Novel Hydrogel Material with Tailored Internal Architecture Modified by "Bio" Amphiphilic Components-Design and Analysis by a Physico-Chemical Approach
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Reg. No. CZ.02.2.69/0.0/0.0/19_073/0016948
Quality Internal Grants of BUT (KInG BUT), Operational Program: Research, Development and Education
PubMed
35200496
PubMed Central
PMC8872166
DOI
10.3390/gels8020115
PII: gels8020115
Knihovny.cz E-zdroje
- Klíčová slova
- drying and swelling, extracellular matrix, hydrogel, lecithin, mesh size, rheology, scanning electron microscopy,
- Publikační typ
- časopisecké články MeSH
Nowadays, hydrogels are found in many applications ranging from the industrial to the biological (e.g., tissue engineering, drug delivery systems, cosmetics, water treatment, and many more). According to the specific needs of individual applications, it is necessary to be able to modify the properties of hydrogel materials, particularly the transport and mechanical properties related to their structure, which are crucial for the potential use of the hydrogels in modern material engineering. Therefore, the possibility of preparing hydrogel materials with tunable properties is a very real topic and is still being researched. A simple way to modify these properties is to alter the internal structure by adding another component. The addition of natural substances is convenient due to their biocompatibility and the possibility of biodegradation. Therefore, this work focused on hydrogels modified by a substance that is naturally found in the tissues of our body, namely lecithin. Hydrogels were prepared by different types of crosslinking (physical, ionic, and chemical). Their mechanical properties were monitored and these investigations were supplemented by drying and rehydration measurements, and supported by the morphological characterization of xerogels. With the addition of natural lecithin, it is possible to modify crucial properties of hydrogels such as porosity and mechanical properties, which will play a role in the final applications.
Zobrazit více v PubMed
Aswathy S., Narendrakumar U., Manjubala I. Commercial hydrogels for biomedical applications. Heliyon. 2020;6:e03719. doi: 10.1016/j.heliyon.2020.e03719. PubMed DOI PMC
Kular J.K., Basu S., Sharma R.I. The extracellular matrix: Structure, composition, age-related differences, tools for analysis and applications for tissue engineering. J. Tissue Eng. 2014;5:2041731414557112. doi: 10.1177/2041731414557112. PubMed DOI PMC
Geckil H., Xu F., Zhang X., Moon S., Demirci U. Engineering hydrogels as extracellular matrix mimics. Nanomedicine. 2010;5:469–484. doi: 10.2217/nnm.10.12. PubMed DOI PMC
Gadjanski I. Recent advances on gradient hydrogels in biomimetic cartilage tissue engineering. F1000Research. 2017;6:2158. doi: 10.12688/f1000research.12391.1. PubMed DOI PMC
Pekař M. Hydrogels with Micellar Hydrophobic (Nano)Domains. Front. Mater. 2015;1:35. doi: 10.3389/fmats.2014.00035. DOI
Zhang Y., Chen Q., Dai Z., Dai Y., Xia F., Zhang X. Nanocomposite adhesive hydrogels: From design to application. J. Mater. Chem. B. 2021;9:585–593. doi: 10.1039/D0TB02000A. PubMed DOI
Tuncaboylu D.C., Argun A., Algi M.P., Okay O. Autonomic self-healing in covalently crosslinked hydrogels containing hydrophobic domains. Polymer. 2013;54:6381–6388. doi: 10.1016/j.polymer.2013.09.051. DOI
Gu S., Duan L., Ren X., Gao G.H. Robust, tough and anti-fatigue cationic latex composite hydrogels based on dual physically cross-linked networks. J. Colloid Interface Sci. 2017;492:119–126. doi: 10.1016/j.jcis.2017.01.002. PubMed DOI
