In Vivo Degradation and Local Tissue Response of Experimental Carp Collagen Membranes: Micro-MRI and Histological Analysis
Status In-Process Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
MH CZ-DRO-VFN00064165
Ministry of Health of the Czech Republic
Univerzita Karlova v Praze
PubMed
40820929
PubMed Central
PMC12359101
DOI
10.1002/bip.70045
Knihovny.cz E-zdroje
- Klíčová slova
- GBR membrane, TERM, carp skin collagen, guided bone regeneration, in vivo collagen degradation, inflammatory reaction, micro‐MRI analysis,
- Publikační typ
- časopisecké články MeSH
Collagen membranes are widely used in tissue and bone engineering, including guided bone regeneration (GBR). For effective and uninterrupted bone healing, a GBR membrane must maintain its functionality for an initial critical period of 4 weeks. A novel carp collagen sponge has already shown promise as a wound coating and vascular graft coating, making it a candidate for GBR applications as well. To enhance the mechanical properties and longevity of GBR membranes, we modified the basic carp collagen membrane with combinations of l-lactide, ε-caprolactone, d,l-lactide, and glycolide in various molar ratios. While traditional methods rely on histological evaluation to assess the degradation pattern and therefore suitability of GBR membranes ex vivo, this study employed micro-MRI as an innovative, noninvasive approach to monitor the in vivo degradation of carp collagen membrane and its polymer-modified variants. Our findings demonstrated that micro-MRI is a reliable and effective method for visualizing collagen membrane degradation in vivo, up to scaffold disintegration. Among the variants tested, collagen GBR membrane coated with d,l-lactide and glycolide in a 50:50 M ratio emerged as the most suitable for GBR purposes. However, since this study was conducted in the subcutaneous tissue of a rat model, further research is required to determine the behavior of carp collagen GBR membrane variants on bony surfaces.
1st Faculty of Medicine Charles University Prague Czech Republic
Faculty of Medicine in Pilsen Charles University Pilsen Czech Republic
Institute of Pathology Charles University Prague Czech Republic
Zobrazit více v PubMed
Eldeeb A. E., Salah S., and Elkasabgy N. A., “Biomaterials for Tissue Engineering Applications and Current Updates in the Field: A Comprehensive Review,” AAPS PharmSciTech 23, no. 7 (2022): 267. PubMed PMC
Liu S., Yu J. M., Gan Y. C., et al., “Biomimetic Natural Biomaterials for Tissue Engineering and Regenerative Medicine: New Biosynthesis Methods, Recent Advances, and Emerging Applications,” Military Medical Research 10, no. 1 (2023): 16. PubMed PMC
Parenteau‐Bareil R., Gauvin R., and Berthod F., “Collagen‐Based Biomaterials for Tissue Engineering Applications,” Materials 3, no. 3 (2010): 1863–1887.
Abedi M., Shafiee M., Afshari F., Mohammadi H., and Ghasemi Y., “Collagen‐Based Medical Devices for Regenerative Medicine and Tissue Engineering,” Applied Biochemistry and Biotechnology 196, no. 8 (2024): 5563–5603. PubMed
Pal G. K. and Sures P. V., “Sustainable Valorisation of Seafood By‐Products: Recovery of Collagen and Development of Collagen‐Based Novel Functional Food Ingredients,” Innovative Food Science & Emerging Technologies 37 (2016): 201–215.
