmental Defects in Long Bones. Biomedicines. 2023;11:325. doi: 10.3390/biomedicines11020325. PubMed DOI PMC

Mukherjee S., Darzi S., Paul K., Werkmeister J.A., Gargett C.E. Mesenchymal stem cell-based bioengineered constructs: Foreign body response, cross-talk with macrophages and impact of biomaterial design strategies for pelvic floor disorders. Interface Focus. 2019;9:20180089. doi: 10.1098/rsfs.2018.0089. PubMed DOI PMC

Abbasi N., Hamlet S., Love R.M., Nguyen N.-T. Porous scaffolds for bone regeneration. J. Sci. Adv. Mater. Devices. 2020;5:1–9. doi: 10.1016/j.jsamd.2020.01.007. DOI

Murphy C.M., Haugh M.G., O’Brien F.J. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials. 2010;31:461–466. doi: 10.1016/j.biomaterials.2009.09.063. PubMed DOI

Draenert K., Draenert M., Erler M., Draenert A., Draenert Y. How bone forms in large cancellous defects: Critical analysis based on experimental work and literature. Injury. 2011;42((Suppl. 2)):S47–S55. doi: 10.1016/j.injury.2011.06.007. PubMed DOI

Limmahakhun S., Oloyede A., Sitthiseripratip K., Xiao Y., Yan C. 3D-printed cellular structures for bone biomimetic implants. Addit. Manuf. 2017;15:93–101. doi: 10.1016/j.addma.2017.03.010. DOI

Takahashi Y., Tabata Y. Effect of the fiber diameter and porosity of non-woven PET fabrics on the osteogenic differentiation of mesenchymal stem cells. J. Biomater. Sci. Polym. Ed. 2004;15:41–57. doi: 10.1163/156856204322752228. PubMed DOI

Abbasi N., Abdal-Hay A., Hamlet S., Graham E., Ivanovski S. Effects of Gradient and Offset Architectures on the Mechanical and Biological Properties of 3-D Melt Electrowritten (MEW) Scaffolds. ACS Biomater. Sci. Eng. 2019;5:3448–3461. doi: 10.1021/acsbiomaterials.8b01456. PubMed DOI

Talikowska M., Fu X., Lisak G. Application of conducting polymers to wound care and skin tissue engineering: A review. Biosens. Bioelectron. 2019;135:50–63. doi: 10.1016/j.bios.2019.04.001. PubMed DOI

Turnbull G., Clarke J., Picard F., Riches P., Jia L., Han F., Li B., Shu W. 3D bioactive composite scaffolds for bone tissue engineering. Bioact. Mater. 2018;3:278–314. doi: 10.1016/j.bioactmat.2017.10.001. PubMed DOI PMC

Zhu Y., Wu H., Sun S., Zhou T., Wu J., Wan Y. Designed composites for mimicking compressive mechanical properties of articular cartilage matrix. J. Mech. Behav. Biomed. Mater. 2014;36:32–46. doi: 10.1016/j.jmbbm.2014.04.003. PubMed DOI

Sorushanova A., Delgado L.M., Wu Z., Shologu N., Kshirsagar A., Raghunath R., Mullen A.M., Bayon Y., Pandit A., Raghunath M., et al. The Collagen Suprafamily: From Biosynthesis to Advanced Biomaterial Development. Adv. Mater. 2019;31:e1801651. doi: 10.1002/adma.201801651. PubMed DOI

Young M.F. Bone matrix proteins: Their function, regulation, and relationship to osteoporosis. Osteoporos. Int. 2003;14:S35–S42. doi: 10.1007/s00198-002-1342-7. PubMed DOI

Zitzmann N.U., Naef R., Scharer P. Resorbable versus nonresorbable membranes in combination with Bio-Oss for guided bone regeneration. Int. J. Oral Maxillofac. Implant. 1997;12:844–852. PubMed

Simion M., Scarano A., Gionso L., Piattelli A. Guided bone regeneration using resorbable and nonresorbable membranes: A comparative histologic study in humans. Int. J. Oral Maxillofac. Implant. 1996;11:735–742. PubMed

