Compositional and Temperature Effects on the Rheological Properties of Polyelectrolyte-Surfactant Hydrogels

. 2019 May 27 ; 11 (5) : . [epub] 20190527

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31137862

Grantová podpora
LO1211 Ministry of Education, Youth and Sports, Czech Republic
16-12477S Czech Science Foundation

The rheological properties of hydrogels prepared by physical interactions between oppositely charged polyelectrolyte and surfactant in micellar form were studied. Specifically, hyaluronan was employed as a negatively charged polyelectrolyte and Septonex (carbethopendecinium bromide) as a cationic surfactant. Amino-modified dextran was used as a positively charged polyelectrolyte interacting with sodium dodecylsulphate as an anionic surfactant. The effects of the preparation method, surfactant concentration, ionic strength (the concentration of NaCl background electrolyte), pH (buffers), multivalent cations, and elevated temperature on the properties were investigated. The formation of gels required an optimum ionic strength (set by the NaCl solution), ranging from 0.15-0.3 M regardless of the type of hydrogel system and surfactant concentration. The other compositional effects and the effect of temperature were dependent on the polyelectrolyte type or its molecular weight. General differences between the behaviour of hyaluronan-based and cationized dextran-based materials were attributed to differences in the chain conformations of the two biopolymers and in the accessibility of their charged groups.

Zobrazit více v PubMed

Kizilay E., Kayitmazer A.B., Dubin P.L. Complexation and coacervation of polyelectrolytes with oppositely charged colloids. Adv. Colloid Interface Sci. 2011;167:24–37. doi: 10.1016/j.cis.2011.06.006. PubMed DOI

Kizilay E., Dinsmore A.D., Hoagland D.A., Sun L., Dubin P.L. Evolution of hierarchical structures in polyelectrolyte-micelle coacervates. Soft Matter. 2013;9:7320–7332. doi: 10.1039/c3sm50591j. DOI

Thalberg K., Lindman B. Interaction between hyaluronan and cationic surfactants. J. Phys. Chem. 1989;93:1478–1483. doi: 10.1021/j100341a058. DOI

Wong T.C., Thalberg K., Lindman B., Gracz H. Surfactant carbon-13 relaxation and differential line broadening in a system of a polyanion and a cationic surfactant. J. Phys. Chem. 1991;95:8850–8857. doi: 10.1021/j100175a080. DOI

Thalberg K., Lindman B. Gel formation in aqueous systems of a polyanion and an oppositely charged surfactant. Langmuir. 1991;7:277–283. doi: 10.1021/la00050a013. DOI

Buchold P., Schweins R., Di Z., Gradzielski M. Structural behaviour of sodium hyaluronate in concentrated oppositely charged surfactant solutions. Soft Matter. 2017;13:2253–2263. doi: 10.1039/C6SM02742C. PubMed DOI

Venerová T., Pekař M. Rheological properties of gels formed by physical interactions between hyaluronan and cationic surfatants. Carbohydr. Polym. 2017;170:176–181. PubMed

Holmberg K. Surfactants and Polymers in Aqueous Solution. 2nd ed. John Wiley; Hoboken, NJ, USA: 2003.

Brno University of Technology Process for preparing physically crosslinked hydrogel with at least one solubilized hydrophobic compound. application No. 2014-946. Czech patent. 2014 Dec 22;

Gradzielski M., Hoffmann I. Polyelectrolyte-surfactants complexes (PESCs) composed of oppositely charged components. Curr. Opin. Colloid Interface Sci. 2018;35:124–141. doi: 10.1016/j.cocis.2018.01.017. DOI

Pescosolido L., Feruglio L., Farra R., Fiorentino S., Colombo I., Coviello T., Matricardi P.W., Hennink W.E., Vermonden T., Grassi M. Mesh size distribution determination of interpenetrating polymer network hydrogels. Soft Matter. 2012;8:7708–7715. doi: 10.1039/c2sm25677k. DOI

Flory P.J. Principles of Polymer Chemistry. Ithaca, NY, USA: 1953.

Gardel M.L., Shin J.H., MacKintosh F.C., Mahadevan L., Matsudaira P., Weitz D.A. Elastic behaviour of cross-linked and bundled actin networks. Science. 2004;304:1301–1305. doi: 10.1126/science.1095087. PubMed DOI

Cowman M.K., Matsuoka S. Experimental approaches to hyaluronan structure. Carbohydr. Res. 2005;340:791–809. doi: 10.1016/j.carres.2005.01.022. PubMed DOI

Fouissac E., Milas M., Rinaudo M. Shear-rate, concentration, molecular weight, and temperature viscosity dependences of hyaluronate, a wormlike polyelectrolyte. Macromolecules. 1993;26:6945–6951. doi: 10.1021/ma00077a036. DOI

Krause W.E., Bellomo E.G., Colby R.H. Rheology of sodium hyaluronate under physiological conditions. Biomacromolecules. 2001;2:65–69. doi: 10.1021/bm0055798. PubMed DOI

Dumitriu S. Polysaccharides: Structural Diversity and Functional Versatility. 2nd ed. Marcel Dekker; New York, NY, USA: 2005.

Li S., Kelly S.J., Lamani E., Ferraroni M., Jedrzejas M.J. Structural basis of hyaluronan degradation by Streptococcus pneumoniae hyaluronate lyase. EMBO J. 2000;19:1228–1240. doi: 10.1093/emboj/19.6.1228. PubMed DOI PMC

Dimitru S., editor. Polysaccharides. M.Dekker; New York, NY, USA: 1998.

Maréchal Y. Observing the water molecule in macromoleculerared spectrometry: Structure of the hydrogen bond network and hydration mechanism. J. Mol. Struct. 2004;700:217–223.

Almond A., Sheehan J.K. Predicting the molecular shape of polysaccharides from dynamic interactions with water. Glycobiology. 2003;13:255–264. doi: 10.1093/glycob/cwg031. PubMed DOI

Almond A. Towards understanding the interaction between oligosaccharides and water molecules. Carbohydr. Res. 2005;340:907–920. doi: 10.1016/j.carres.2005.01.014. PubMed DOI

Garg H.G., Hales C.A. Chemistry and Biology of Hyaluronan. Elsevier; Amsterdam, The Netherlands: 2004.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...