The drivers of avian-haemosporidian prevalence in tropical lowland forests of New Guinea in three dimensions
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35222943
PubMed Central
PMC8844478
DOI
10.1002/ece3.8497
PII: ECE38497
Knihovny.cz E-zdroje
- Klíčová slova
- Haemoproteus, Normalized Difference Vegetation Index (NDVI), Plasmodium, forest cover, host–parasite networks, vertical stratification,
- Publikační typ
- časopisecké články MeSH
Haemosporidians are among the most common parasites of birds and often negatively impact host fitness. A multitude of biotic and abiotic factors influence these associations, but the magnitude of these factors can differ by spatial scales (i.e., local, regional and global). Consequently, to better understand global and regional drivers of avian-haemosporidian associations, it is key to investigate these associations at smaller (local) spatial scales. Thus, here, we explore the effect of abiotic variables (e.g., temperature, forest structure, and anthropogenic disturbances) on haemosporidian prevalence and host-parasite networks on a horizontal spatial scale, comparing four fragmented forests and five localities within a continuous forest in Papua New Guinea. Additionally, we investigate if prevalence and host-parasite networks differ between the canopy and the understory (vertical stratification) in one forest patch. We found that the majority of Haemosporidian infections were caused by the genus Haemoproteus and that avian-haemosporidian networks were more specialized in continuous forests. At the community level, only forest greenness was negatively associated with Haemoproteus infections, while the effects of abiotic variables on parasite prevalence differed between bird species. Haemoproteus prevalence levels were significantly higher in the canopy, and an opposite trend was observed for Plasmodium. This implies that birds experience distinct parasite pressures depending on the stratum they inhabit, likely driven by vector community differences. These three-dimensional spatial analyses of avian-haemosporidians at horizontal and vertical scales suggest that the effect of abiotic variables on haemosporidian infections are species specific, so that factors influencing community-level infections are primarily driven by host community composition.
Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Conservation and Evolutionary Genetics Group Estación Biológica de Doñana CSIC Sevilla Spain
Department of Zoology Faculty of Science Charles University Prague Czech Republic
Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
New Guinea Binatang Research Centre Madang Papua New Guinea
Section for Ecology and Evolution Department of Biology University of Copenhagen Copenhagen Denmark
Zobrazit více v PubMed
Abella‐Medrano, C. A. , Ibáñez‐Bernal, S. , MacGregor‐Fors, I. , & Santiago‐Alarcon, D. (2015). Spatiotemporal variation of mosquito diversity (Diptera: Culicidae) at places with different land‐use types within a neotropical montane cloud forest matrix. Parasites and Vectors, 8(1). 10.1186/s13071-015-1086-9 PubMed DOI PMC
Afrane, Y. A. , Zhou, G. , Lawson, B. W. , Githeko, A. K. , & Yan, G. (2006). Effects of microclimatic changes caused by deforestation on the survivorship and reproductive fitness of anopheles gambiae in western kenya highlands. The American Journal of Tropical Medicine and Hygiene, 74(5), 772–778. 10.4269/ajtmh.2006.74.772 PubMed DOI
Atkinson, C. T. (2009). Avian Malaria. In Atkinson C. T., Thomas N. J., & Bruce Hunter D. (Eds.), Parasitic diseases of wild birds (pp. 35–53). Wiley‐Blackwell. 10.1002/9780813804620.ch3 DOI
Atoyan, H. A. , Sargsyan, M. , Gevorgyan, H. , Raković, M. , Fadeev, I. , Muradyan, V. , Daryani, A. , Sharif, M. , & Aghayan, S. A. (2018). Determinants of avian malaria prevalence in mountainous Transcaucasia. Biologia, 73(11), 1123–1130. 10.2478/s11756-018-0128-0 DOI
Bates, M. (1944). Observations on the distribution of diurnal mosquitoes in a tropical forest. Ecology, 25(2), 159–170. 10.2307/1930689 DOI