Li A., Jia Y., Sun S., Xu Y., Minsky B.B., Stuart M.A.C., Cölfen H., von Klitzing R., Guo X. Mineral-Enhanced Polyacrylic Acid Hydrogel as an Oyster-Inspired Organic–Inorganic Hybrid Adhesive. ACS Appl. Mater. Interfaces. 2018;10:10471–10479. doi: 10.1021/acsami.8b01082. PubMed DOI
Cui C., Wu T., Gao F., Fan C., Xu Z., Wang H., Liu B., Liu W. An Autolytic High Strength Instant Adhesive Hydrogel for Emergency Self-Rescue. Adv. Funct. Mater. 2018;28:1804925. doi: 10.1002/adfm.201804925. DOI
Fan X., Wang S., Fang Y., Li P., Zhou W., Wang Z., Chen M., Liu H. Tough polyacrylamide-tannic acid-kaolin adhesive hydrogels for quick hemostatic application. Mater. Sci. Eng. C. 2020;109:110649. doi: 10.1016/j.msec.2020.110649. PubMed DOI
Rajabi N., Kharaziha M., Emadi R., Zarrabi A., Mokhtari H., Salehi S. An adhesive and injectable nanocomposite hydrogel of thiolated gelatin/gelatin methacrylate/Laponite® as a potential surgical sealant. J. Colloid Interface Sci. 2020;564:155–169. doi: 10.1016/j.jcis.2019.12.048. PubMed DOI
Arno M.C., Inam M., Weems A.C., Li Z., Binch A.L.A., Platt C.I., Richardson S.M., Hoyland J.A., Dove A.P., O’Reilly R.K. Exploiting the role of nanoparticle shape in enhancing hydrogel adhesive and mechanical properties. Nat. Commun. 2020;11:1420. doi: 10.1038/s41467-020-15206-y. PubMed DOI PMC
Zhang H., Hao R., Ren X., Yu L., Yang H., Yu H. PEG/lecithin–liquid-crystalline composite hydrogels for quasi-zero-order combined release of hydrophilic and lipophilic drugs. RSC Adv. 2013;3:22927–22930. doi: 10.1039/c3ra44080j. DOI
Shchipunov Y.A. Lecithin. In: Somasundaran P., editor. Encyclopedia of Surface and Colloid Science. 3rd ed. Volume 3. CRC Press; Boca Raton, FL, USA: 2015. pp. 3674–3693.
Elnaggar Y.S., El-Refaie W.M., El-Massik M.A., Abdallah O.Y. Lecithin-based nanostructured gels for skin delivery: An update on state of art and recent applications. J. Control. Release. 2014;180:10–24. doi: 10.1016/j.jconrel.2014.02.004. PubMed DOI
Thompson B.R., Zarket B.C., Lauten E.H., Amin S., Muthukrishnan S., Raghavan S.R. Liposomes Entrapped in Biopolymer Hydrogels Can Spontaneously Release into the External Solution. Langmuir. 2020;36:7268–7276. doi: 10.1021/acs.langmuir.0c00596. PubMed DOI
Li D., An X., Mu Y. A liposomal hydrogel with enzyme triggered release for infected wound. Chem. Phys. Lipids. 2019;223:104783. doi: 10.1016/j.chemphyslip.2019.104783. PubMed DOI
Talaat S.M., Elnaggar Y.S.R., Abdalla O.Y. Lecithin Microemulsion Lipogels Versus Conventional Gels for Skin Targeting of Terconazole: In Vitro, Ex Vivo, and In Vivo Investigation. AAPS PharmSciTech. 2019;20:161. doi: 10.1208/s12249-019-1374-3. PubMed DOI
Maitra J., Shukla V.K. Cross-linking in Hydrogels—A Review. Am. J. Polym. Sci. 2014;4:25–31. doi: 10.5923/j.ajps.20140402.01. DOI
Trudicova M., Smilek J., Kalina M., Smilkova M., Adamkova K., Hrubanova K., Krzyzanek V., Sedlacek P. Multiscale Experimental Evaluation of Agarose-Based Semi-Interpenetrating Polymer Network Hydrogels as Materials with Tunable Rheological and Transport Performance. Polymers. 2020;12:2561. doi: 10.3390/polym12112561. PubMed DOI PMC
Kuo C.K., Ma P.X. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials. 2001;22:511–521. doi: 10.1016/S0142-9612(00)00201-5. PubMed DOI
Garnica-Palafox I.M., Sánchez-Arévalo F.M., Velasquillo C., García-Carvajal Z., Garcia-Lopez J., Ortega-Sánchez C., Ibarra C., Luna-Barcenas G., Solís-Arrieta L. Mechanical and structural response of a hybrid hydrogel based on chitosan and poly(vinyl alcohol) cross-linked with epichlorohydrin for potential use in tissue engineering. J. Biomater. Sci. Polym. Ed. 2014;25:32–50. doi: 10.1080/09205063.2013.833441. PubMed DOI
