Novel Hydrogel Material with Tailored Internal Architecture Modified by "Bio" Amphiphilic Components-Design and Analysis by a Physico-Chemical Approach

. 2022 Feb 13 ; 8 (2) : . [epub] 20220213

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35200496

Grantová podpora
Reg. No. CZ.02.2.69/0.0/0.0/19_073/0016948 Quality Internal Grants of BUT (KInG BUT), Operational Program: Research, Development and Education

Nowadays, hydrogels are found in many applications ranging from the industrial to the biological (e.g., tissue engineering, drug delivery systems, cosmetics, water treatment, and many more). According to the specific needs of individual applications, it is necessary to be able to modify the properties of hydrogel materials, particularly the transport and mechanical properties related to their structure, which are crucial for the potential use of the hydrogels in modern material engineering. Therefore, the possibility of preparing hydrogel materials with tunable properties is a very real topic and is still being researched. A simple way to modify these properties is to alter the internal structure by adding another component. The addition of natural substances is convenient due to their biocompatibility and the possibility of biodegradation. Therefore, this work focused on hydrogels modified by a substance that is naturally found in the tissues of our body, namely lecithin. Hydrogels were prepared by different types of crosslinking (physical, ionic, and chemical). Their mechanical properties were monitored and these investigations were supplemented by drying and rehydration measurements, and supported by the morphological characterization of xerogels. With the addition of natural lecithin, it is possible to modify crucial properties of hydrogels such as porosity and mechanical properties, which will play a role in the final applications.

Zobrazit více v PubMed

Aswathy S., Narendrakumar U., Manjubala I. Commercial hydrogels for biomedical applications. Heliyon. 2020;6:e03719. doi: 10.1016/j.heliyon.2020.e03719. PubMed DOI PMC

Kular J.K., Basu S., Sharma R.I. The extracellular matrix: Structure, composition, age-related differences, tools for analysis and applications for tissue engineering. J. Tissue Eng. 2014;5:2041731414557112. doi: 10.1177/2041731414557112. PubMed DOI PMC

Geckil H., Xu F., Zhang X., Moon S., Demirci U. Engineering hydrogels as extracellular matrix mimics. Nanomedicine. 2010;5:469–484. doi: 10.2217/nnm.10.12. PubMed DOI PMC

Gadjanski I. Recent advances on gradient hydrogels in biomimetic cartilage tissue engineering. F1000Research. 2017;6:2158. doi: 10.12688/f1000research.12391.1. PubMed DOI PMC

Pekař M. Hydrogels with Micellar Hydrophobic (Nano)Domains. Front. Mater. 2015;1:35. doi: 10.3389/fmats.2014.00035. DOI

Zhang Y., Chen Q., Dai Z., Dai Y., Xia F., Zhang X. Nanocomposite adhesive hydrogels: From design to application. J. Mater. Chem. B. 2021;9:585–593. doi: 10.1039/D0TB02000A. PubMed DOI

Tuncaboylu D.C., Argun A., Algi M.P., Okay O. Autonomic self-healing in covalently crosslinked hydrogels containing hydrophobic domains. Polymer. 2013;54:6381–6388. doi: 10.1016/j.polymer.2013.09.051. DOI

Gu S., Duan L., Ren X., Gao G.H. Robust, tough and anti-fatigue cationic latex composite hydrogels based on dual physically cross-linked networks. J. Colloid Interface Sci. 2017;492:119–126. doi: 10.1016/j.jcis.2017.01.002. PubMed DOI

Li A., Jia Y., Sun S., Xu Y., Minsky B.B., Stuart M.A.C., Cölfen H., von Klitzing R., Guo X. Mineral-Enhanced Polyacrylic Acid Hydrogel as an Oyster-Inspired Organic–Inorganic Hybrid Adhesive. ACS Appl. Mater. Interfaces. 2018;10:10471–10479. doi: 10.1021/acsami.8b01082. PubMed DOI

Cui C., Wu T., Gao F., Fan C., Xu Z., Wang H., Liu B., Liu W. An Autolytic High Strength Instant Adhesive Hydrogel for Emergency Self-Rescue. Adv. Funct. Mater. 2018;28:1804925. doi: 10.1002/adfm.201804925. DOI

Fan X., Wang S., Fang Y., Li P., Zhou W., Wang Z., Chen M., Liu H. Tough polyacrylamide-tannic acid-kaolin adhesive hydrogels for quick hemostatic application. Mater. Sci. Eng. C. 2020;109:110649. doi: 10.1016/j.msec.2020.110649. PubMed DOI

