Rifampin-Releasing Triple-Layer Cross-Linked Fresh Water Fish Collagen Sponges as Wound Dressings
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33123572
PubMed Central
PMC7586155
DOI
10.1155/2020/3841861
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky farmakologie MeSH
- biofilmy účinky léků MeSH
- hojení ran účinky léků MeSH
- infekce chirurgické rány farmakoterapie MeSH
- kolagen farmakologie MeSH
- krysa rodu Rattus MeSH
- methicilin rezistentní Staphylococcus aureus účinky léků MeSH
- obvazy MeSH
- potkani Wistar MeSH
- rifampin farmakologie MeSH
- ryby metabolismus MeSH
- sladká voda MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- kolagen MeSH
- rifampin MeSH
OBJECTIVES: Surgical wounds resulting from biofilm-producing microorganisms represent a major healthcare problem that requires new and innovative treatment methods. Rifampin is one of a small number of antibiotics that is able to penetrate such biofilms, and its local administration has the potential to serve as an ideal surgical site infection protection and/or treatment agent. This paper presents two types (homogeneous and sandwich structured) of rifampin-releasing carbodiimide-cross-linked fresh water fish collagen wound dressings. METHODS: The dressings were prepared by means of the double-lyophilization method and sterilized via gamma irradiation so as to allow for testing in a form that is able to serve for direct clinical use. The mechanical properties were studied via the uniaxial tensile testing method. The in vivo rifampin-release properties were tested by means of a series of incubations in phosphate-buffered saline. The microbiological activity was tested against methicillin-resistant staphylococcus aureus (MRSA) employing disc diffusion tests, and the in vivo pharmacokinetics was tested using a rat model. A histological examination was conducted for the study of the biocompatibility of the dressings. RESULTS: The sandwich-structured dressing demonstrated better mechanical properties due to its exhibiting ability to bear a higher load than the homogeneous sponges, a property that was further improved via the addition of rifampin. The sponges retarded the release of rifampin in vitro, which translated into at least 22 hours of rifampin release in the rat model. This was significantly longer than was achieved via the administration of a subcutaneous rifampin solution. Microbiological activity was proven by the results of the disc diffusion tests. Both sponges exhibited excellent biocompatibility as the cells penetrated into the scaffold, and virtually no signs of local irritation were observed. CONCLUSIONS: We present a novel rifampin-releasing sandwich-structured fresh water fish collagen wound dressing that has the potential to serve as an ideal surgical site infection protection and/or treatment agent.
Zobrazit více v PubMed
Kirkland K. B., Briggs J. P., Trivette S. L., Wilkinson W. E., Sexton D. J. The impact of surgical-site infections in the 1990s: attributable mortality, excess length of hospitalization, and extra costs. Infection Control and Hospital Epidemiology. 1999;20(11):725–730. doi: 10.1086/501572. PubMed DOI
Gruessner U., Clemens M., Pahlplatz P. V., et al. Improvement of perineal wound healing by local administration of gentamicin-impregnated collagen fleeces after abdominoperineal excision of rectal cancer. American Journal of Surgery. 2001;182(5):502–509. doi: 10.1016/s0002-9610(01)00762-0. PubMed DOI
Xiong L., Pan Q., Jin G., Xu Y., Hirche C. Topical intrawound application of vancomycin powder in addition to intravenous administration of antibiotics: a meta-analysis on the deep infection after spinal surgeries. Orthopaedics & Traumatology, Surgery & Research. 2014;100(7):785–789. doi: 10.1016/j.otsr.2014.05.022. PubMed DOI
Hamman B. L., Stout L. Y., Theologes T. T., Sass D. M., da Graca B., Filardo G. Relation between topical application of platelet-rich plasma and vancomycin and severe deep sternal wound infections after a first median sternotomy. The American Journal of Cardiology. 2014;113(8):1415–1419. doi: 10.1016/j.amjcard.2013.12.046. PubMed DOI
Kahramanca Ş., Kaya O., Azılı C., Celep B., Gökce E., Küçükpınar T. Does topical rifampicin reduce the risk of surgical field infection in hernia repair? Ulusal Cerrahi Dergisi. 2013;29(2):54–58. doi: 10.5152/UCD.2013.35. PubMed DOI PMC
Khanlari B., Elzi L., Estermann L., et al. A rifampicin-containing antibiotic treatment improves outcome of staphylococcal deep sternal wound infections. The Journal of Antimicrobial Chemotherapy. 2010;65(8):1799–1806. doi: 10.1093/jac/dkq182. PubMed DOI
Zimmerli W., Widmer A. F., Blatter M., Frei R., Ochsner P. E. Role of rifampin for treatment of orthopedic implant–related staphylococcal infections: a randomized controlled trial. JAMA. 1998;279(19):1537–1541. doi: 10.1001/jama.279.19.1537. PubMed DOI
Edmiston C. E., McBain A. J., Roberts C., Leaper D. Clinical and microbiological aspects of biofilm-associated surgical site infections. Advances in Experimental Medicine and Biology. 2015;830:47–67. doi: 10.1007/978-3-319-11038-7_3. PubMed DOI