Beck, H. E. , Wood, E. F. , McVicar, T. R. , Zambrano‐Bigiarini, M. , Alvarez‐Garreton, C. , Baez‐Villanueva, O. M. , Sheffield, J. , & Karger, D. N. (2020). Bias correction of global high‐resolution precipitation climatologies using streamflow observations from 9372 catchments. Journal of Climate, 33(4), 1299–1315. 10.1175/JCLI-D-19-0332.1 DOI
Belo, N. O. , Pinheiro, R. T. , Reis, E. S. , Ricklefs, R. E. , & Braga, É. M. (2011). Prevalence and lineage diversity of avian haemosporidians from three distinct cerrado habitats in Brazil. PLoS One, 6(3), e17654. 10.1371/journal.pone.0017654 PubMed DOI PMC
Bensch, S. , Hellgren, O. , & Pérez‐Tris, J. (2009). MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Molecular Ecology Resources, 9(5), 1353–1358. 10.1111/j.1755-0998.2009.02692.x PubMed DOI
Bensch, S. , Stjernman, M. , Hasselquist, D. , Örjan, Ö. , Hannson, B. , Westerdahl, H. , & Pinheiro, R. T. (2000). Host specificity in avian blood parasites: A study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267(1452), 1583–1589. 10.1098/rspb.2000.1181 PubMed DOI PMC
Bensch, S. , Waldenström, J. , Jonzán, N. , Westerdahl, H. , Hansson, B. , Sejberg, D. , & Hasselquist, D. (2007). Temporal dynamics and diversity of avian malaria parasites in a single host species. Journal of Animal Ecology, 76(1), 112–122. 10.1111/j PubMed DOI
Blüthgen, N. , Menzel, F. , & Blüthgen, N. (2006). Measuring specialization in species interaction networks. BMC Ecology, 6(1), 9. 10.1186/1472-6785-6-9 PubMed DOI PMC
Bodawatta, K. H. , Synek, P. , Bos, N. , Garcia‐del‐Rey, E. , Koane, B. , Marki, P. Z. , Albrecht, T. , Lifjeld, J. , Poulsen, M. , Munclinger, P. , Sam, K. , & Jønsson, K. A. (2020). Spatiotemporal patterns of avian host–parasite interactions in the face of biogeographical range expansions. Molecular Ecology, 29(13), 2431–2448. 10.1111/mec.15486 PubMed DOI
Brant, H. L. , Ewers, R. M. , Vythilingam, I. , Drakeley, C. , Benedick, S. , & Mumford, J. D. (2016). Vertical stratification of adult mosquitoes (Diptera: Culicidae) within a tropical rainforest in Sabah, Malaysia. Malaria Journal, 15(1), 370. 10.1186/s12936-016-1416-1 PubMed DOI PMC
Bregman, T. P. , Sekercioglu, C. H. , & Tobias, J. A. (2014). Global patterns and predictors of bird species responses to forest fragmentation: Implications for ecosystem function and conservation. Biological Conservation, 169, 372–383. 10.1016/j.biocon.2013.11.024 DOI
Černý, O. , Votýpka, J. , & Svobodová, M. (2011). Spatial feeding preferences of ornithophilic mosquitoes, blackflies and biting midges. Medical and Veterinary Entomology, 25(1), 104–108. 10.1111/j.1365-2915.2010.00875.x PubMed DOI
Chakarov, N. , Kampen, H. , Wiegmann, A. , Werner, D. , & Bensch, S. (2020). Blood parasites in vectors reveal a united blackfly community in the upper canopy. Parasites & Vectors, 13(1), 309. 10.1186/s13071-020-04177-0 PubMed DOI PMC
Chapa‐Vargas, L. , Matta, N. E. , & Merino, S. (2020). Effects of ecological gradients on tropical avian Hemoparasites. In Santiago‐Alarcón D., & Marzal A. (Eds.), Avian malaria and related parasites in the tropics (pp. 349–377). Springer International Publishing. 10.1007/978-3-030-51633-8_10 DOI
Chasar, A. , Loiseau, C. , Valkiūnas, G. , Iezhova, T. , Smith, T. B. , & Sehgal, R. N. M. (2009). Prevalence and diversity patterns of avian blood parasites in degraded African rainforest habitats. Molecular Ecology, 18(19), 4121–4133. 10.1111/j.1365-294X.2009.04346.x PubMed DOI
Chmel, K. , Riegert, J. , Paul, L. , & Novotný, V. (2016), Vertical stratification of an avian community in New Guinean tropical rainforest. Population Ecology, 58, 535–547. 10.1007/s10144-016-0561-2 DOI
Clark, N. , Drovetski, S. , & Voelker, G. (2020). Robust geographical determinants of infection prevalence and a contrasting latitudinal diversity gradient for haemosporidian parasites in Western Palearctic birds. Molecular Ecology, 29, 3131–3143. 10.1111/mec.15545 PubMed DOI
Clements, A. N. (1999). Biology of mosquitoes, sensory reception and behaviour (Vol. 2). CABI Publishing.
