The formation of avian montane diversity across barriers and along elevational gradients
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35022441
PubMed Central
PMC8755808
DOI
10.1038/s41467-021-27858-5
PII: 10.1038/s41467-021-27858-5
Knihovny.cz E-zdroje
- MeSH
- biodiverzita * MeSH
- fylogeografie MeSH
- hustota populace MeSH
- podnebí MeSH
- polymorfismus genetický MeSH
- populační genetika * MeSH
- ptáci genetika MeSH
- tok genů MeSH
- zeměpis MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Nová Guinea MeSH
Tropical mountains harbor exceptional concentrations of Earth's biodiversity. In topographically complex landscapes, montane species typically inhabit multiple mountainous regions, but are absent in intervening lowland environments. Here we report a comparative analysis of genome-wide DNA polymorphism data for population pairs from eighteen Indo-Pacific bird species from the Moluccan islands of Buru and Seram and from across the island of New Guinea. We test how barrier strength and relative elevational distribution predict population differentiation, rates of historical gene flow, and changes in effective population sizes through time. We find population differentiation to be consistently and positively correlated with barrier strength and a species' altitudinal floor. Additionally, we find that Pleistocene climate oscillations have had a dramatic influence on the demographics of all species but were most pronounced in regions of smaller geographic area. Surprisingly, even the most divergent taxon pairs at the highest elevations experience gene flow across barriers, implying that dispersal between montane regions is important for the formation of montane assemblages.
Biodiversity Research Centre University of British Columbia Vancouver BC Canada
Centre for Ocean Life DTU Aqua Kemitorvet building 202 DK 2800 Kgs Lyngby Denmark
Department of Biology and Museum of Southwestern Biology University of New Mexico Albuquerque NM USA
Lundbeck Foundation GeoGenetics Center Globe Institute University of Copenhagen Copenhagen Denmark
Museum für Naturkunde Leibniz Institut für Evolutions und Biodiversitätsforschung Berlin Germany
Papua New Guinea National Museum and Art Gallery Port Moresby Papua New Guinea
The New Guinea Binatang Research Centre Madang Papua New Guinea
University of South Bohemia Faculty of Science Branisovska 1760 Ceske Budejovice Czech Republic
Zobrazit více v PubMed
Mayr, E. Animal Species and Evolution. (Harvard University Press, 1963).
Coyne, J. A. & Orr, H. A. Speciation. (Sinauer Associates, 2004).
Phillimore AB, et al. Sympatric speciation in birds is rare: insights from range data and simulations. Am. Nat. 2008;171:646–657. PubMed
Price, T. D. Speciation in Birds. (Roberts and Co., 2008).
Weir JT, Faccio MS, Pulido-Santacruz P, Barrera‐Guzmán AO, Aleixo A. Hybridization in headwater regions, and the role of rivers as drivers of speciation in Amazonian birds. Evolution. 2015;69:1823–1834. PubMed
Smith JM. Sympatric speciation. Am. Nat. 1966;100:637–650.
Endler, J. A. Geographic Variation, Speciation, and Clines. (Princeton University Press, 1977). PubMed
Doebeli M, Dieckmann U. Speciation along environmental gradients. Nature. 2003;421:259–264. PubMed
Rundle HD, Nosil P. Ecological speciation. Ecol. Lett. 2005;8:336–352.
Butlin RK, Galindo J, Grahame JW. Sympatric, parapatric or allopatric: the most important way to classify speciation? Philos. Trans. R. Soc. B Biol. Sci. 2008;363:2997–3007. PubMed PMC
Via S. Natural selection in action during speciation. Proc. Natl Acad. Sci. USA. 2009;106:9939–9946. PubMed PMC
Patton JL, Smith MF. mtDNA phylogeny of Andean mice: a test of diversification across ecological gradients. Evolution. 1992;46:174–183. PubMed
Wilson EO. Adaptive shift and dispersal in a tropical ant fauna. Evolution. 1959;13:122–144.
Wilson EO. The nature of the taxon cycle in the Melanesian ant fauna. Am. Nat. 1961;95:169–193.
