Cophylogeny, narrow host breadth and local conditions drive highly specialized bird-haemosporidian associations in West-Central African sky islands
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Charles University SVV project
Grantová Agentura České Republiky
Carlsbergfondet
PubMed
39837510
PubMed Central
PMC11750387
DOI
10.1098/rspb.2024.2524
Knihovny.cz E-zdroje
- Klíčová slova
- Cameroon, avian malaria, parasite island syndrome, parasite–host networks, taxon cycles,
- MeSH
- fylogeneze MeSH
- Haemosporida * fyziologie MeSH
- hostitelská specificita MeSH
- interakce hostitele a parazita * MeSH
- nemoci ptáků * parazitologie epidemiologie MeSH
- ostrovy MeSH
- protozoální infekce zvířat * parazitologie epidemiologie MeSH
- ptáci * parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Kamerun MeSH
- ostrovy MeSH
The parasite island syndrome denotes shifts in parasite life histories on islands, which affect parasite diversity, prevalence and specificity. However, current evidence of parasite island syndromes mainly stems from oceanic islands, while sky islands (i.e. mountains isolated by surrounding low-elevation habitats) have received limited attention. To explore the parasite syndrome in Afrotropical sky islands, we examined haemosporidian blood parasites and their bird hosts in two Afromontane regions in Cameroon. Analysing more than 1300 bird blood samples from the Bamenda Highlands and Mount Cameroon, we found considerably reduced parasite lineage diversity and total prevalence in Mt Cameroon, but not in the Bamenda Highlands. We found highly specific parasite-host interactions at both sites and these associations showed significant phylogenetic congruence, suggesting that closely related parasites infect phylogenetically related hosts. These parasite-host associations tend to be shaped mainly by duplications, switches, losses and failures to diverge rather than through co-speciation events. Overall, the high specificity and parasite-host association differences at local scales largely agree with the limited insights from other sky islands. Yet the drivers of these interactions differ geographically, suggesting that unique dynamics of fragmentation and isolation of montane habitats can lead to similar patterns of host-parasite interactions that are shaped by different underlying drivers.
Department of Bioinformatics and Genetics Swedish Museum of Natural History Stockholm Sweden
Department of Biology University of Oxford Oxford UK
Department of Ecology Faculty of Science Charles University Prague Czech Republic
Department of Zoology Faculty of Science Charles University Prague Czech Republic
Institute of Agricultural Research for Development Messa Yaoundé Cameroon
Institute of Vertebrate Biology Czech Academy of Sciences Brno Czech Republic
Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
Zobrazit více v PubMed
Baeckens S, Van Damme R. 2020. The island syndrome. Curr. Biol. 30, R338–R339. (10.1016/j.cub.2020.03.029) PubMed DOI
Cowie RH, Holland BS. 2006. Dispersal is fundamental to biogeography and the evolution of biodiversity on oceanic islands. J. Biogeogr. 33, 193–198. (10.1111/j.1365-2699.2005.01383.x) DOI
Hutsemékers V, Szövényi P, Shaw AJ, González-Mancebo JM, Muñoz J, Vanderpoorten A. 2011. Oceanic islands are not sinks of biodiversity in spore-producing plants. Proc. Natl Acad. Sci. USA 108, 18989–18994. (10.1073/pnas.1109119108) PubMed DOI PMC
Paulay G. 1994. Biodiversity on oceanic islands: its origin and extinction. Am. Zool. 34, 134–144. (10.1093/icb/34.1.134) DOI
Smyčka J, Toszogyova A, Storch D. 2023. The relationship between geographic range size and rates of species diversification. Nat. Commun. 14, 5559. (10.1038/s41467-023-41225-6) PubMed DOI PMC
Ricklefs RE, Lovette IJ. 1999. The roles of island area per se and habitat diversity in the species–area relationships of four Lesser Antillean faunal groups. J. Anim. Ecol. 68, 1142–1160. (10.1046/j.1365-2656.1999.00358.x) DOI
Pérez‐Rodríguez A, Ramírez Á, Richardson DS, Pérez‐Tris J. 2013. Evolution of parasite island syndromes without long‐term host population isolation: parasite dynamics in Macaronesian blackcaps Sylvia atricapilla. Glob. Ecol. Biogeogr. 22, 1272–1281. (10.1111/geb.12084) DOI
Paterson AM, Palma RL, Gray RD. 2003. Drowning on arrival, missing the boat, and x-events: how likely are sorting events. In Tangled trees: phylogeny, cospeciation, and coevolution (ed. Page RDM), pp. 287–309. Chicago, IL: University of Chicago Press.
