Last Glacial Maximum led to community-wide population expansion in a montane songbird radiation in highland Papua New Guinea
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
WBS R-154-000-A59-112
Singapore Ministry of Education Tier II grant - International
WBS R-154-000-648-646
SEABIG - International
WBS R-154-000-648-733
SEABIG - International
GACR No. 18-23794Y
Grant agency of the Czech Republic - International
PubMed
32652951
PubMed Central
PMC7353695
DOI
10.1186/s12862-020-01646-z
PII: 10.1186/s12862-020-01646-z
Knihovny.cz E-resources
- Keywords
- Demographic history, Genetic expansion, Quaternary glaciations, Scrubwrens, Sericornis,
- MeSH
- Biological Evolution * MeSH
- Databases as Topic MeSH
- Species Specificity MeSH
- Ecosystem * MeSH
- Phylogeny MeSH
- Phylogeography MeSH
- Polymorphism, Single Nucleotide genetics MeSH
- Ice Cover * MeSH
- Altitude MeSH
- Computer Simulation MeSH
- Genetics, Population MeSH
- Probability MeSH
- Base Sequence MeSH
- Geography MeSH
- Songbirds growth & development MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Papua New Guinea MeSH
BACKGROUND: Quaternary climate fluctuations are an engine of biotic diversification. Global cooling cycles, such as the Last Glacial Maximum (LGM), are known to have fragmented the ranges of higher-latitude fauna and flora into smaller refugia, dramatically reducing species ranges. However, relatively less is known about the effects of cooling cycles on tropical biota. RESULTS: We analyzed thousands of genome-wide DNA markers across an assemblage of three closely related understorey-inhabiting scrubwrens (Sericornis and Aethomyias; Aves) from montane forest along an elevational gradient on Mt. Wilhelm, the highest mountain of Papua New Guinea. Despite species-specific differences in elevational preference, we found limited differentiation within each scrubwren species, but detected a strong genomic signature of simultaneous population expansions at 27-29 ka, coinciding with the onset of the LGM. CONCLUSION: The remarkable synchronous timing of population expansions of all three species demonstrates the importance of global cooling cycles in expanding highland habitat. Global cooling cycles have likely had strongly different impacts on tropical montane areas versus boreal and temperate latitudes, leading to population expansions in the former and serious fragmentation in the latter.
Biology Centre CAS Institute of Entomology Branisovska 31 Ceske Budejovice Czech Republic
The New Guinea Binatang Research Centre Madang Papua New Guinea
University of South Bohemia Faculty of Science Branisovska 1760 Ceske Budejovice Czech Republic
See more in PubMed
Bintanja R, van de Wal RS, Oerlemans J. Modelled atmospheric temperatures and global sea levels over the past million years. Nature. 2005;437:125–128. PubMed
Hewitt G. The genetic legacy of the quaternary ice ages. Nature. 2000;405:907–913. PubMed
Hewitt G. Genetic consequences of climatic oscillations in the quaternary. Philos Trans R Soc B. 2004;359:183–195. PubMed PMC
Seddon J, Santucci F, Reeve N, Hewitt G. DNA footprints of European hedgehogs, Erinaceus europaeus and E. concolor: Pleistocene refugia, postglacial expansion and colonization routes. Mol Ecol. 2001;10:2187–2198. PubMed
Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF. Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol. 1998;7:453–464. PubMed
Weigelt P, Steinbauer MJ, Cabral JS, Kreft H. Late quaternary climate change shapes island biodiversity. Nature. 2016;532:99. PubMed
Garg KM, Chattopadhyay B, Wilton PR, Prawiradilaga DM, Rheindt FE. Pleistocene land bridges act as semipermeable agents of avian gene flow in Wallacea. Mol Phylogenet Evol. 2018;125:196–203. PubMed
Ng NS, Wilton PR, Prawiradilaga DM, Tay YC, Indrawan M, Garg KM, Rheindt FE. The effects of Pleistocene climate change on biotic differentiation in a montane songbird clade from Wallacea. Mol Phylogenet Evol. 2017;114:353–366. PubMed
Kershaw A, Van Der Kaars S, Flenley J. The quaternary history of far eastern rainforests. In: Tropical rainforest responses to climatic change. Berlin: Springer; 2011. p. 85–123.