Mayr E, Diamond JM. Birds on islands in the sky: origin of the montane avifauna of Northern Melanesia. Proc. Natl Acad. Sci. USA. 1976;73:1765–1769. PubMed PMC
Hall R. Southeast Asia’s changing palaeogeography. Blumea. 2009;54:148–161.
van Ufford AQ, Cloos M. Cenozoic tectonics of New Guinea. Am. Assoc. Petr. Geol. B. 2005;89:119–140.
Hall R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. J. Asian Earth Sci. 2002;20:353–434.
Grubb PJ. Interpretation of the ‘Massenerhebung’ effect on tropical mountains. Nature. 1971;229:44–45. PubMed
Bintanja R, van de Wal RS, Oerlemans J. Modelled atmospheric temperatures and global sea levels over the past million years. Nature. 2005;437:125–128. PubMed
Garg KM, Chattopadhyay B, Koane B, Sam K, Rheindt FE. Last Glacial Maximum led to community-wide population expansion in a montane songbird radiation in highland Papua New Guinea. BMC Evol. Biol. 2020;20:82. PubMed PMC
Marques DA, et al. Genomics of rapid incipient speciation in sympatric threespine stickleback. PLoS Genet. 2016;12:e1005887. PubMed PMC
Cruickshank TE, Hahn MW. Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Mol. Ecol. 2014;23:3133–3157. PubMed
Li H, Durbin R. Inference of human population history from individual whole-genome sequences. Nature. 2011;475:493–496. PubMed PMC
Excoffier L, Dupanloup I, Huerta-Sanchez E, Sousa VC, Foll M. Robust demographic inference from genomic and SNP data. PLoS Genet. 2013;9:e1003905. PubMed PMC
Andersen MJ, Oliveros CH, Filardi CE, Moyle RG. Phylogeography of the Variable Dwarf-kingfisher Ceyx lepidus (Aves: Alcedinidae) inferred from mitochondrial and nuclear DNA sequences. Auk. 2013;130:118–131.
Jønsson KA, et al. Evidence of taxon-cycles in an Indo-Pacific passerine bird radiation (Aves: Pachycephala) Proc. Roy. Soc. Lond. B. 2014;281:20131727. PubMed PMC
Collar NJ, Eaton JA, Hutchinson RO. Species limits in the Golden Bulbul Alophoixus (Thapsinillas) affinis complex. Forktail. 2013;29:19–24.
Eaton, J. A., van Balen, B., Brickle, N. W. & Rheindt, F. E. Birds of the Indonesian Archipelago. Greater Sundas and Wallacea. (Lynx Edicions, 2016).
Moyle RG, Hosner PA, Jones AW, Outlaw DC. Phylogeny and biogeography of Ficedula flycatchers (Aves: Muscicapidae): novel results from fresh source material. Mol. Phylogenet. Evol. 2015;82:87–94. PubMed
Wallace, A. R. The Malay Archipelago. (Macmillan Publishers Ltd., 1869).
White, C. M. N. & Bruce, M. D. in The Birds of Wallacea (Sulawesi, the Moluccas and Lesser Sunda Islands, Indonesia): an Annotated Check-list. B.O.U. Check-list No. 7., 524 (British Ornithologists’ Union, 1986).
Coates, B. J. & Bishop, K. D. A Guide to the Birds of Wallacea: Sulawesi, the Moluccas and Lesser Sunda Islands, Indonesia. (Dove Publications, 1997).
Rheindt FE, et al. A lost world in Wallacea: description of a montane archipelagic avifauna. Science. 2020;367:167–170. PubMed
Beehler BM, Prawiradilaga DM, de Fretes Y, Kemp N. A new species of Smoky honeyeater (Meliphagidae: Melipotes) from Western New Guinea. Auk. 2007;124:1000–1009.
Marki PZ, et al. Supermatrix phylogeny and biogeography of the avian Meliphagides radiation. Mol. Phylogenet. Evol. 2017;107:516–529. PubMed
Jønsson KA, Reeve AH, Blom MPK, Irestedt M, Marki PZ. Unrecognized (species) diversity in New Guinean passerine birds. Emu. 2019;119:233–241.
Beehler, B. M. & Pratt, T. K. Birds of New Guinea: Distribution, Taxonomy, and Systematics. (Princeton University Press, 2016).