Rajabi N., Kharaziha M., Emadi R., Zarrabi A., Mokhtari H., Salehi S. An adhesive and injectable nanocomposite hydrogel of thiolated gelatin/gelatin methacrylate/Laponite® as a potential surgical sealant. J. Colloid Interface Sci. 2020;564:155–169. doi: 10.1016/j.jcis.2019.12.048. PubMed DOI

Arno M.C., Inam M., Weems A.C., Li Z., Binch A.L.A., Platt C.I., Richardson S.M., Hoyland J.A., Dove A.P., O’Reilly R.K. Exploiting the role of nanoparticle shape in enhancing hydrogel adhesive and mechanical properties. Nat. Commun. 2020;11:1420. doi: 10.1038/s41467-020-15206-y. PubMed DOI PMC

Zhang H., Hao R., Ren X., Yu L., Yang H., Yu H. PEG/lecithin–liquid-crystalline composite hydrogels for quasi-zero-order combined release of hydrophilic and lipophilic drugs. RSC Adv. 2013;3:22927–22930. doi: 10.1039/c3ra44080j. DOI

Shchipunov Y.A. Lecithin. In: Somasundaran P., editor. Encyclopedia of Surface and Colloid Science. 3rd ed. Volume 3. CRC Press; Boca Raton, FL, USA: 2015. pp. 3674–3693.

Elnaggar Y.S., El-Refaie W.M., El-Massik M.A., Abdallah O.Y. Lecithin-based nanostructured gels for skin delivery: An update on state of art and recent applications. J. Control. Release. 2014;180:10–24. doi: 10.1016/j.jconrel.2014.02.004. PubMed DOI

Thompson B.R., Zarket B.C., Lauten E.H., Amin S., Muthukrishnan S., Raghavan S.R. Liposomes Entrapped in Biopolymer Hydrogels Can Spontaneously Release into the External Solution. Langmuir. 2020;36:7268–7276. doi: 10.1021/acs.langmuir.0c00596. PubMed DOI

Li D., An X., Mu Y. A liposomal hydrogel with enzyme triggered release for infected wound. Chem. Phys. Lipids. 2019;223:104783. doi: 10.1016/j.chemphyslip.2019.104783. PubMed DOI

Talaat S.M., Elnaggar Y.S.R., Abdalla O.Y. Lecithin Microemulsion Lipogels Versus Conventional Gels for Skin Targeting of Terconazole: In Vitro, Ex Vivo, and In Vivo Investigation. AAPS PharmSciTech. 2019;20:161. doi: 10.1208/s12249-019-1374-3. PubMed DOI

Maitra J., Shukla V.K. Cross-linking in Hydrogels—A Review. Am. J. Polym. Sci. 2014;4:25–31. doi: 10.5923/j.ajps.20140402.01. DOI

Trudicova M., Smilek J., Kalina M., Smilkova M., Adamkova K., Hrubanova K., Krzyzanek V., Sedlacek P. Multiscale Experimental Evaluation of Agarose-Based Semi-Interpenetrating Polymer Network Hydrogels as Materials with Tunable Rheological and Transport Performance. Polymers. 2020;12:2561. doi: 10.3390/polym12112561. PubMed DOI PMC

Kuo C.K., Ma P.X. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials. 2001;22:511–521. doi: 10.1016/S0142-9612(00)00201-5. PubMed DOI

Garnica-Palafox I.M., Sánchez-Arévalo F.M., Velasquillo C., García-Carvajal Z., Garcia-Lopez J., Ortega-Sánchez C., Ibarra C., Luna-Barcenas G., Solís-Arrieta L. Mechanical and structural response of a hybrid hydrogel based on chitosan and poly(vinyl alcohol) cross-linked with epichlorohydrin for potential use in tissue engineering. J. Biomater. Sci. Polym. Ed. 2014;25:32–50. doi: 10.1080/09205063.2013.833441. PubMed DOI

Mendes A.C.L., Shekarforoush E., Engwer C., Beeren S., Gorzelanny C., Goycoolea F.M., Chronakis I.S. Co-assembly of chitosan and phospholipids into hybrid hydrogels. Pure Appl. Chem. 2016;88:905–916. doi: 10.1515/pac-2016-0708. DOI