MacLeod CJ, Paterson AM, Tompkins DM, Duncan RP. 2010. Parasites lost—do invaders miss the boat or drown on arrival? Ecol. Lett. 13, 516–527. (10.1111/j.1461-0248.2010.01446.x) PubMed DOI
Ewen JG, Bensch S, Blackburn TM, Bonneaud C, Brown R, Cassey P, Clarke RH, Pérez-Tris J. 2012. Establishment of exotic parasites: the origins and characteristics of an avian malaria community in an isolated island avifauna. Ecol. Lett. 15, 1112–1119. (10.1111/j.1461-0248.2012.01833.x) PubMed DOI
Bodawatta KH, et al. . 2020. Spatiotemporal patterns of avian host–parasite interactions in the face of biogeographical range expansions. Mol. Ecol. 29, 2431–2448. (10.1111/mec.15486) PubMed DOI
Nieberding C, Morand S, Libois R, Michaux JR. 2006. Parasites and the island syndrome: the colonization of the western Mediterranean islands by Heligmosomoides polygyrus (Dujardin, 1845). J. Biogeogr. 33, 1212–1222. (10.1111/j.1365-2699.2006.01503.x) DOI
Illera JC, Fernández‐Álvarez Á, Hernández‐Flores CN, Foronda P. 2015. Unforeseen biogeographical patterns in a multiple parasite system in Macaronesia. J. Biogeogr. 42, 1858–1870. (10.1111/jbi.12548) DOI
de Bellocq JG, Sarà M, Casanova JC, Feliu C, Morand S. 2003. A comparison of the structure of helminth communities in the woodmouse, Apodemus sylvaticus, on islands of the western Mediterranean and continental Europe. Parasitol. Res. 90, 64–70. (10.1007/s00436-002-0806-1) PubMed DOI
Beadell JS, et al. . 2006. Global phylogeographic limits of Hawaii’s avian malaria. Proc. R. Soc. B 273, 2935–2944. (10.1098/rspb.2006.3671) PubMed DOI PMC
López-Darias M, Ribas A, Feliú C. 2008. Helminth parasites in native and invasive mammal populations: comparative study on the Barbary ground squirrel Atlantoxerus getulus L. (Rodentia, Sciuridae) in Morocco and the Canary Islands. Acta Parasitol. 53. (10.2478/s11686-008-0036-5) DOI
Hellgren O, Križanauskienė A, Hasselquist D, Bensch S. 2011. Low haemosporidian diversity and one key-host species in a bird malaria community on a mid-Atlantic island (Sao Miguel, Azores). J. Wildl. Dis. 47, 849–859. (10.7589/0090-3558-47.4.849) PubMed DOI
Padilla DP, Illera JC, Gonzalez-Quevedo C, Villalba M, Richardson DS. 2017. Factors affecting the distribution of haemosporidian parasites within an oceanic island. Int. J. Parasitol. 47, 225–235. (10.1016/j.ijpara.2016.11.008) PubMed DOI
Tomás A, Pereira da Fonseca I, Valkenburg T, Rebelo MT. 2021. Louse flies in Azorean and mainland populations of four Passeriformes species: a new perspective to parasite Island syndromes. Int. J. Parasitol. 14, 33–40. (10.1016/j.ijppaw.2020.12.004) PubMed DOI PMC
Tomás A, Pereira da Fonseca I, Valkenburg T, Rebelo MT. 2022. Parasite island syndromes in the context of nidicolous ectoparasites: fleas (Insecta: Siphonaptera) in wild passerine birds from Azores Archipelago. Parasitol. Int. 89, 102564. (10.1016/j.parint.2022.102564) PubMed DOI
Wilson EO. 1961. The nature of the taxon cycle in the Melanesian ant fauna. Am. Nat. 95, 169–193. (10.1086/282174) DOI
Ricklefs RE, Cox GW. 1972. Taxon cycles in the West Indian avifauna. Am. Nat. 106, 195–219. (10.1086/282762) DOI
Loiseau C, Melo M, Lobato E, Beadell JS, Fleischer RC, Reis S, Doutrelant C, Covas R. 2017. Insularity effects on the assemblage of the blood parasite community of the birds from the Gulf of Guinea. J. Biogeogr. 44, 2607–2617. (10.1111/jbi.13060) PubMed DOI PMC