Moore RP, Robinson WD, Lovette IJ, Robinson TR. Experimental evidence for extreme dispersal limitation in tropical forest birds. Ecol. Lett. 2008;11:960–968. PubMed
Hewitt GM. The genetic legacy of the Quaternary ice ages. Nature. 2000;405:907–913. PubMed
Hewitt GM. Genetic consequences of climatic oscillations in the Quaternary. Philos. Trans. R. Soc. Lond. B. 2004;359:183–195. PubMed PMC
Wroe S, et al. Climate change frames debate over the extinction of megafauna in Sahul (Pleistocene Australia-New Guinea) Proc. Natl Acad. Sci. USA. 2013;110:8777–8781. PubMed PMC
Hope, G. S., Peterson, J. A., Radok, U. & Allison, I. The Equatorial Glaciers of New Guinea, Results of the 1971–1973 Australian Universities’ Expeditions to Irian Jaya, Survey, Glaciology, Meteorology, Biology and Palaeoenvironments. A. A. (Balkema, 1976).
Williams, M., Dunkerley, D., De Deckker, P., Kershaw, P. & Chappell, J. in Quaternary Environments, 2nd edn. (Arnold, 1998).
Rahmstorf S. Ocean circulation and climate during the past 120,000 years. Nature. 2002;419:207–214. PubMed
Linck E, Freeman BG, Dumbacher JP. Speciation and gene flow across an elevational gradient in New Guinea kingfishers. J. Evol. Biol. 2020;33:1643–1652. PubMed
Diamond, J. M. Avifauna of the Eastern Highlands of New Guinea. (Nuttall Ornithological Club, 1972).
Norman JA, Christidis L, Schodde R. Ecological and evolutionary diversification in the Australo-Papuan scrubwrens (Sericornis) and mouse-warblers (Crateroscelis), with a revision of the subfamily Sericornithinae (Aves: Passeriformes: Acanthizidae) Org. Div. Evol. 2018;18:241–259.
Weisenfeld NI, Kumar V, Shah P, Church DM, Jaffe DB. Direct determination of diploid genome sequences. Genome Res. 2017;27:757–767. PubMed PMC
Ewels PA, et al. The nf-core framework for community-curated bioinformatics pipelines. Nat. Biotechnol. 2020;38:276–278. PubMed
Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29:1072–1075. PubMed PMC
Seppey, M., Manni, M. & Zdobnov, E. M. in Gene Prediction. Methods and protocols (ed. Kollmar M.). (Humana Press, 2019).
Bolger AM, Lohse M, Usabel B. Trimmomatic: a flexible trimmer for Illumina sequence. Bioinformatics. 2014;30:2114–2120. PubMed PMC
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760. PubMed PMC
Broad Institute. The Picard toolkit. Github Repository. http://broadinstitute.github.io/picard. (2018).
Li H, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–2079. PubMed PMC
Danecek P, et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–2158. PubMed PMC
Purcell S, et al. PLINK: a toolset for whole-genome association and population based linkage analysis. Am. J. Hum. Genet. 2007;81:559–575. PubMed PMC
Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution. 1984;38:1358–1370. PubMed
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020).
Meisner J, Albrechtsen A. A. Inferring population structure and admixture proportions in low-depth NGS data. Genetics. 2018;210:719–731. PubMed PMC
Pritchard JK, Stephens M, Donelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–959. PubMed PMC
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 2005;14:2611–2620. PubMed
Sam K, Koane B. New avian records along the elevational gradient of Mt. Wilhelm, Papua New Guinea. Bull. BOC. 2014;134:116–133.
Marki PZ, et al. New and noteworthy bird records from the Mt. Wilhelm elevational gradient, Papua New Guinea. Bull. BOC. 2016;136:263–271.
Nadachowska‐Brzyska K, Li C, Smeds L, Zhang G, Ellegren H. Temporal dynamics of avian populations during Pleistocene revealed by whole‐genome sequences. Curr. Biol. 2015;15:1–6. PubMed PMC
Akaike H. A new look at the statistical model identification. IEEE Trans. Autom. Control. 1974;19:716–723.
del Hoyo, J. et al (Eds.). Handbook of the Birds of the World Alive. (Lynx Edicions 2019).