Functional characterization of the idtF and idtP genes in the Claviceps paspali indole diterpene biosynthetic gene cluster
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 GM114418
NIGMS NIH HHS - United States
NIGMS 5R01GM114418
U.S. National Institutes of Health
EFOP-3.6.1-16-2016-00022
European Union and the European Social Fund
Hatch project 1020652
Institut USDA National Institute of Food and Agriculture
PubMed
32077051
PubMed Central
PMC7244603
DOI
10.1007/s12223-020-00777-6
PII: 10.1007/s12223-020-00777-6
Knihovny.cz E-zdroje
- MeSH
- biosyntetické dráhy genetika MeSH
- Claviceps enzymologie genetika MeSH
- diterpeny metabolismus MeSH
- geny hub * MeSH
- indoly metabolismus MeSH
- multigenová rodina * MeSH
- oxygenasy se smíšenou funkcí genetika MeSH
- prenyltransferáza genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- diterpeny MeSH
- indoly MeSH
- oxygenasy se smíšenou funkcí MeSH
- prenyltransferáza MeSH
Claviceps paspali is used in the pharmaceutical industry for the production of ergot alkaloids. This fungus also biosynthesizes paspalitrems, indole diterpene (IDT) mycotoxins that cause significant economic losses in agriculture and represent safety concerns for ergot alkaloid manufacture. Here, we use Agrobacterium-mediated transformation to replace the idtP and the idtF genes in the IDT biosynthetic gene cluster of C. paspali with a selectable marker gene. We show that the ΔidtP knockout mutant produces paspaline, the first IDT intermediate of the pathway. The ΔidtF strain produces unprenylated IDTs such as paspalinine and paspaline. These experiments validate the function of idtP as the gene encoding the cytochrome P450 monooxygenase that oxidizes and demethylates paspaline to produce 13-desoxypaxilline, and that of idtF as the gene that encodes the α-prenyltransferase that prenylates paspalinine at the C20 or the C21 positions to yield paspalitrems A and C, respectively. In addition, we also show that axenic cultures of the wild type, the ΔidtP and the ΔidtF mutant C. paspali strains fail to produce an assembly of IDTs that are present in C. paspali-Paspalum spp. associations.
Zobrazit více v PubMed
Arcamone F, Bonino C, Chain EB, Ferretti A, Pennella P, Tonolo A, Vero L. Production of lysergic acid derivatives by a strain of Claviceps paspali Stevens and Hall in submerged culture. Nature. 1960;187:238–239. doi: 10.1038/187238a0. PubMed DOI
Cawdell-Smith A, Scrivener C, Bryden W. Staggers in horses grazing paspalum infected with Claviceps paspali. Aust Vet J. 2010;88:393–395. doi: 10.1111/j.1751-0813.2010.00624.x. PubMed DOI
Cole RJ, Dorner JW, Lansden JA, Cox RH, Pape C, Cunfer B, Nicholson SS, Bedell DM. Paspalum staggers: isolation and identification of tremorgenic metabolites from sclerotia of Claviceps paspali. J Agric Food Chem. 1977;25:1197–1201. doi: 10.1021/jf60213a061. PubMed DOI
Gallagher RT, Wilson BJ. Aflatrem, the tremorgenic mycotoxin from Aspergillus flavus. Mycopathologia. 1979;66:183–185. doi: 10.1007/BF00683969. PubMed DOI
Gritz L, Davies J. Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae. Gene. 1983;25:179–188. doi: 10.1016/0378-1119(83)90223-8. PubMed DOI
Kozák L, Szilágyi Z, Vágó B, Kakuk A, Tóth L, Molnár I, Pócsi I. Inactivation of the indole-diterpene biosynthetic gene cluster of Claviceps paspali by Agrobacterium-mediated gene replacement. Appl Microbiol Biotechnol. 2018;102:3255–3266. doi: 10.1007/s00253-018-8807-x. PubMed DOI PMC
Kozák L, Szilágyi Z, Tóth L, Pócsi I, Molnár I. Tremorgenic and neurotoxic paspaline-derived indole-diterpenes: biosynthetic diversity, threats and applications. Appl Microbiol Biotechnol. 2019;103:1599–1616. doi: 10.1007/s00253-018-09594-x. PubMed DOI PMC
Liu C, Minami A, Noike M, Toshima H, Oikawa H, Dairi T. Regiospecificities and prenylation mode specificities of the fungal indole diterpene prenyltransferases AtmD and PaxD. Appl Environ Microbiol. 2013;79:7298–7304. doi: 10.1128/AEM.02496-13. PubMed DOI PMC