Cosgrove, C. L. , Wood, M. J. , Day, K. P. , & Sheldon, B. C. (2008). Seasonal variation in Plasmodium prevalence in a population of blue tits Cyanistes caeruleus . Journal of Animal Ecology, 77(3), 540–548. 10.1111/j.1365-2656.2008.01370.x PubMed DOI
Crawley, M. J. (2013). The R book, 2nd edn. Imperial College London at Silwood Park. https://onlinelibrary.wiley.com/doi/book/10.1002/9781118448908 DOI
Dormann, C. F. , Gruber, B. , & Fründ, J. (2008). Introducing the bipartite Package: Analysing Ecological Networks. In biom.uni‐freiburg.de (Vol. 8). Retrieved from http://erzuli.ss.uci.edu/R.stuff
Drummond, A. J. , Suchard, M. A. , Xie, D. , & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29(8), 1969–1973. 10.1093/molbev/mss075 PubMed DOI PMC
Ellis, V. A. , Huang, X. I. , Westerdahl, H. , Jönsson, J. , Hasselquist, D. , Neto, J. M. , Nilsson, J.‐Å. , Nilsson, J. , Hegemann, A. , Hellgren, O. , & Bensch, S. (2020). Explaining prevalence, diversity and host specificity in a community of avian haemosporidian parasites. Oikos, 129(9), 1314–1329. 10.1111/oik.07280 DOI
Eppstein, D. , Paterson, M. S. , & Yao, F. F. (1997). On nearest‐neighbor graphs. Discrete and Computational Geometry, 17(3), 263–282. 10.1007/PL00009293 DOI
Ewen, J. G. , Bensch, S. , Blackburn, T. M. , Bonneaud, C. , Brown, R. , Cassey, P. , Clarke, R. H. , & Pérez‐Tris, J. (2012). Establishment of exotic parasites: The origins and characteristics of an avian malaria community in an isolated island avifauna. Ecology Letters, 15(10), 1112–1119. 10.1111/j.1461-0248.2012.01833.x PubMed DOI
Fecchio, A. , Bell, J. A. , Bosholn, M. , Vaughan, J. A. , Tkach, V. V. , Lutz, H. L. , & Clark, N. J. (2020). An inverse latitudinal gradient in infection probability and phylogenetic diversity for Leucocytozoon blood parasites in New World birds. Journal of Animal Ecology, 89(2), 423–435. 10.1111/1365-2656.13117 PubMed DOI
Fecchio, A. , Bell, J. A. , Pinheiro, R. B. P. , Cueto, V. R. , Gorosito, C. A. , Lutz, H. L. , Gaiotti, M. G. , Paiva, L. V. , França, L. F. , Toledo‐Lima, G. , Tolentino, M. , Pinho, J. B. , Tkach, V. V. , Fontana, C. S. , Grande, J. M. , Santillán, M. A. , Caparroz, R. , Roos, A. L. , Bessa, R. , … Collins, M. D. (2019). Avian host composition, local speciation and dispersal drive the regional assembly of avian malaria parasites in South American birds. Molecular Ecology, 28(10), 2681–2693. 10.1111/mec.15094 PubMed DOI
Fecchio, A. , Wells, K. , Bell, J. A. , Tkach, V. V. , Lutz, H. L. , Weckstein, J. D. , Clegg, S. M. , & Clark, N. J. (2019). Climate variation influences host specificity in avian malaria parasites. Ecology Letters, 22(3), 547–557. 10.1111/ele.13215 PubMed DOI
Ferraguti, M. , Martínez‐de la Puente, J. , Bensch, S. , Roiz, D. , Ruiz, S. , Viana, D. S. , Soriguer, R. C. , & Figuerola, J. (2018). Ecological determinants of avian malaria infections: An integrative analysis at landscape, mosquito and vertebrate community levels. Journal of Animal Ecology, 87(3), 727–740. 10.1111/1365-2656.12805 PubMed DOI
Ferreira, F. C. , Santiago‐Alarcon, D. , & Braga, É. M. (2020). Diptera vectors of avian Haemosporidians: With emphasis on tropical regions. In Santiago‐Alarcon D., & Marzal A. (Eds.), Avian malaria and related parasites in the tropics. Springer. 10.1007/978-3-030-51633-8_6 DOI
Fox, J. , & Weisberg, S. (2019). An R Copmanion to Applied Regression (Third). Retrieved from https://cran.r‐project.org/web/packages/car/citation.html