Mendes A.C.L., Shekarforoush E., Engwer C., Beeren S., Gorzelanny C., Goycoolea F.M., Chronakis I.S. Co-assembly of chitosan and phospholipids into hybrid hydrogels. Pure Appl. Chem. 2016;88:905–916. doi: 10.1515/pac-2016-0708. DOI
Smilek J., Jarábková S., Velcer T., Pekař M. Compositional and Temperature Effects on the Rheological Properties of Polyelectrolyte–Surfactant Hydrogels. Polymers. 2019;11:927. doi: 10.3390/polym11050927. PubMed DOI PMC
Mourycová J., Datta K.K.R., Procházková A., Plotěná M., Enev V., Smilek J., Másilko J., Pekař M. Facile synthesis and rheological characterization of nanocomposite hyaluronan-organoclay hydrogels. Int. J. Biol. Macromol. 2018;111:680–684. doi: 10.1016/j.ijbiomac.2018.01.068. PubMed DOI
Derkach S.R., Ilyin S.O., Maklakova A.A., Kulichikhin V.G., Malkin A.Y. The rheology of gelatin hydrogels modified by κ-carrageenan. LWT-Food Sci. Technol. 2015;63:612–619. doi: 10.1016/j.lwt.2015.03.024. DOI
López-Marcial G.R., Zeng A.Y., Osuna C., Dennis J., García J.M., O’Connell G.D. Agarose-Based Hydrogels as Suitable Bioprinting Materials for Tissue Engineering. ACS Biomater. Sci. Eng. 2018;4:3610–3616. doi: 10.1021/acsbiomaterials.8b00903. PubMed DOI
Gila-Vilchez C., Bonhome-Espinosa A.B., Kuzhir P., Zubarev A., Duran J.D.G., Lopez-Lopez M.T. Rheology of magnetic alginate hydrogels. J. Rheol. 2018;62:1083–1096. doi: 10.1122/1.5028137. DOI
Gradzielski M., Hoffmann I. Polyelectrolyte-surfactant complexes (PESCs) composed of oppositely charged components. Curr. Opin. Colloid Interface Sci. 2018;35:124–141. doi: 10.1016/j.cocis.2018.01.017. DOI
Pescosolido L., Feruglio L., Farra R., Fiorentino S., Colombo I., Coviello T., Matricardi P., Hennink W.E., Vermonden T., Grassi M. Mesh size distribution determination of interpenetrating polymer network hydrogels. Soft Matter. 2012;8:7708–7715. doi: 10.1039/c2sm25677k. DOI
Flory P.J. Principles of Polymer Chemistry. Cornell University Press; New York, NY, USA: 1953.
Raghuwanshi V.S., Garnier G. Characterisation of hydrogels: Linking the nano to the microscale. Adv. Colloid Interface Sci. 2019;274:102044. doi: 10.1016/j.cis.2019.102044. PubMed DOI
Suchý T., Šupová M., Bartoš M., Sedláček R., Piola M., Soncini M., Fiore G.B., Sauerová P., Kalbáčová M.H. Dry versus hydrated collagen scaffolds: Are dry states representative of hydrated states? J. Mater. Sci. Mater. Med. 2018;29:20. doi: 10.1007/s10856-017-6024-2. PubMed DOI
Muthulakshmi L., Pavithra U., Sivaranjani V., Balasubramanian N., Sakthivel K.M., Pruncu C.I. A novel Ag/carrageenan–gelatin hybrid hydrogel nanocomposite and its biological applications: Preparation and characterization. J. Mech. Behav. Biomed. Mater. 2021;115:104257. doi: 10.1016/j.jmbbm.2020.104257. PubMed DOI
Marmorat C., Arinstein A., Koifman N., Talmon Y., Zussman E., Rafailovich M. Cryo-Imaging of Hydrogels Supermolecular Structure. Sci. Rep. 2016;6:25495. doi: 10.1038/srep25495. PubMed DOI PMC
Kaberova Z., Karpushkin E., Nevoralová M., Vetrík M., Šlouf M., Dušková-Smrčková M. Microscopic Structure of Swollen Hydrogels by Scanning Electron and Light Microscopies: Artifacts and Reality. Polymers. 2020;12:578. doi: 10.3390/polym12030578. PubMed DOI PMC
Bhagat S.D., Kim Y.-H., Yi G., Ahn Y.-S., Yeo J.-G., Choi Y.-T. Mesoporous SiO2 powders with high specific surface area by microwave drying of hydrogels: A facile synthesis. Microporous Mesoporous Mater. 2008;108:333–339. doi: 10.1016/j.micromeso.2007.03.026. DOI
Weber J., Bergström L. Mesoporous Hydrogels: Revealing Reversible Porosity by Cryoporometry, X-ray Scattering, and Gas Adsorption. Langmuir. 2010;26:10158–10164. doi: 10.1021/la100290j. PubMed DOI