Liu C, Tagami K, Minami A, Matsumoto T, Frisvad JC, Suzuki H, Ishikawa J, Gomi K, Oikawa H. Reconstitution of biosynthetic machinery for the synthesis of the highly elaborated indole diterpene penitrem. Angew Chem Int Ed. 2015;54:5748–5752. doi: 10.1002/anie.201501072. PubMed DOI
McMillan LK, Carr RL, Young CA, Astin JW, Lowe RGT, Parker EJ, Jameson GB, Finch SC, Miles CO, McManus OB, Schmalhofer WA, Garcia ML, Kaczorowski GJ, Goetz M, Tkacz JS, Scott B. Molecular analysis of two cytochrome P450 monooxygenase genes required for paxilline biosynthesis in Penicillium paxilli, and effects of paxilline intermediates on mammalian maxi-K ion channels. Mol Gen Genomics. 2003;270:9–23. doi: 10.1007/s00438-003-0887-2. PubMed DOI
Motoyama T, Hayashi T, Hirota H, Ueki M, Osada H. Terpendole E, a kinesin Eg5 inhibitor, is a key biosynthetic intermediate of indole-diterpenes in the producing fungus Chaunopycnis alba. Chem Biol. 2012;19:1611–1619. doi: 10.1016/j.chembiol.2012.10.010. PubMed DOI
Moyano M, Molina A, Lora A, Mendez J, Rueda A. Tremorgenic mycotoxicosis caused by Paspalum paspaloides (Michx.) Scribner infected by Claviceps paspali: a case report. Veterinární Medicína. 2010;55:336–338. doi: 10.17221/2964-VETMED. DOI
Nicholson MJ, Koulman A, Monahan BJ, Pritchard BL, Payne GA, Scott B. Identification of two aflatrem biosynthesis gene loci in Aspergillus flavus and metabolic engineering of Penicillium paxilli to elucidate their function. Appl Environ Microbiol. 2009;75:7469–7481. doi: 10.1128/AEM.02146-08. PubMed DOI PMC
Nicholson M, Eaton C, Stärkel C, Tapper B, Cox M, Scott B. Molecular cloning and functional analysis of gene clusters for the biosynthesis of indole-diterpenes in Penicillium crustosum and P. janthinellum. Toxins. 2015;7:2701–2722. doi: 10.3390/toxins7082701. PubMed DOI PMC
Oikawa H, Minami A, Liu C. Total biosynthesis of fungal indole diterpenes using cell factories. Heterocycles. 2016;92:397–421. doi: 10.3987/REV-15-830. DOI
Saikia S, Parker EJ, Koulman A, Scott B. Defining paxilline biosynthesis in Penicillium paxilli: functional characterization of two cytochrome P450 monooxygenases. J Biol Chem. 2007;282:16829–16837. doi: 10.1074/jbc.M701626200. PubMed DOI
Saikia S, Takemoto D, Tapper BA, Lane GA, Fraser K, Scott B. Functional analysis of an indole-diterpene gene cluster for lolitrem B biosynthesis in the grass endosymbiont Epichloë festucae. FEBS Lett. 2012;586:2563–2569. doi: 10.1016/j.febslet.2012.06.035. PubMed DOI
Tarui Y, Chinen T, Nagumo Y, Motoyama T, Hayashi T, Hirota H, Muroi M, Ishii Y, Kondo H, Osada H, Usui T. Terpendole E and its derivative inhibit STLC- and GSK-1-resistant Eg5. ChemBioChem. 2014;15:934–938. doi: 10.1002/cbic.201300808. PubMed DOI
Tudzynski P, Correia T, Keller U. Biotechnology and genetics of ergot alkaloids. Appl Microbiol Biotechnol. 2001;57:593–605. doi: 10.1007/s002530100801. PubMed DOI
Uhlig S, Egge-Jacobsen W, Vrålstad T, Miles CO. Indole-diterpenoid profiles of Claviceps paspali and Claviceps purpurea from high-resolution Fourier transform Orbitrap mass spectrometry. Rapid Commun Mass Spectrom. 2014;28:1621–1634. doi: 10.1002/rcm.6938. PubMed DOI
Young CA, Bryant MK, Christensen MJ, Tapper BA, Bryan GT, Scott B. Molecular cloning and genetic analysis of a symbiosis-expressed gene cluster for lolitrem biosynthesis from a mutualistic endophyte of perennial ryegrass. Mol Gen Genomics. 2005;274:13–29. doi: 10.1007/s00438-005-1130-0. PubMed DOI
Young CA, Felitti S, Shields K, Spangenberg G, Johnson RD, Bryan GT, Saikia S, Scott B. A complex gene cluster for indole-diterpene biosynthesis in the grass endophyte Neotyphodium lolii. Fungal Genet Biol. 2006;43:679–693. doi: 10.1016/j.fgb.2006.04.004. PubMed DOI
Zhang A, Lu P, Dahl-Roshak A, Paress P, Kennedy S, Tkacz J, An Z. Efficient disruption of a polyketide synthase gene ( pks1) required for melanin synthesis through Agrobacterium-mediated transformation of Glarea lozoyensis. Mol Gen Genomics. 2003;268:645–655. doi: 10.1007/s00438-002-0780-4. PubMed DOI