Fjeldså J, Bowie RCK, Rahbek C. 2012. The role of mountain ranges in the diversification of birds. Annu. Rev. Ecol. Evol. Syst. 43, 249–265. (10.1146/annurev-ecolsys-102710-145113) DOI
Kennedy JD, et al. . 2022. Diversification and community assembly of the world’s largest tropical island. Glob. Ecol. Biogeogr. 31, 1078–1089. (10.1111/geb.13484) DOI
Flantua SGA, et al. . 2020. Snapshot isolation and isolation history challenge the analogy between mountains and islands used to understand endemism. Glob. Ecol. Biogeogr. 29, 1651–1673. (10.1111/geb.13155) DOI
Pujolar JM, et al. . 2022. The formation of avian montane diversity across barriers and along elevational gradients. Nat. Commun. 13, 268. (10.1038/s41467-021-27858-5) PubMed DOI PMC
Janzen DH. 1967. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249. (10.1086/282487) DOI
Vázquez DP, Stevens RD. 2004. The latitudinal gradient in niche breadth: concepts and evidence. Am. Nat. 164, E1–19. (10.1086/421445) PubMed DOI
Schemske DW, Mittelbach GG, Cornell HV, Sobel JM, Roy K. 2009. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 40, 245–269. (10.1146/annurev.ecolsys.39.110707.173430) DOI
Brown JH. 2014. Why are there so many species in the tropics? J. Biogeogr. 41, 8–22. (10.1111/jbi.12228) PubMed DOI PMC
Santiago-Alarcon D, Whiteman NK, Parker PG, Ricklefs RE, Valkiūnas G. 2008. Patterns of parasite abundance and distribution in island populations of Galápagos endemic birds. J. Parasitol. 94, 584. (10.1645/ge-1351r.1) PubMed DOI
Ricklefs RE, Dodge Gray J, Latta SC, Svensson-Coelho M. 2011. Distribution anomalies in avian haemosporidian parasites in the southern Lesser Antilles. J. Avian Biol. 42, 570–584. (10.1111/j.1600-048x.2011.05404.x) DOI
Cornuault J, Bataillard A, Warren BH, Lootvoet A, Mirleau P, Duval T, Milá B, Thébaud C, Heeb P. 2012. The role of immigration and in‐situ radiation in explaining blood parasite assemblages in an island bird clade. Mol. Ecol. 21, 1438–1452. (10.1111/j.1365-294X.2012.05483.x) PubMed DOI
Spurgin LG, Illera JC, Padilla DP, Richardson DS. 2012. Biogeographical patterns and co-occurrence of pathogenic infection across island populations of Berthelot’s pipit (Anthus berthelotii). Oecologia 168, 691–701. (10.1007/s00442-011-2149-z) PubMed DOI
Fecchio A, Batalha-Filho H, Dispoto JH, Bell JA, Weckstein JD. 2023. Distinct biogeographic processes and areas of endemism contributed differentially to Plasmodium and Parahaemoproteus community assembly on Marajó Island. Mol. Phylogenetics Evol. 186, 107828. (10.1016/j.ympev.2023.107828) PubMed DOI
Fallon SM, Bermingham E, Ricklefs RE. 2003. Island and taxon effects in parasitism revisited: avian malaria in the Lesser Antilles. Evol. Int. J. Org. Evol. 57, 606–615. (10.1111/j.0014-3820.2003.tb01552.x) PubMed DOI
Pellegrino I, Ilahiane L, Boano G, Cucco M, Pavia M, Prestridge HL, Voelker G. 2021. Avian haemosporidian diversity on Sardinia: a first general assessment for the insular Mediterranean. Diversity 13, 75. (10.3390/d13020075) DOI
Starkloff NC, Turner WC, FitzGerald AM, Oftedal MC, Martinsen ES, Kirchman JJ. 2021. Disentangling the effects of host relatedness and elevation on haemosporidian parasite turnover in a clade of songbirds. Ecosphere 12, e03497. (10.1002/ecs2.3497) DOI