Freed, L. A. , Cann, R. L. , Goff, M. L. , Kuntz, W. A. , Bodner, R. , & Bodner, G. R. (2005). Increase in avian malaria at upper elevation in Hawai’i. The Condor, 107(4), 753–764. 10.1093/condor/107.4.753 DOI
Fridolfsson, A.‐K. , & Ellegren, H. (1999). A simple and universal method for molecular sexing of non‐ratite birds. Journal of Avian Biology, 30, 116. Retrieved from https://www.jstor.org/stable/3677252
García del Río, M. , Castaño‐Vázquez, F. , & Merino, S. (2020). Effects of climate change on bird‐parasite interactions. Ecosistemas, 29(2). 10.7818/ECOS.1981 DOI
Garvin, M. C. , & Greiner, E. C. (2003). Epizootiology of Haemoproteus Danilwskyi (Haemosporina: Haemoproteidae) in Blue Jays (Cyanocitta cristata) in Southcentral Florida. Journal of Wildlife Diseases, 39(1), 1–9. 10.7589/0090-3558-39.1.1 PubMed DOI
Gonzalez‐Quevedo, C. , Davies, R. G. , & Richardson, D. S. (2014). Predictors of malaria infection in a wild bird population: Landscape‐level analyses reveal climatic and anthropogenic factors. Journal of Animal Ecology, 83(5), 1091–1102. 10.1111/1365-2656.12214 PubMed DOI
Grace, J. , & Gates, D. M. (1982). Biophysical Ecology. The Journal of Ecology, 70, 379. 10.2307/2259893 DOI
Hellgren, O. , Pérez‐Tris, J. , & Bensch, S. (2009). A jack‐of‐all‐trades and still a master of some: Prevalence and host range in avian malaria and related blood parasites. Ecology, 90, 2840–2849. 10.1890/08-1059.1 PubMed DOI
Hellgren, O. , Waldenström, J. , & Bensch, S. (2004). A new Pcr assay for simultaneous studies of leucocytozoon, plasmodium, and Haemoproteus from avian blood. Journal of Parasitology, 90(4), 797–802. 10.1645/ge-184r1 PubMed DOI
Henry, L. G. , & Adkins, T. R. (1975). Vertical distribution of biting midges in Coastal South Carolina. Annals of the Entomological Society of America, 68(2), 321–324. 10.1093/aesa/68.2.321 DOI
Hernández‐Lara, C. , González‐García, F. , & Santiago‐Alarcon, D. (2017). Spatial and seasonal variation of avian malaria infections in five different land use types within a Neotropical montane forest matrix. Landscape and Urban Planning, 157, 151–160. 10.1016/J.LANDURBPLAN.2016.05.025 DOI
Illera, J. C. , López, G. , García‐Padilla, L. , & Moreno, Á. (2017). Factors governing the prevalence and richness of avian haemosporidian communities within and between temperate mountains. PLoS One, 12(9), e0184587. 10.1371/journal.pone.0184587 PubMed DOI PMC
Isaksson, C. , Sepil, I. , Baramidze, V. , & Sheldon, B. C. (2013). Explaining variance of avian malaria infection in the wild: The importance of host density, habitat, individual life‐history and oxidative stress. BMC Ecology, 13, 15. 10.1186/1472-6785-13-15 PubMed DOI PMC
Jones, M. R. , Cheviron, Z. A. , & Carling, M. D. (2013). Spatial patterns of avian malaria prevalence in Zonotrichia capensis on the western slope of the peruvian andes. Journal of Parasitology, 99(5), 903–905. 10.1645/12-147.1 PubMed DOI
Jurgiel, B. (2020). Point Sampling Tool ‐ QGIS Python Plugins Repository. Retrieved from https://plugins.qgis.org/plugins/pointsamplingtool/
Karger, D. N. , Conrad, O. , Böhner, J. , Kawohl, T. , Kreft, H. , Soria‐Auza, R. W. , Zimmermann, N. E. , Linder, H. P. , & Kessler, M. (2017). Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4. 10.1038/sdata.2017.122 PubMed DOI PMC