Qu Y, Luo X, Zhang R, Song G, Zou F, Lei F. Lineage diversification and historical demography of a montane bird Garrulax elliotii-implications for the Pleistocene evolutionary history of the eastern Himalayas. BMC Evol Biol. 2011;11:174. PubMed PMC
Gao Y-D, Zhang Y, Gao X-F, Zhu Z-M. Pleistocene glaciations, demographic expansion and subsequent isolation promoted morphological heterogeneity: a phylogeographic study of the alpine Rosa sericea complex (Rosaceae) Sci Rep. 2015;5:11698. PubMed PMC
Shepard DB, Burbrink FT. Phylogeographic and demographic effects of Pleistocene climatic fluctuations in a montane salamander, Plethodon fourchensis. Mol Ecol. 2009;18:2243–2262. PubMed
Cabanne GS, Calderón L, Trujillo Arias N, Flores P, Pessoa R, d'Horta FM, Miyaki CY. Effects of Pleistocene climate changes on species ranges and evolutionary processes in the Neotropical Atlantic Forest. Biol J Linn Soc. 2016;119:856–872.
Chattopadhyay B, Garg KM, Gwee CY, Edwards SV, Rheindt FE. Gene flow during glacial habitat shifts facilitates character displacement in a Neotropical flycatcher radiation. BMC Evol Biol. 2017;17:210. PubMed PMC
Capurucho JMG, Ashley MV, Ribas CC, Bates JM. Connecting Amazonian, Cerrado, and Atlantic forest histories: Paraphyly, old divergences, and modern population dynamics in tyrant-manakins (Neopelma/Tyranneutes, Aves: Pipridae) Mol Phylogenet Evol. 2018;127:696–705. PubMed
Norman JA, Christidis L, Schodde R. Ecological and evolutionary diversification in the Australo-Papuan scrubwrens (Sericornis) and mouse-warblers (Crateroscelis), with a revision of the subfamily Sericornithinae (Aves: Passeriformes: Acanthizidae) Org Divers Evol. 2018;8:241–259.
Gregory P. Genus Sericornis. In: del Hoyo J, Elliott A, Sargatal J, Christie DA, de Juana E, editors. Handbook of the birds of the world alive. Barcelona: Lynx Edicions; 2018.
Pratt TK, Beehler BM. Birds of New Guinea. New Jersey: Princeton University Press; 2014.
Sam K, Koane B, Jeppy S, Sykorova J, Novotny V. Diet of land birds along an elevational gradient in Papua New Guinea. Sci Rep. 2017;7:44018. PubMed PMC
Mills S, Barrows T, Hope G, Pillans B, Fifield K. EGU General Assembly Conference Abstracts. 2016. The timing of late Pleistocene glaciation at mount Wilhelm, Papua New Guinea; p. 7400.
Marki PZ, Jønsson KA, Irestedt M, Nguyen JM, Rahbek C. Fjeldså J Supermatrix phylogeny and biogeography of the Australasian Meliphagides radiation (Aves: Passeriformes) Mol Phylogenet Evol. 2017;107:516–529. PubMed
Norman JA, Rheindt FE, Rowe DL, Christidis L. Speciation dynamics in the Australo-Papuan Meliphaga honeyeaters. Mol Phylogenet Evol. 2007;42:80–91. PubMed
del Hoyo J, Elliott A, Sargatal J, Christie D, de Juana E. Handbook of the birds of the world alive. Spain: Lynx Edicions; 2018.
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14:2611–2620. PubMed
Rheindt FE, Edwards SV. Genetic introgression: an integral but neglected component of speciation in birds. Auk. 2011;128:620–632.
Mayr E. Systematics and the origin of species: from the viewpoint of a zoologist. New York: Columbia University Press; 1942.
Cruickshank TE, Hahn MW. Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Mol Ecol. 2014;23:3133–3157. PubMed
Delmore KE, Lugo Ramos JS, Van Doren BM, Lundberg M, Bensch S, Irwin DE, Liedvogel M. Comparative analysis examining patterns of genomic differentiation across multiple episodes of population divergence in birds. Evol Lett. 2018;2:76–87. PubMed PMC
Lambeck K, Rouby H, Purcell A, Sun Y, Sambridge M. Sea level and global ice volumes from the last glacial maximum to the Holocene. Proc Natl Acad Sci U S A. 2014;111:15296–15303. PubMed PMC
Hope GS. The vegetational history of Mt Wilhelm, Papua New Guinea. J Ecol. 1976;1:627–663.