Gupta P, Vishnudas CK, Ramakrishnan U, Robin VV, Dharmarajan G. 2019. Geographical and host species barriers differentially affect generalist and specialist parasite community structure in a tropical sky-island archipelago. Proc. R. Soc. B 286, 20190439. (10.1098/rspb.2019.0439) PubMed DOI PMC
Gupta P, Vishnudas CK, Robin VV, Dharmarajan G. 2020. Host phylogeny matters: examining sources of variation in infection risk by blood parasites across a tropical montane bird community in India. Parasites Vectors 13, 536. (10.1186/s13071-020-04404-8) PubMed DOI PMC
Barrow LN, et al. . 2021. Detecting turnover among complex communities using null models: a case study with sky-island haemosporidian parasites. Oecologia 195, 435–451. (10.1007/s00442-021-04854-6) PubMed DOI
Marroquin-Flores RA, et al. . 2017. Diversity, abundance, and host relationships of avian malaria and related haemosporidians in New Mexico pine forests. PeerJ 5, e3700. (10.7717/peerj.3700) PubMed DOI PMC
Barrow LN, McNew SM, Mitchell N, Galen SC, Lutz HL, Skeen H, Valqui T, Weckstein JD, Witt CC. 2019. Deeply conserved susceptibility in a multi‐host, multi‐parasite system. Ecol. Lett. 22, 987–998. (10.1111/ele.13263) PubMed DOI
McNew SM, et al. . 2021. Contrasting drivers of diversity in hosts and parasites across the tropical Andes. Proc. Natl Acad. Sci. USA 118, e2010714118. (10.1073/pnas.2010714118) PubMed DOI PMC
Clark NJ, Clegg SM, Lima MR. 2014. A review of global diversity in avian haemosporidians (Plasmodium and Haemoproteus: Haemosporida): new insights from molecular data. Int. J. Parasitol. 44, 329–338. (10.1016/j.ijpara.2014.01.004) PubMed DOI
Vinagre-Izquierdo C, Bodawatta KH, Chmel K, Renelies-Hamilton J, Paul L, Munclinger P, Poulsen M, Jønsson KA. 2022. The drivers of avian‐haemosporidian prevalence in tropical lowland forests of New Guinea in three dimensions. Ecol. Evol. 12, e8497. (10.1002/ece3.8497) PubMed DOI PMC
Ellis VA, et al. . 2020. Explaining prevalence, diversity and host specificity in a community of avian haemosporidian parasites. Oikos 129, 1314–1329. (10.1111/oik.07280) DOI
Reif J, Hořák D, Sedláček O, Riegert J, Pešata M, Hrázský Z, Janeček Š, Storch D. 2006. Unusual abundance–range size relationship in an Afromontane bird community: the effect of geographical isolation? J. Biogeogr. 33, 1959–1968. (10.1111/j.1365-2699.2006.01547.x) DOI
Nana ED, Sedláček O, Bayly N, Ferenc M, Albrecht T, Reif J, Motombi FN, Hořák D. 2014. Comparison of avian assemblage structures in two upper montane forests of the Cameroon volcanic line: lessons for bird conservation. Biodivers. Conserv. 23, 1469–1484. (10.1007/s10531-014-0677-7) DOI
Languy M. 2019. The birds of Cameroon: their status and distribution. Tervuren, Belgium: Royal Museum for Central Africa.
Hellgren O, Waldenström J, Bensch S. 2004. A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. J. Parasitol. 90, 797–802. (10.1645/GE-184R1) PubMed DOI
Bensch S, Hellgren O, Pérez-Tris J. 2009. MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol. Ecol. Resour. 9, 1353–1358. (10.1111/j.1755-0998.2009.02692.x) PubMed DOI
Drummond AJ, Suchard MA, Xie D, Rambaut A. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973. (10.1093/molbev/mss075) PubMed DOI PMC
Rambaut A, Suchard MA, Xie D, Drummond AJ. 2014. Tracer v1.6. See http://beast.bio.ed.ac.uk/Tracer.