Karger, D. N. , Schmatz, D. R. , Dettling, G. , & Zimmermann, N. E. (2020). High‐resolution monthly precipitation and temperature time series from 2006 to 2100. Scientific Data, 7(1). 10.1038/s41597-020-00587-y PubMed DOI PMC
Kembel, S. W. , Cowan, P. D. , Helmus, M. R. , Cornwell, W. K. , Morlon, H. , Ackerly, D. D. , Blomberg, S. P. , & Webb, C. O. (2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26(11), 1463–1464. 10.1093/bioinformatics/btq166 PubMed DOI
Knowles, S. C. L. , Wood, M. J. , Alves, R. , & Sheldon, B. C. (2014). Dispersal in a patchy landscape reveals contrasting determinants of infection in a wild avian malaria system. Journal of Animal Ecology, 83(2), 429–439. 10.1111/1365-2656.12154 PubMed DOI
Lachish, S. , Knowles, S. C. L. , Alves, R. , Wood, M. J. , & Sheldon, B. C. (2011). Infection dynamics of endemic malaria in a wild bird population: Parasite species‐dependent drivers of spatial and temporal variation in transmission rates. Journal of Animal Ecology, 80(6), 1207–1216. 10.1111/j.1365-2656.2011.01893.x PubMed DOI
Lapointe, D. A. , Atkinson, C. T. , & Samuel, M. D. (2012). Ecology and conservation biology of avian malaria. Annals of the New York Academy of Sciences, 1249(1), 211–226. 10.1111/j.1749-6632.2011.06431.x PubMed DOI
Laurance, S. G. W. , Jones, D. , Westcott, D. , Mckeown, A. , Harrington, G. , & Hilbert, D. W. (2013). Habitat fragmentation and ecological traits influence the prevalence of avian blood parasites in a tropical rainforest landscape. PLoS One, 8(10), e76227. 10.1371/journal.pone.0076227 PubMed DOI PMC
Li, D. , Dinnage, R. , Nell, L. R. , Helmus, M. R. , & Ives, A. R. (2020). phyr: An r package for phylogenetic species‐distribution modelling in ecological communities. Methods in Ecology and Evolution, 11, 1455–1463. 10.1111/2041-210X.13471 DOI
Lima, M. R. , & Pérez‐Tris, J. (2020). Host specialization and dispersal in avian Haemosporidians. In Santiago‐Alarcon D., & Marzal A. (Eds.), Avian malaria and related parasites in the tropics. Springer. 10.1007/978-3-030-51633-8_11 DOI
Loiseau, C. , Iezhova, T. , Valkiūnas, G. , Chasar, A. , Hutchinson, A. , Buermann, W. , Smith, T. B. , & Sehgal, R. N. M. (2010). Spatial variation of Haemosporidian parasite infection in African rainforest bird species. Journal of Parasitology, 96(1), 21–29. 10.1645/ge-2123.1 PubMed DOI
Lutz, H. L. , Hochachka, W. M. , Engel, J. I. , Bell, J. A. , Tkach, V. V. , Bates, J. M. , Hackett, S. J. , & Weckstein, J. D. (2015). Parasite prevalence corresponds to host life history in a diverse assemblage of afrotropical birds and haemosporidian parasites. PLoS One, 10(4), e0121254. 10.1371/journal.pone.0121254 PubMed DOI PMC
Mangudo, C. , Aparicio, J. P. , Rossi, G. C. , & Gleiser, R. M. (2017). Tree hole mosquito species composition and relative abundances differ between urban and adjacent forest habitats in northwestern Argentina. Bulletin of Entomological Research, 108(2), 203–212. 10.1017/S0007485317000700 PubMed DOI
Marzal, A. , García‐Longoria, L. , Cárdenas Callirgos, J. M. , & Sehgal, R. N. M. (2015). Invasive avian malaria as an emerging parasitic disease in native birds of Peru. Biological Invasions, 17(1), 39–45. 10.1007/s10530-014-0718-x DOI
Mendenhall, C. D. , Archer, H. M. , Brenes, F. O. , Sekercioglu, C. H. , & Sehgal, R. N. M. (2013). Balancing biodiversity with agriculture: Land sharing mitigates avian malaria prevalence. Conservation Letters, 6(2), 125–131. 10.1111/j.1755-263X.2012.00302.x DOI