Rispoli L., Fontana F., Beretta M., Poggio C.E., Maiorana C. Surgery Guidelines for Barrier Membranes in Guided Bone Regeneration (GBR) J. Otolaryngol. Rhinol. 2015;1:2. doi: 10.23937/2572-4193.1510008. DOI

Sbricoli L., Guazzo R., Annunziata M., Gobbato L., Bressan E., Nastri L. Selection of Collagen Membranes for Bone Regeneration: A Literature Review. Materials. 2020;13:786. doi: 10.3390/ma13030786. PubMed DOI PMC

Rýglová Š., Braun M., Suchý T. Collagen and Its Modifications—Crucial Aspects with Concern to Its Processing and Analysis. Macromol. Mater. Eng. 2017;302:1600460. doi: 10.1002/mame.201600460. DOI

Peterkova P., Lapcik L., Jr. Collagen-Properties, Modifications and Applications. Chem. Listy. 2000;94:371–379.

Chan B.P., So K.F. Photochemical crosslinking improves the physicochemical properties of collagen scaffolds. J. Biomed. Mater. Res. A. 2005;75:689–701. doi: 10.1002/jbm.a.30469. PubMed DOI

Bottino M.C., Thomas V., Schmidt G., Vohra Y.K., Chu T.-M.G., Kowolik M.J., Janowski G.M. Recent advances in the development of GTR/GBR membranes for periodontal regeneration--a materials perspective. Dent. Mater. 2012;28:703–721. doi: 10.1016/j.dental.2012.04.022. PubMed DOI

Oliveira V.M., Assis C.R.D., Costa B.d.A.M., Neri R.C.d.A., Monte F.T.D., Freitas H.M.S.d.C.V., Franca R.C.P., Santos J.F., Bezerra R.d.S., Porto A.L.F. Physical, biochemical, densitometric and spectroscopic techniques for characterization collagen from alternative sources: A review based on the sustainable valorization of aquatic by-products. J. Mol. Struct. 2021;1224:129023. doi: 10.1016/j.molstruc.2020.129023. DOI

Silvipriya K.S., Kumar K.K., Bhat A.R., Kumar B.D., John A., Lakshmanan P. Collagen: Animal Sources and Biomedical Application. J. Appl. Pharm. Sci. 2015;5:123–127. doi: 10.7324/JAPS.2015.50322. DOI

Rodriguez M.I.A., Barroso L.G.R., Sanchez M.L. Collagen: A review on its sources and potential cosmetic applications. J. Cosmet. Dermatol. 2018;17:20–26. doi: 10.1111/jocd.12450. PubMed DOI

Subhan F., Ikram M., Shehzad A., Ghafoor A. Marine Collagen: An Emerging Player in Biomedical applications. J. Food Sci. Technol. 2015;52:4703–4707. doi: 10.1007/s13197-014-1652-8. PubMed DOI PMC

Felician F.F., Xia C., Qi W., Xu H. Collagen from Marine Biological Sources and Medical Applications. Chem. Biodivers. 2018;15:e1700557. doi: 10.1002/cbdv.201700557. PubMed DOI

Oh H.H., Uemura T., Yamaguchi I., Ikoma T., Tanaka J. Effect of enzymatically cross-linked tilapia scale collagen for osteoblastic differentiation of human mesenchymal stem cells. J. Bioact. Compat. Polym. 2015;31:31–41. doi: 10.1177/0883911515595240. DOI

Raftery R.M., Woods B., Marques A.L.P., Moreira-Silva J., Silva T.H., Cryan S.-A., Reis R.L., O’Brien F.J. Multifunctional biomaterials from the sea: Assessing the effects of chitosan incorporation into collagen scaffolds on mechanical and biological functionality. Acta Biomater. 2016;43:160–169. doi: 10.1016/j.actbio.2016.07.009. PubMed DOI

Chen Y., Jin H., Yang F., Jin S., Liu C., Zhang L., Huang J., Wang S., Yan Z., Cai X., et al. Physicochemical, antioxidant properties of giant croaker (Nibea japonica) swim bladders collagen and wound healing evaluation. Int. J. Biol. Macromol. 2019;138:483–491. doi: 10.1016/j.ijbiomac.2019.07.111. PubMed DOI

Lin Y.K., Liu D.C. Effects of pepsin digestion at different temperatures and times on properties of telopeptide-poor collagen from bird feet. Food Chem. 2006;94:621–625. doi: 10.1016/j.foodchem.2004.12.007. DOI