R Core Team . 2020. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. See https://www.R-project.org.
Fox J, Weisberg S. 2019. An R companion to applied regression. Thousand Oaks, CA: Sage Publications.
Dormann CF, Gruber B, Fründ J. 2008. Introducing the bipartite package: analysing ecological networks. R. News 8, 8–11. (10.32614/CRAN.package.bipartite) DOI
Svensson-Coelho M, Ellis VA, Loiselle BA, Blake JG, Ricklefs RE. 2014. Reciprocal specialization in multihost malaria parasite communities of birds: a temperate-tropical comparison. Am. Nat. 184, 624–635. (10.1086/678126) PubMed DOI
Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO. 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464. (10.1093/bioinformatics/btq166) PubMed DOI
Oksanen J, et al. . 2022. vegan: community ecology package. R package version 2.6-4. See https://github.com/vegandevs/vegan.
Jombart T, Dray S. 2008. adephylo: exploratory analyses for the phylogenetic comparative method. See http://pbil.univ-lyon1.fr/ADE-4/ home.php?lang=eng.
Hutchinson MC, Cagua EF, Balbuena JA, Stouffer DB, Poisot T. 2017. paco: implementing Procrustean approach to cophylogeny in R. Methods Ecol. Evol. 8, 932–940. (10.1111/2041-210x.12736) DOI
Paradis E, Schliep K. 2019. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528. (10.1093/bioinformatics/bty633) PubMed DOI
Conow C, Fielder D, Ovadia Y, Libeskind-Hadas R. 2010. Jane: a new tool for the cophylogeny reconstruction problem. Algorithms Mol. Biol. 5, 16. (10.1186/1748-7188-5-16) PubMed DOI PMC
Puttick M, Thomas G, Freckleton R, Clarke M, Ingram T, Orme Det al. . 2019. Models of trait macroevolution on trees, v. 2.1.3. See https://puttickbiology.wordpress.com/motmot/.
Li D, Dinnage R, Nell LA, Helmus MR, Ives AR. 2020. phyr: an R package for phylogenetic species‐distribution modelling in ecological communities. Methods Ecol. Evol. 11, 1455–1463. (10.1111/2041-210x.13471) DOI
Brown LH, Urban EK, Newman KB, Woodcock M, Hayman P. 1982. The birds of Africa, vol. 1. London, UK: Academic Press.
Urban EK, Fry CH, Keith S. 1986. The birds of Africa, vol. 2. London, UK: Academic Press.
Fry CH, Keith S, Urban EK. 1988. The birds of Africa, vol. 3. London, UK: Academic Press.
Keith S, Urban EK, Fry CH. 1992. The birds of Africa, vol. 4. London, UK: Academic Press.
Urban EK, Fry CH, Keith S. 1997. The birds of Africa, vol. 5. London, UK: Academic Press.
Fry CH, Keith S. 2000. The birds of Africa, vol. 6. London, UK: Academic Press.
Fry CH, Keith S. 2004. The birds of Africa, vol. 7. London, UK: Academic Press.