Cabrera AA, Palsbøll PJ. Inferring past demographic changes from contemporary genetic data: a simulation-based evaluation of the ABC methods implemented in diyabc. Mol Ecol Resour. 2017;17:e94–e110. PubMed
Kotlík P, Deffontaine V, Mascheretti S, Zima J, Michaux JR. Searle JB a northern glacial refugium for bank voles (Clethrionomys glareolus) Proc Natl Acad Sci U S A. 2006;103:14860–14864. PubMed PMC
Sam K, Koane B. New avian records along the elevational gradient of Mt. Wilhelm, Papua New Guinea. Bull Br Ornithol Club. 2014;134:116–33.
Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One. 2012;7:e37135. PubMed PMC
Tay Y, Chng M, Sew W, Rheindt F, Tun K, Meier R. Beyond the coral triangle: high genetic diversity and near panmixia in Singapore's populations of the broadcast spawning sea star Protoreaster nodosus. R Soc Open Sci. 2016;3:160253. PubMed PMC
Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010.
Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA. Stacks: an analysis tool set for population genomics. Mol Ecol. 2013;22:3124–3140. PubMed PMC
Eaton DA. PyRAD: assembly of de novo RADseq loci for phylogenetic analyses. Bioinformatics. 2014;30(13):1844–1849. PubMed
Meier R, Wong W, Srivathsan A, Foo M. $1 DNA barcodes for reconstructing complex phenomes and finding rare species in specimen-rich samples. Cladistics. 2016;32:100–110. PubMed
Geller J, Meyer C, Parker M, Hawk H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol Ecol Resour. 2013;13:851–861. PubMed
Leray M, Yang JY, Meyer CP, Mills SC, Agudelo N, Ranwez V, Boehm JT, Machida RJ. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front Zool. 2013;10:34. PubMed PMC
Katoh K, Misawa K, Ki K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–3066. PubMed PMC
Clement M, Posada D, Crandall KA. TCS: a computer program to estimate gene genealogies. Mol Ecol. 2000;9:1657–1659. PubMed
Leigh JW, Bryant D. Popart: full-feature software for haplotype network construction. Methods Ecol Evol. 2015;6:1110–1116.
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:14860–14864. PubMed PMC
Silvestro D, Michalak I. raxmlGUI: a graphical front-end for RAxML. Org Divers Evol. 2012;12:335–337.
Rambaut A. FigTree v1. 4.2: Tree figure drawing tool. 2014.
Foll M, Gaggiotti O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics. 2008;180:977–993. PubMed PMC
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, De Bakker PI, Daly MJ. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–575. PubMed PMC
Meirmans PG, Van Tienderen PH. GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes. 2004;4:792–794.
Kalinowski ST, Taper ML, Marshall TC. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol. 2007;16:1099–1106. PubMed
Marshall T, Slate J, Kruuk L, Pemberton J. Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol. 1998;7:639–655. PubMed
Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 2017;34:3299–3302. PubMed
Excoffier L, Lischer HE. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and windows. Mol Ecol Resour. 2010;10:564–567. PubMed
Peakall R, Smouse PE. GENALEX 6.5: genetic analysis in excel. Population genetic software for teaching and research - an update. Bioinformatics. 2012;28:2537–2539. PubMed PMC
R Core Team . R: A language and environment for statistical computing. 2016.
Nei M. Genetic distance between populations. Am Nat. 1972;106:283–292.
Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics. 1978;89:583–590. PubMed PMC
Neuditschko M, Khatkar MS, Raadsma HW. NETVIEW: a high-definition network-visualization approach to detect fine-scale population structures from genome-wide patterns of variation. PLoS One. 2012;7:e48375. PubMed PMC
Pritchard JK, Stephens M, Rosenberg NA, Donnelly P. Association mapping in structured populations. Am J Hum Genet. 2000;67:170–181. PubMed PMC
Earl D. Structure Harvester vO. 56.4. 2010.
Cornuet J-M, Pudlo P, Veyssier J, Dehne-Garcia A, Gautier M, Leblois R, Marin J-M, Estoup A. DIYABC v2. 0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics. 2014;30:1187–1189. PubMed
Cuervo JJ, Møller AP. Colonial, more widely distributed and less abundant bird species undergo wider population fluctuations independent of their popultion trend. PLoS One. 2017;12:e77654. PubMed PMC