Sionkowska A., Skrzyński S., Śmiechowski K., Kołodziejczak A. The review of versatile application of collagen. Polym. Adv. Technol. 2017;28:4–9. doi: 10.1002/pat.3842. DOI

Silva T.H., Moreira-Silva J., Marques A.L.P., Domingues A., Bayon Y., Reis R.L. Marine origin collagens and its potential applications. Mar. Drugs. 2014;12:5881–5901. doi: 10.3390/md12125881. PubMed DOI PMC

Soldatos N.K., Stylianou P., Angelov N., Koidou P., Yukna R., Romanos G.E. Limitations and options using resorbable versus nonresorbable membranes for successful guided bone regeneration. Quintessence Int. 2017;48:131–147. doi: 10.3290/j.qi.a37133. PubMed DOI

Yamauchi M., Young D., Chandler G., Mechanic G. Cross-linking and new bone collagen synthesis in immobilized and recovering primate osteoporosis. Bone. 1988;9:415–418. doi: 10.1016/8756-3282(88)90124-x. PubMed DOI

Gao Y., Wang S., Shi B., Wang Y., Chen Y., Wang X., Lee E.-S., Jiang H.-B. Advances in Modification Methods Based on Biodegradable Membranes in Guided Bone/Tissue Regeneration: A Review. Polymers. 2022;14:871. doi: 10.3390/polym14050871. PubMed DOI PMC

Fathima N.N., Madhan B., Rao J.R., Nair B.U., Ramasami T. Interaction of aldehydes with collagen: Effect on thermal, enzymatic and conformational stability. Int. J. Biol. Macromol. 2004;34:241–247. doi: 10.1016/j.ijbiomac.2004.05.004. PubMed DOI

Walters B.D., Stegemann J.P. Strategies for directing the structure and function of three-dimensional collagen biomaterials across length scales. Acta Biomater. 2014;10:1488–1501. doi: 10.1016/j.actbio.2013.08.038. PubMed DOI PMC

Bax D.V., Davidenko N., Gullberg D., Hamaia S.W., Farndale R.W., Best S.M., Cameron R.E. Fundamental insight into the effect of carbodiimide crosslinking on cellular recognition of collagen-based scaffolds. Acta Biomater. 2017;49:218–234. doi: 10.1016/j.actbio.2016.11.059. PubMed DOI

Ahn J.J., Kim H.-J., Bae E.-B., Cho W.-T., Choi Y., Hwang S.-H., Jeong C.-M., Huh J.-B. Evaluation of 1-Ethyl-3-(3-Dimethylaminopropyl) Carbodiimide Cross-Linked Collagen Membranes for Guided Bone Regeneration in Beagle Dogs. Materials. 2020;13:4599. doi: 10.3390/ma13204599. PubMed DOI PMC

Diogo G.S., López-Senra E.L., Pirraco R.P., Canadas R.F., Fernandes E.M., Serra J., Pérez-Martín R.I., Sotelo C.G., Marques A.P., González P., et al. Marine Collagen/Apatite Composite Scaffolds Envisaging Hard Tissue Applications. Mar. Drugs. 2018;16:269. doi: 10.3390/md16080269. PubMed DOI PMC

Adamiak K., Sionkowska A. Current methods of collagen cross-linking: Review. Int. J. Biol. Macromol. 2020;161:550–560. doi: 10.1016/j.ijbiomac.2020.06.075. PubMed DOI

Weadock K.S., Miller E.J., Bellincampi L.D., Zawadsky J.P., Dunn M.G. Physical crosslinking of collagen fibers: Comparison of ultraviolet irradiation and dehydrothermal treatment. J. Biomed. Mater. Res. 1995;29:1373–1379. doi: 10.1002/jbm.820291108. PubMed DOI

Mitas P., Grus T., Lambert L., Mlcek M., Chlup H., Honsova E., Dohnalova M., Suchy T., Burgetova A., Lindner J., et al. The influence of purification of carp collagen used in a novel composite graft with sandwich construction of the wall on its biological properties and graft patency rates. Physiol. Res. 2019;68:603–610. doi: 10.33549/physiolres.934117. PubMed DOI