Burke K. 2001. Origin of the Cameroon Line of Volcano‐Capped Swells. J. Geol. 109, 349–362. (10.1086/319977) DOI
Reusch AM, Nyblade AA, Wiens DA, Shore PJ, Ateba B, Tabod CT, Nnange JM. 2010. Upper mantle structure beneath Cameroon from body wave tomography and the origin of the Cameroon Volcanic Line. Geochem. Geophys. Geosyst. 11, Q10W07. (10.1029/2010gc003200) DOI
Klutse NAB, Quagraine KA, Nkrumah F, Quagraine KT, Berkoh-Oforiwaa R, Dzrobi JF, Sylla MB. 2021. The climatic analysis of summer monsoon extreme precipitation events over West Africa in CMIP6 simulations. Earth Syst. Environ. 5, 25–41. (10.1007/s41748-021-00203-y) DOI
Proctor J, Edwards ID, Payton RW, Nagy L. 2007. Zonation of forest vegetation and soils of Mount Cameroon, West Africa. Plant Ecol. 192, 251–269. (10.1007/s11258-007-9326-5) DOI
Reiter ME, LaPointe DA. 2009. Larval habitat for the avian malaria vector Culex quinquefasciatus (Diptera: Culicidae) in altered mid-elevation mesic-dry forests in Hawai’i. J. Vector Ecol. 34, 208–216. (10.3376/038.034.0206) PubMed DOI
Belo NO, Pinheiro RT, Reis ES, Ricklefs RE, Braga ÉM. 2011. Prevalence and lineage diversity of avian haemosporidians from three distinct cerrado habitats in Brazil. PloS One 6, e17654. (10.1371/journal.pone.0017654) PubMed DOI PMC
Rivero de Aguilar J, Castillo F, Moreno A, Peñafiel N, Browne L, Walter ST, Karubian J, Bonaccorso E. 2018. Patterns of avian haemosporidian infections vary with time, but not habitat, in a fragmented Neotropical landscape. PLoS One 13, e0206493. (10.1371/journal.pone.0206493) PubMed DOI PMC
Chasar A, Loiseau C, Valkiūnas G, Iezhova T, Smith TB, Sehgal RNM. 2009. Prevalence and diversity patterns of avian blood parasites in degraded African rainforest habitats. Mol. Ecol. 18, 4121–4133. (10.1111/j.1365-294X.2009.04346.x) PubMed DOI
Laurance SGW, Jones D, Westcott D, McKeown A, Harrington G, Hilbert DW. 2013. Habitat fragmentation and ecological traits influence the prevalence of avian blood parasites in a tropical rainforest landscape. PloS One 8, e76227. (10.1371/journal.pone.0076227) PubMed DOI PMC
Gajdošová M, Sychra O, Kreisinger J, Sedláček O, Nana ED, Albrecht T, Munclinger P. 2020. Patterns of host–parasite associations in tropical lice and their passerine hosts in Cameroon. Ecol. Evol. 10, 6512–6524. (10.1002/ece3.6386) PubMed DOI PMC
Lutz HL, Hochachka WM, Engel JI, Bell JA, Tkach VV, Bates JM, Hackett SJ, Weckstein JD. 2015. Parasite prevalence corresponds to host life history in a diverse assemblage of Afrotropical birds and haemosporidian parasites. PloS One 10, e0121254. (10.1371/journal.pone.0121254) PubMed DOI PMC
Hellgren O, Pérez-Tris J, Bensch S. 2009. A jack‐of‐all‐trades and still a master of some: prevalence and host range in avian malaria and related blood parasites. Ecology 90, 2840–2849. (10.1890/08-1059.1) PubMed DOI
Gutiérrez-López R, Bourret V, Loiseau C. 2020. Is host selection by mosquitoes driving vector specificity of parasites? A review on the avian malaria model. Front. Ecol. Evol. 8, 569230. (10.3389/fevo.2020.569230) DOI
Svensson-Coelho M, Loiselle BA, Blake JG, Ricklefs RE. 2016. Resource predictability and specialization in avian malaria parasites. Mol. Ecol. 25, 4377–4391. (10.1111/mec.13758) PubMed DOI
Ferenc M, Fjeldså J, Sedláček O, Motombi FN, Djomo Nana E, Mudrová K, Hořák D. 2016. Abundance-area relationships in bird assemblages along an Afrotropical elevational gradient: space limitation in montane forest selects for higher population densities. Oecologia 181, 225–233. (10.1007/s00442-016-3554-0) PubMed DOI
Bodawatta KH. 2024. Data and scripts for: Co-phylogeny, narrow host breadth and local conditions drive highly specialized bird-haemosporidian associations in West-Central African sky islands. Zenodo. (10.5281/zenodo.14249675) PubMed DOI PMC
Bodawatta KH, Albrecht T, Krausová S, Nana ED, Hořák D, Sedláček O. 2025. Supplementary material from: Co-phylogeny, narrow host breadth and local conditions drive highly specialised bird-haemosporidian associations in West-Central African sky islands. Figshare. (10.6084/m9.figshare.c.7622501) PubMed DOI PMC