Mitas P., Grus T., Lambert L., et al., “The Influence of Purification of Carp Collagen Used in a Novel Composite Graft With Sandwich Construction of the Wall on Its Biological Properties and Graft Patency Rates ‐ PubMed,” Physiological Research 68, no. 4 (2019): 603–610. PubMed
Hartinger J. M., Lukáč P., Mlček M., et al., “Rifampin‐Releasing Triple‐Layer Cross‐Linked Fresh Water Fish Collagen Sponges as Wound Dressings,” BioMed Research International 2020 (2020): 3841861. PubMed PMC
Hartinger J. M., Lukáč P., Mitáš P., et al., “Vancomycin‐Releasing Cross‐Linked Collagen Sponges as Wound Dressings,” Bosnian Journal of Basic Medical Sciences 21, no. 1 (2021): 61–70. PubMed PMC
Bujda M. and Klima K., “Enhancing Guided Bone Regeneration With a Novel Carp Collagen Scaffold: Principles and Applications,” Journal of Functional Biomaterials 15, no. 6 (2024): 150. PubMed PMC
Moses O., Vitrial D., Aboodi G., et al., “Biodegradation of Three Different Collagen Membranes in the Rat Calvarium: A Comparative Study,” Journal of Periodontology 79, no. 5 (2008): 905–911. PubMed
Alauddin M. S., Abdul Hayei N. A., Sabarudin M. A., and Mat Baharin N. H., “Barrier Membrane in Regenerative Therapy: A Narrative Review,” Membranes 12, no. 5 (2022): 444. PubMed PMC
Grus T., Suchy T., Supova M., et al., “Sendvičová kolagenní pěna pro řízené uvolňování aktivních látek a způsob její přípravy (Sandwich and Composite Collagen Sponge for Controlled Release of Active Substances, and Method of Preparation Thereof,” P. Všeobecná fakultní nemocnice v Praze, Nové Město, CZ, v.v.i. Ústav struktury a mechaniky hornin AV ČR, Praha 8, Libeň, CZ, and P. České vysoké učení technické v Praze, Dejvice, CZ, Editors, 2021, https://patentimages.storage.googleapis.com/45/50/b0/22aa26de0034a1/CZ308862B6.pdf.
Ma B., Han J., Zhang S., et al., “Hydroxyapatite Nanobelt/Polylactic Acid Janus Membrane With Osteoinduction/Barrier Dual Functions for Precise Bone Defect Repair,” Acta Biomaterialia 71 (2018): 108–117. PubMed
Yang Z., Wu C., Shi H., et al., “Advances in Barrier Membranes for Guided Bone Regeneration Techniques,” Frontiers in Bioengineering and Biotechnology 10 (2022): 10. PubMed PMC
Resnik R. R., Misch's Contemporary Implant Dentistry, 4th ed. (Elsevier, 2021).
Gorrasi G. and Pantani R., “Hydrolysis and Biodegradation of Poly(Lactic Acid),” in Advances in Polymer Science (Springer, 2017), 119–151.
Shekhar N. and Mondal A., “Synthesis, Properties, Environmental Degradation, Processing, and Applications of Polylactic Acid (PLA): An Overview,” Polymer Bulletin 81 (2024): 11421–11457.
Toosi S., Naderi‐Meshkin H., Kalalinia F., et al., “Bone Defect Healing Is Induced by Collagen Sponge/Polyglycolic Acid,” Journal of Materials Science. Materials in Medicine 30, no. 3 (2019): 33. PubMed
Park J. H., Kang H. J., Kwon D. Y., et al., “Biodegradable Poly(Lactide‐Co‐Glycolide‐Co‐Epsilon‐Caprolactone) Block Copolymers—Evaluation as Drug Carriers for a Localized and Sustained Delivery System,” Journal of Materials Chemistry B 3, no. 41 (2015): 8143–8153. PubMed
Lukáč P., Hartinger J. M., Mlček M., et al., “A Novel Gentamicin‐Releasing Wound Dressing Prepared From Freshwater Fish
Schneider C. A., Rasband W. S., and Eliceiri K. W., “NIH Image to ImageJ: 25 Years of Image Analysis,” Nature Methods 9 (2012): 671–675. PubMed PMC
Carolin Lindner S. A., Stojanovic S., Najman S., Jung O., and Barbeck M., “In Vivo Biocompatibility Analysis of a Novel Barrier Membrane Based on Bovine Dermis‐Derived Collagen for Guided Bone Regeneration (GBR),” Membranes 12 (2022): 378. PubMed PMC
Wickham H., ggplot2: Elegant Graphics for Data Analysis (Springer‐Verlag, 2016).
Wickham H., Averick M., Bryan J., et al., “Welcome to the Tidyverse,” Journal of Open Source Software 4 (2019): 1686.
Lenth R. V., Banfai B., Bolker B., et al., “Obtain Estimated Marginal Means (EMMs) for Many Linear, Generalized Linear, and Mixed Models. Compute Contrasts or Linear Functions of EMMs, Trends, and Comparisons of Slopes. Plots and Other Displays. Least‐Squares Means Are Discussed, and the Term “Estimated Marginal Means” Is Suggested, in Searle, Speed, and Milliken (1980) Population Marginal Means in the Linear Model: An Alternative to Least Squares Means,” cited February12, 2025, https://CRAN.R‐project.org/package=emmeans.