Myneni, R. B. , Hall, F. G. , Sellers, P. J. , & Marshak, A. L. (1995). The interpretation of spectral vegetation indexes. IEEE Transactions on Geoscience and Remote Sensing, 33(2), 481–486. 10.1109/TGRS.1995.8746029 DOI
Olsson‐Pons, S. , Clark, N. J. , Ishtiaq, F. , & Clegg, S. M. (2015). Differences in host species relationships and biogeographic influences produce contrasting patterns of prevalence, community composition and genetic structure in two genera of avian malaria parasites in southern Melanesia. Journal of Animal Ecology, 84(4), 985–998. 10.1111/1365-2656.12354 PubMed DOI
Padilla, D. P. , Illera, J. C. , Gonzalez‐Quevedo, C. , Villalba, M. , & Richardson, D. S. (2017). Factors affecting the distribution of haemosporidian parasites within an oceanic island. International Journal for Parasitology, 47(4), 225–235. 10.1016/j.ijpara.2016.11.008 PubMed DOI
Pinheiro, R. B. P. , Félix, G. M. F. , Chaves, A. V. , Lacorte, G. A. , Santos, F. R. , Braga, É. M. , & Mello, M. A. R. (2016). Trade‐offs and resource breadth processes as drivers of performance and specificity in a host‐parasite system: A new integrative hypothesis. International Journal for Parasitology, 46(2), 115–121. 10.1016/j.ijpara.2015.10.002 PubMed DOI
Poulin, R. (1998). Evolutionary ecology of parasites. Chapman & Hall.
Poulin, R. (1999). The functional importance of parasites in animal communities: Many roles at many levels? International Journal for Parasitology, 29(6), 903–914. 10.1016/S0020-7519(99)00045-4 PubMed DOI
QGIS Geographic Information System. QGIS Association . (2016). QGIS.org. Retrieved from https://www.qgis.org
Qin, C. ‐Z. , & Zhu, L. ‐J. (2020). GDAL/OGR and Geospatial Data IO Libraries. Geographic Information Science & Technology Body of Knowledge, 2020(Q4). 10.22224/gistbok/2020.4.1 DOI
R Core Team (2020). R: A Language and Environment for statistical computing. In pbil.univ‐lyon1.fr. 10.1016/j.dendro.2008.01.002 DOI
Rambaut, A. , & Drummond, A. J. (2015). TreeAnnotator v1.8.2: MCMC Output analysis. http://beast.bio.ed.ac.uk
Ricklefs, R. E. , & Fallon, S. M. (2002). Diversification and host switching in avian malaria parasites. Proceedings of the Royal Society of London. Series B: Biological Sciences, 269(1494), 885–892. https://royalsocietypublishing.org/doi/pdf/10.1098/rspb.2001.1940?casa_token=lAr0k8RJBeAAAAAA:EPSrcJaS8bJbJn9d2xOrmKU1Tdqqfm1FpTdV9Gb4Z5Gu9hhbb9gR290u1gPvJP‐L7MGOcKnHRDLj PubMed DOI PMC
Ricklefs, R. E. , Swanson, B. L. , Fallon, S. M. , MartÍnez‐AbraÍn, A. , Scheuerlein, A. , Gray, J. , & Latta, S. C. (2005). Community relationships of avian malaria parasites in southern Missouri. Ecological Monographs, 75(4), 543–559. 10.1890/04-1820 DOI
Rivero, A. , & Gandon, S. (2018). Evolutionary ecology of avian malaria: Past to present. Trends in Parasitology, 34(8), 712–726. 10.1016/j.pt.2018.06.002 PubMed DOI
Rivero de Aguilar, J. , Castillo, F. , Moreno, A. , Peñafiel, N. , Browne, L. , Walter, S. T. , Karubian, J. , & Bonaccorso, E. (2018). Patterns of avian haemosporidian infections vary with time, but not habitat, in a fragmented Neotropical landscape. PLoS One, 13(10), e0206493. 10.1371/journal.pone.0206493 PubMed DOI PMC
Roiz, D. , Ruiz, S. , Soriguer, R. , & Figuerola, J. (2015). Landscape effects on the presence, abundance and diversity of mosquitoes in mediterranean wetlands. PLoS One, 10(6), 128112. 10.1371/journal.pone.0128112 PubMed DOI PMC