Smilek J., Jarábková S., Velcer T., Pekař M. Compositional and Temperature Effects on the Rheological Properties of Polyelectrolyte–Surfactant Hydrogels. Polymers. 2019;11:927. doi: 10.3390/polym11050927. PubMed DOI PMC

Mourycová J., Datta K.K.R., Procházková A., Plotěná M., Enev V., Smilek J., Másilko J., Pekař M. Facile synthesis and rheological characterization of nanocomposite hyaluronan-organoclay hydrogels. Int. J. Biol. Macromol. 2018;111:680–684. doi: 10.1016/j.ijbiomac.2018.01.068. PubMed DOI

Derkach S.R., Ilyin S.O., Maklakova A.A., Kulichikhin V.G., Malkin A.Y. The rheology of gelatin hydrogels modified by κ-carrageenan. LWT-Food Sci. Technol. 2015;63:612–619. doi: 10.1016/j.lwt.2015.03.024. DOI

López-Marcial G.R., Zeng A.Y., Osuna C., Dennis J., García J.M., O’Connell G.D. Agarose-Based Hydrogels as Suitable Bioprinting Materials for Tissue Engineering. ACS Biomater. Sci. Eng. 2018;4:3610–3616. doi: 10.1021/acsbiomaterials.8b00903. PubMed DOI

Gila-Vilchez C., Bonhome-Espinosa A.B., Kuzhir P., Zubarev A., Duran J.D.G., Lopez-Lopez M.T. Rheology of magnetic alginate hydrogels. J. Rheol. 2018;62:1083–1096. doi: 10.1122/1.5028137. DOI

Gradzielski M., Hoffmann I. Polyelectrolyte-surfactant complexes (PESCs) composed of oppositely charged components. Curr. Opin. Colloid Interface Sci. 2018;35:124–141. doi: 10.1016/j.cocis.2018.01.017. DOI

Pescosolido L., Feruglio L., Farra R., Fiorentino S., Colombo I., Coviello T., Matricardi P., Hennink W.E., Vermonden T., Grassi M. Mesh size distribution determination of interpenetrating polymer network hydrogels. Soft Matter. 2012;8:7708–7715. doi: 10.1039/c2sm25677k. DOI

Flory P.J. Principles of Polymer Chemistry. Cornell University Press; New York, NY, USA: 1953.

Raghuwanshi V.S., Garnier G. Characterisation of hydrogels: Linking the nano to the microscale. Adv. Colloid Interface Sci. 2019;274:102044. doi: 10.1016/j.cis.2019.102044. PubMed DOI

Suchý T., Šupová M., Bartoš M., Sedláček R., Piola M., Soncini M., Fiore G.B., Sauerová P., Kalbáčová M.H. Dry versus hydrated collagen scaffolds: Are dry states representative of hydrated states? J. Mater. Sci. Mater. Med. 2018;29:20. doi: 10.1007/s10856-017-6024-2. PubMed DOI

Muthulakshmi L., Pavithra U., Sivaranjani V., Balasubramanian N., Sakthivel K.M., Pruncu C.I. A novel Ag/carrageenan–gelatin hybrid hydrogel nanocomposite and its biological applications: Preparation and characterization. J. Mech. Behav. Biomed. Mater. 2021;115:104257. doi: 10.1016/j.jmbbm.2020.104257. PubMed DOI

Marmorat C., Arinstein A., Koifman N., Talmon Y., Zussman E., Rafailovich M. Cryo-Imaging of Hydrogels Supermolecular Structure. Sci. Rep. 2016;6:25495. doi: 10.1038/srep25495. PubMed DOI PMC

Kaberova Z., Karpushkin E., Nevoralová M., Vetrík M., Šlouf M., Dušková-Smrčková M. Microscopic Structure of Swollen Hydrogels by Scanning Electron and Light Microscopies: Artifacts and Reality. Polymers. 2020;12:578. doi: 10.3390/polym12030578. PubMed DOI PMC

Bhagat S.D., Kim Y.-H., Yi G., Ahn Y.-S., Yeo J.-G., Choi Y.-T. Mesoporous SiO2 powders with high specific surface area by microwave drying of hydrogels: A facile synthesis. Microporous Mesoporous Mater. 2008;108:333–339. doi: 10.1016/j.micromeso.2007.03.026. DOI

Weber J., Bergström L. Mesoporous Hydrogels: Revealing Reversible Porosity by Cryoporometry, X-ray Scattering, and Gas Adsorption. Langmuir. 2010;26:10158–10164. doi: 10.1021/la100290j. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...