Fereshteh Z. Functional 3D Tissue Engineering Scaffolds. Woodhead Publishing; Sawston, UK: 2018. Freeze-drying technologies for 3D scaffold engineering; pp. 151–174. DOI

Šupová M., Suchý T., Chlup H., Šulc M., Kotrč T., Šilingová L., Žaloudková M., Rýglová Š., Braun M., Chvátil D., et al. The electron beam irradiation of collagen in the dry and gel states: The effect of the dose and water content from the primary to the quaternary levels. Int. J. Biol. Macromol. 2023;253:126898. doi: 10.1016/j.ijbiomac.2023.126898. PubMed DOI

Hartinger J.M., Lukáč P., Mitáš P., Mlček M., Popková M., Suchý T., Šupová M., Závora J., Adámková V., Benáková H., et al. Vancomycin-releasing cross-linked collagen sponges as wound dressings. Bosn. J. Basic Med. Sci. 2021;21:61–70. doi: 10.17305/bjbms.2019.4496. PubMed DOI PMC

Hartinger J.M., Lukac P., Mlcek M., Popkova M., Suchy T., Supova M., Chlup H., Horny L., Zavora J., Adamkova V., et al. Rifampin-Releasing Triple-Layer Cross-Linked Fresh Water Fish Collagen Sponges as Wound Dressings. BioMed Res. Int. 2020;2020:3841861. doi: 10.1155/2020/3841861. PubMed DOI PMC

Franz S., Rammelt S., Scharnweber D., Simon J.C. Immune responses to implants—A review of the implications for the design of immunomodulatory biomaterials. Biomaterials. 2011;32:6692–6709. doi: 10.1016/j.biomaterials.2011.05.078. PubMed DOI

Charriere G., Bejot M., Schnitzler L., Ville G., Hartmann D.J. Reactions to a bovine collagen implant. Clinical and immunologic study in 705 patients. J. Am. Acad. Dermatol. 1989;21:1203–1208. doi: 10.1016/s0190-9622(89)70330-3. PubMed DOI

Jongjareonrak A., Benjakul S., Visessanguan W., Tanaka M. Isolation and characterization of collagen from bigeye snapper (Priacanthus macracanthus) skin. J. Sci. Food Agric. 2005;85:1203–1210. doi: 10.1002/jsfa.2072. DOI

Kumagai S., Daikai T., Onodera T. Bovine Spongiform Encephalopathy—A Review from the Perspective of Food Safety. Food Saf. 2019;7:21–47. doi: 10.14252/foodsafetyfscj.2018009. PubMed DOI PMC

Louz D., Bergmans H.E., Loos B.P., Hoeben R.C. Cross-species transfer of viruses: Implications for the use of viral vectors in biomedical research, gene therapy and as live-virus vaccines. J. Gene Med. 2005;7:1263–1274. doi: 10.1002/jgm.794. PubMed DOI PMC

Song E., Kim S.Y., Chun T., Byun H.-J., Lee Y.M. Collagen scaffolds derived from a marine source and their biocompatibility. Biomaterials. 2006;27:2951–2961. doi: 10.1016/j.biomaterials.2006.01.015. PubMed DOI

Widdowson J.P., Picton A.J., Vince V., Wright C.J., Mearns-Spragg A. In vivo comparison of jellyfish and bovine collagen sponges as prototype medical devices. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018;106:1524–1533. doi: 10.1002/jbm.b.33959. PubMed DOI PMC

Yamamoto K., Igawa K., Sugimoto K., Yoshizawa Y., Yanagiguchi K., Ikeda T., Yamada S., Hayashi Y. Biological Safety of Fish (Tilapia) Collagen. BioMed Res. Int. 2014;2014:630757. doi: 10.1155/2014/630757. PubMed DOI PMC

Lukáč P., Hartinger J.M., Mlcek M., Popkova M., Suchy T., Supova M., Zavora J., Adamkova V., Benakova H., Slanar O., et al. A novel gentamicin-releasing wound dressing prepared from freshwater fish Cyprinus carpio collagen cross-linked with carbodiimide. J. Bioact. Compat. Polym. 2019;34:246–262. doi: 10.1177/0883911519835143. DOI