Bartos M., Suchy T., and Foltan R., “Note on the Use of Different Approaches to Determine the Pore Sizes of Tissue Engineering Scaffolds: What Do We Measure?,” Biomedical Engineering Online 17, no. 1 (2018): 110. PubMed PMC
Limmahakhun S., Oloyede A., Sitthiseripratip K., Xiao Y., and Yan C., “3D‐Printed Cellular Structures for Bone Biomimetic Implants,” Additive Manufacturing 15 (2017): 93–101.
Schulze F., Lang A., Schoon J., Wassilew G. I., and Reichert J., “Scaffold Guided Bone Regeneration for the Treatment of Large Segmental Defects in Long Bones,” Biomedicine 11, no. 2 (2023): 325. PubMed PMC
Felix Lanao R. P., Jonker A. M., Wolke J. G. C., Jansen J. A., van Hest J. C. M., and Leeuwenburgh S. C. G., “Physicochemical Properties and Applications of Poly(Lactic‐Co‐Glycolic Acid) for Use in Bone Regeneration,” Tissue Engineering. Part B, Reviews 19, no. 4 (2013): 380–390. PubMed PMC
Ronkko S., Kaarniranta K., Kalesnykas G., and Uusitalo H., “Biocompatibility of Different Poly(Lactide‐Coglycolide) Polymers Implanted Into the Subconjunctival Space in Rats,” Ophthalmic Research 46, no. 2 (2011): 55–65. PubMed
Piskin E., “Biodegradable Polymers as Biomaterials,” Journal of Biomaterials Science. Polymer Edition 6, no. 9 (1995): 775–795. PubMed
Sharp J. S., Forrest J. A., and Jones R. A. L., “Swelling of Poly(Dl‐Lactide) and Polylactide‐Co‐Glycolide in Humid Environments,” Macromolecules 34, no. 25 (2001): 8752–8760.
Wu Y., Wang T. w., Li M., and Gao H., “Hyperbranched Poly (Amine‐Ester)‐Poly (Lactide‐Co‐Glycolide) Copolymer and Their Nanoparticles as Paclitaxel Delivery System,” Polymers for Advanced Technologies 22, no. 12 (2010): 2325–2335.
Noehren B., Hardy P. A., Andersen A., et al., “T1rho Imaging as a Non‐Invasive Assessment of Collagen Remodelling and Organization in Human Skeletal Muscle After Ligamentous Injury,” Journal of Physiology 599, no. 23 (2021): 5229–5242. PubMed PMC
Baird D. K., Kincaid S. A., Hathcock J. T., Rumph P. F., Kammerman J., and Visco D. M., “Effect of Hydration on Signal Intensity of Gelatin Phantoms Using Low‐Field Magnetic Resonance Imaging: Possible Application in Osteoarthritis,” Veterinary Radiology & Ultrasound 40, no. 1 (1999): 27–35. PubMed
Ignatius A. A. and Claes L. E., “In Vitro Biocompatibility of Bioresorbable Polymers: Poly(L, DL‐Lactide) and Poly(L‐Lactide‐Co‐Glycolide),” Biomaterials 17, no. 8 (1996): 831–839. PubMed
Taylor M. S., Daniels A. U., Andriano K. P., and Heller J., “Six Bioabsorbable Polymers: In Vitro Acute Toxicity of Accumulated Degradation Products,” Journal of Applied Biomaterials 5, no. 2 (1994): 151–157. PubMed
Callaghan N. I., Rempe C. N., Froom Z. S. C. S., Medd K. T., and Davenport Huyer L., “Cell Dynamics and Metabolism of the Foreign Body Response: Characterizing Host‐Biomaterial Interactions for Next‐Generation Medical Implant Biocompatibility,” Materials Advances 5 (2024): 6719–6738.
Rothamel D., Schwarz F., Sager M., Herten M., Sculean A., and Becker J., “Biodegradation of Differently Cross‐Linked Collagen Membranes: An Experimental Study in the Rat,” Clinical Oral Implants Research 16, no. 3 (2005): 369–378. PubMed
Benayahu D., Pomeraniec L., Shemesh S., et al., “Biocompatibility of a Marine Collagen‐Based Scaffold In Vitro and In Vivo,” Marine Drugs 18, no. 8 (2020): 420. PubMed PMC