Compositional and Temperature Effects on the Rheological Properties of Polyelectrolyte-Surfactant Hydrogels
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LO1211
Ministry of Education, Youth and Sports, Czech Republic
16-12477S
Czech Science Foundation
PubMed
31137862
PubMed Central
PMC6571672
DOI
10.3390/polym11050927
PII: polym11050927
Knihovny.cz E-zdroje
- Klíčová slova
- Hyaluronan, carbethopendecinium bromide, diethylaminoethyl-dextran hydrochloride, hydrogels, rheology, sodium dodecyl sulphate,
- Publikační typ
- časopisecké články MeSH
The rheological properties of hydrogels prepared by physical interactions between oppositely charged polyelectrolyte and surfactant in micellar form were studied. Specifically, hyaluronan was employed as a negatively charged polyelectrolyte and Septonex (carbethopendecinium bromide) as a cationic surfactant. Amino-modified dextran was used as a positively charged polyelectrolyte interacting with sodium dodecylsulphate as an anionic surfactant. The effects of the preparation method, surfactant concentration, ionic strength (the concentration of NaCl background electrolyte), pH (buffers), multivalent cations, and elevated temperature on the properties were investigated. The formation of gels required an optimum ionic strength (set by the NaCl solution), ranging from 0.15-0.3 M regardless of the type of hydrogel system and surfactant concentration. The other compositional effects and the effect of temperature were dependent on the polyelectrolyte type or its molecular weight. General differences between the behaviour of hyaluronan-based and cationized dextran-based materials were attributed to differences in the chain conformations of the two biopolymers and in the accessibility of their charged groups.
Zobrazit více v PubMed
Kizilay E., Kayitmazer A.B., Dubin P.L. Complexation and coacervation of polyelectrolytes with oppositely charged colloids. Adv. Colloid Interface Sci. 2011;167:24–37. doi: 10.1016/j.cis.2011.06.006. PubMed DOI
Kizilay E., Dinsmore A.D., Hoagland D.A., Sun L., Dubin P.L. Evolution of hierarchical structures in polyelectrolyte-micelle coacervates. Soft Matter. 2013;9:7320–7332. doi: 10.1039/c3sm50591j. DOI
Thalberg K., Lindman B. Interaction between hyaluronan and cationic surfactants. J. Phys. Chem. 1989;93:1478–1483. doi: 10.1021/j100341a058. DOI
Wong T.C., Thalberg K., Lindman B., Gracz H. Surfactant carbon-13 relaxation and differential line broadening in a system of a polyanion and a cationic surfactant. J. Phys. Chem. 1991;95:8850–8857. doi: 10.1021/j100175a080. DOI
Thalberg K., Lindman B. Gel formation in aqueous systems of a polyanion and an oppositely charged surfactant. Langmuir. 1991;7:277–283. doi: 10.1021/la00050a013. DOI
Buchold P., Schweins R., Di Z., Gradzielski M. Structural behaviour of sodium hyaluronate in concentrated oppositely charged surfactant solutions. Soft Matter. 2017;13:2253–2263. doi: 10.1039/C6SM02742C. PubMed DOI
Venerová T., Pekař M. Rheological properties of gels formed by physical interactions between hyaluronan and cationic surfatants. Carbohydr. Polym. 2017;170:176–181. PubMed
Holmberg K. Surfactants and Polymers in Aqueous Solution. 2nd ed. John Wiley; Hoboken, NJ, USA: 2003.
Brno University of Technology Process for preparing physically crosslinked hydrogel with at least one solubilized hydrophobic compound. application No. 2014-946. Czech patent. 2014 Dec 22;
Gradzielski M., Hoffmann I. Polyelectrolyte-surfactants complexes (PESCs) composed of oppositely charged components. Curr. Opin. Colloid Interface Sci. 2018;35:124–141. doi: 10.1016/j.cocis.2018.01.017. DOI
Pescosolido L., Feruglio L., Farra R., Fiorentino S., Colombo I., Coviello T., Matricardi P.W., Hennink W.E., Vermonden T., Grassi M. Mesh size distribution determination of interpenetrating polymer network hydrogels. Soft Matter. 2012;8:7708–7715. doi: 10.1039/c2sm25677k. DOI
Flory P.J. Principles of Polymer Chemistry. Ithaca, NY, USA: 1953.
Gardel M.L., Shin J.H., MacKintosh F.C., Mahadevan L., Matsudaira P., Weitz D.A. Elastic behaviour of cross-linked and bundled actin networks. Science. 2004;304:1301–1305. doi: 10.1126/science.1095087. PubMed DOI
Cowman M.K., Matsuoka S. Experimental approaches to hyaluronan structure. Carbohydr. Res. 2005;340:791–809. doi: 10.1016/j.carres.2005.01.022. PubMed DOI
Fouissac E., Milas M., Rinaudo M. Shear-rate, concentration, molecular weight, and temperature viscosity dependences of hyaluronate, a wormlike polyelectrolyte. Macromolecules. 1993;26:6945–6951. doi: 10.1021/ma00077a036. DOI
Krause W.E., Bellomo E.G., Colby R.H. Rheology of sodium hyaluronate under physiological conditions. Biomacromolecules. 2001;2:65–69. doi: 10.1021/bm0055798. PubMed DOI
Dumitriu S. Polysaccharides: Structural Diversity and Functional Versatility. 2nd ed. Marcel Dekker; New York, NY, USA: 2005.
Li S., Kelly S.J., Lamani E., Ferraroni M., Jedrzejas M.J. Structural basis of hyaluronan degradation by Streptococcus pneumoniae hyaluronate lyase. EMBO J. 2000;19:1228–1240. doi: 10.1093/emboj/19.6.1228. PubMed DOI PMC
Dimitru S., editor. Polysaccharides. M.Dekker; New York, NY, USA: 1998.
Maréchal Y. Observing the water molecule in macromoleculerared spectrometry: Structure of the hydrogen bond network and hydration mechanism. J. Mol. Struct. 2004;700:217–223.
Almond A., Sheehan J.K. Predicting the molecular shape of polysaccharides from dynamic interactions with water. Glycobiology. 2003;13:255–264. doi: 10.1093/glycob/cwg031. PubMed DOI
Almond A. Towards understanding the interaction between oligosaccharides and water molecules. Carbohydr. Res. 2005;340:907–920. doi: 10.1016/j.carres.2005.01.014. PubMed DOI
Garg H.G., Hales C.A. Chemistry and Biology of Hyaluronan. Elsevier; Amsterdam, The Netherlands: 2004.