Zheng F., Ju M., Lü Y., Hua Y., Yao W., Wu H., Zhao M., Han S., Wei Y., Liu R. Carp scales derived double cross-linking hydrogels achieve collagen peptides sustained-released for bone regeneration. Int. J. Biol. Macromol. 2024;255:128276. doi: 10.1016/j.ijbiomac.2023.128276. PubMed DOI

Tian M., Chen F., Song W., Song Y., Chen Y., Wan C., Yu X., Zhang X. In vivo study of porous strontium-doped calcium polyphosphate scaffolds for bone substitute applications. J. Mater. Sci. Mater. Med. 2009;20:1505–1512. doi: 10.1007/s10856-009-3713-5. PubMed DOI

Ter Boo G.J., Grijpma D.W., Moriarty T.F., Richards R.G., Eglin D. Antimicrobial delivery systems for local infection prophylaxis in orthopedic- and trauma surgery. Biomaterials. 2015;52:113–125. doi: 10.1016/j.biomaterials.2015.02.020. PubMed DOI

Xiao Y., Qian H., Young W., Bartold P. Tissue engineering for bone regeneration using differentiated alveolar bone cells in collagen scaffolds. Tissue Eng. 2003;9:1167–1177. doi: 10.1089/10763270360728071. PubMed DOI

Suchy T., Šupová M., Klapková E., Adamková V., Závora J., Žaloudková M., Rýglová Š., Ballay R., Denk F., Pokorný M. The release kinetics, antimicrobial activity and cytocompatibility of differently prepared collagen/hydroxyapatite/vancomycin layers: Microstructure vs. nanostructure. Eur. J. Pharm. Sci. 2017;100:219–229. doi: 10.1016/j.ejps.2017.01.032. PubMed DOI

Podd D. Hypovitaminosis D: A common deficiency with pervasive consequences. J. Am. Acad. Physician Assist. 2015;28:20–26. doi: 10.1097/01.JAA.0000459810.95512.14. PubMed DOI

Markopoulos G., Lepetsos P., Perrea D.N., Iliopoulos D.C., Nikolaou V.S. Possible Roles of Vitamin D in Bone Grafting. Cureus. 2021;13:e14688. doi: 10.7759/cureus.14688. PubMed DOI PMC

Hadzik J., Kubasiewicz-Ross P., Kunert-Keil C., Jurczyszyn K., Nawrot-Hadzik I., Dominiak M., Gedrange T. A silver carp skin derived collagen in bone defect treatment—A histological study in a rat model. Ann. Anat.-Anat. Anz. 2016;208:123–128. doi: 10.1016/j.aanat.2016.07.009. PubMed DOI

Michalak F., Hnitecka S., Dominiak M., Grzech-Leśniak K. Schemes for Drug-Induced Treatment of Osteonecrosis of Jaws with Particular Emphasis on the Influence of Vitamin D on Therapeutic Effects. Pharmaceutics. 2021;13:354. doi: 10.3390/pharmaceutics13030354. PubMed DOI PMC

Gogia J.S., Meehan J.P., Di Cesare P., Jamali A. Local Antibiotic Therapy in Osteomyelitis. Semin. Plast. Surg. 2009;23:100–107. doi: 10.1055/s-0029-1214162. PubMed DOI PMC

Mathew A., Vaquette C., Hashimi S., Rathnayake I., Huygens F., Hutmacher D.W., Ivanovski S. Antimicrobial and Immunomodulatory Surface-Functionalized Electrospun Membranes for Bone Regeneration. Adv. Healthc. Mater. 2017;6:1601345. doi: 10.1002/adhm.201601345. PubMed DOI

Bi Y.G., Lin Z.T., Deng S.T. Fabrication and characterization of hydroxyapatite/sodium alginate/chitosan composite microspheres for drug delivery and bone tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2019;100:576–583. doi: 10.1016/j.msec.2019.03.040. PubMed DOI

Schwarz F., Rothamel D., Herten M., Wüstefeld M., Sager M., Ferrari D., Becker J. Immunohistochemical characterization of guided bone regeneration at a dehiscence-type defect using different barrier membranes: An experimental study in dogs. Clin. Oral Implant. Res. 2008;19:402–415. doi: 10.1111/j.1600-0501.2007.01486.x. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...