Shiels S. M., Tennent D. J., Wenke J. C. Topical rifampin powder for orthopedic trauma part I: rifampin powder reduces recalcitrant infection in a delayed treatment musculoskeletal trauma model. Journal of Orthopaedic Research. 2018;36(12):3136–3141. doi: 10.1002/jor.24055. PubMed DOI
Zimmerli W., Sendi P. Orthopaedic biofilm infections. APMIS. 2017;125(4):353–364. doi: 10.1111/apm.12687. PubMed DOI
Ruszczak Z., Friess W. Collagen as a carrier for on-site delivery of antibacterial drugs. Advanced Drug Delivery Reviews. 2003;55(12):1679–1698. doi: 10.1016/j.addr.2003.08.007. PubMed DOI
Chattopadhyay S., Raines R. T. Review collagen-based biomaterials for wound healing. Biopolymers. 2014;101(8):821–833. doi: 10.1002/bip.22486. PubMed DOI PMC
Grzybowski J., Kolodziej W., Trafny E. A., Struzyna J. A new anti-infective collagen dressing containing antibiotics. Journal of Biomedical Materials Research. 1997;36(2):163–166. doi: 10.1002/(sici)1097-4636(199708)36:2<163::aid-jbm4>3.0.co;2-i. PubMed DOI
Parker S. J., Brown D., Hill P. F., Watkins P. E. Fibrinogen-impregnated collagen as a combined haemostatic agent and antibiotic delivery system in a porcine model of splenic trauma. The European Journal of Surgery. 1999;165(6):609–614. doi: 10.1080/110241599750006550. PubMed DOI
Charriere G., Bejot M., Schnitzler L., Ville G., Hartmann D. J. Reactions to a bovine collagen implant. Clinical and immunologic study in 705 patients. Journal of the American Academy of Dermatology. 1989;21(6):1203–1208. doi: 10.1016/s0190-9622(89)70330-3. PubMed DOI
Pati F., Datta P., Adhikari B., Dhara S., Ghosh K., Das Mohapatra P. K. Collagen scaffolds derived from fresh water fish origin and their biocompatibility. Journal of Biomedical Materials Research. Part A. 2012;100(4):1068–1079. doi: 10.1002/jbm.a.33280. PubMed DOI
Bae I., Osatomi K., Yoshida A., Osako K., Yamaguchi A., Hara K. Biochemical properties of acid-soluble collagens extracted from the skins of underutilised fishes. Food Chemistry. 2008;108(1):49–54. doi: 10.1016/j.foodchem.2007.10.039. DOI
Yamada S., Yamamoto K., Ikeda T., Yanagiguchi K., Hayashi Y. Potency of fish collagen as a scaffold for regenerative medicine. BioMed Research International. 2014;2014:8. doi: 10.1155/2014/302932.302932 PubMed DOI PMC
Suchý T., Šupová M., Klapková E., et al. The release kinetics, antimicrobial activity and cytocompatibility of differently prepared collagen/hydroxyapatite/vancomycin layers: microstructure vs. nanostructure. European Journal of Pharmaceutical Sciences. 2017;100:219–229. doi: 10.1016/j.ejps.2017.01.032. PubMed DOI
Versteegden L. R. M., ter Meer M., Lomme R. M. L. M., et al. Self-expandable tubular collagen implants. Journal of Tissue Engineering and Regenerative Medicine. 2018;12(6):1494–1498. doi: 10.1002/term.2685. PubMed DOI PMC
Lukáč P., Hartinger J. M., Mlček M., et al. A novel gentamicin-releasing wound dressing prepared from freshwater fishCyprinus carpiocollagen cross-linked with carbodiimide. Journal of Bioactive and Compatible Polymers. 2019;34(3):246–262. doi: 10.1177/0883911519835143. DOI
Hartinger J. M., Lukáč P., Mitáš P., et al. Vancomycin-releasing cross-linked collagen sponges as wound dressings. Bosnian Journal of Basic Medical Sciences. 2019 doi: 10.17305/bjbms.2019.4496. PubMed DOI PMC
Suchý T., Šupová M., Sauerová P., et al. The effects of different cross-linking conditions on collagen-based nanocomposite scaffolds-an in vitro evaluation using mesenchymal stem cells. Biomedical Materials. 2015;10(6, article 065008) doi: 10.1088/1748-6041/10/6/065008. PubMed DOI
Pearson S. D., Trissel L. A. Stability and compatibility of minocycline hydrochloride and rifampin in intravenous solutions at various temperatures. American Journal of Hospital Pharmacy. 1993;50(4):698–702. PubMed
Boleslavská T., Světlík S., Žvátora P., et al. Preclinical evaluation of new formulation concepts for abiraterone acetate bioavailability enhancement based on the inhibition of pH-induced precipitation. European Journal of Pharmaceutics and Biopharmaceutics. 2020;151:81–90. doi: 10.1016/j.ejpb.2020.04.005. PubMed DOI
Davis D. R., Yeary R. A., Lee K. Activated charcoal decreases plasma bilirubin levels in the hyperbilirubinemic rat. Pediatric Research. 1983;17(3):208–209. doi: 10.1203/00006450-198303000-00008. PubMed DOI
Lambert L., Novakova M., Lukac P., et al. Evaluation of the immunogenicity of a vascular graft covered with collagen derived from the European carp (Cyprinus carpio) and bovine collagen. BioMed Research International. 2019;2019:8. doi: 10.1155/2019/5301405.5301405 PubMed DOI PMC
Herten M., Idelevich E. A., Sielker S., et al. Vascular graft impregnation with antibiotics: the influence of high concentrations of rifampin, vancomycin, daptomycin, and bacteriophage endolysin HY-133 on viability of vascular cells. Medical Science Monitor Basic Research. 2017;23:250–257. doi: 10.12659/msmbr.902879. PubMed DOI PMC
Shiels S. M., Tennent D. J., Lofgren A. L., Wenke J. C. Topical rifampin powder for orthopaedic trauma part II: topical rifampin allows for spontaneous bone healing in sterile and contaminated wounds. Journal of Orthopaedic Research. 2018;36(12):3142–3150. doi: 10.1002/jor.24155. PubMed DOI
Enhancing Guided Bone Regeneration with a Novel Carp Collagen Scaffold: Principles and Applications