Sam, K. , Koane, B. , Jeppy, S. , & Novotny, V. (2014). Effect of forest fragmentation on bird species richness in Papua New Guinea. Journal of Field Ornithology, 85(2), 152–167. 10.1111/jofo.12057 DOI
Samuel, M. D. , Woodworth, B. L. , Atkinson, C. T. , Hart, P. J. , & LaPointe, D. A. (2015). Avian malaria in Hawaiian forest birds: Infection and population impacts across species and elevations. Ecosphere, 6(6), 1–21. 10.1890/ES14-00393.1 DOI
Santiago‐Alarcon, D. , MacGregor‐Fors, I. , Falfán, I. , Lüdtke, B. , Segelbacher, G. , Schaefer, H. M. , & Renner, S. (2019). Parasites in space and time: A case study of haemosporidian spatiotemporal prevalence in urban birds. International Journal for Parasitology, 49(3–4), 235–246. 10.1016/j.ijpara.2018.08.009 PubMed DOI
Schloerke, B. , Cook, D. , Larmarange, J. , Briatte, F. , Marbach, M. , Thoen, E. , Wickham, H. (2019). GGally: Extension to ggplot2. Comprehensive R Archive Network (CRAN). Retrieved from https://cran.r‐project.org/package=GGallyhttps://ggobi.github.io/ggally/
Sebaio, F. , Braga, É. M. , Branquinho, F. , Fecchio, A. , & Marini, M. Â. (2012). Blood parasites in passerine birds from the Brazilian Atlantic Forest. Revista Brasileira De Parasitologia Veterinaria, 21(1), 7–15. 10.1590/s1984-29612012000100003 PubMed DOI
Sehgal, R. N. M. (2010). Deforestation and avian infectious diseases. Journal of Experimental Biology, 213(6), 955–960. 10.1242/jeb.037663 PubMed DOI PMC
Sehgal, R. N. M. (2015). Manifold habitat effects on the prevalence and diversity of avian blood parasites. International Journal for Parasitology: Parasites and Wildlife, 4(3), 421–430. 10.1016/j.ijppaw.2015.09.001 PubMed DOI PMC
Soares, L. , Latta, S. C. , & Ricklefs, R. E. (2017). Dynamics of avian haemosporidian assemblages through millennial time scales inferred from insular biotas of the West Indies. Proceedings of the National Academy of Sciences, 114(25), 6635–6640. 10.1073/pnas.1702512114 PubMed DOI PMC
Suchard, M. A. , Lemey, P. , Baele, G. , Ayres, D. L. , Drummond, A. J. , & Rambaut, A. (2018). Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution, 4(1). 10.1093/ve/vey016 PubMed DOI PMC
Svensson‐Coelho, M. , Ellis, V. A. , Loiselle, B. A. , Blake, J. G. , & Ricklefs, R. E. (2014). Reciprocal specialization in multihost malaria parasite communities of birds: A temperate‐tropical comparison. The American Naturalist, 184(5), 624–635. 10.1086/678126 PubMed DOI
Swanson, D. A. , & Adler, P. H. (2010). Vertical distribution of haematophagous Diptera in temperate forests of the southeastern U.S.A. Medical and Veterinary Entomology, 24(2), 182–188. 10.1111/j.1365-2915.2010.00862.x PubMed DOI
Swanson, D. A. , Adler, P. H. , & Malmqvist, B. (2012). Spatial stratification of host‐seeking Diptera in boreal forests of northern Europe. Medical and Veterinary Entomology, 26(1), 56–62. 10.1111/j.1365-2915.2011.00963.x PubMed DOI
Thioulouse, J. , Dray, S. , Dufour, A. , Siberchicot, A. , Jombart, T. , & Pavoine, S. (2018). Multivariate analysis of ecological data with ade4. Springer. 10.1007/978-1-4939-8850-1 DOI
Tveite, H. (2019). The QGIS NNJoin Plugin — NNJoin 3.1.3 documentation. Retrieved from http://arken.nmbu.no/~havatv/gis/qgisplugins/NNJoin/
Valkiūnas, G. (2005). Avian malaria parasites and other haemosporidia. In Igarss, 2014. 10.1007/s13398-014-0173-7.2 DOI
Van Hoesel, W. , Santiago‐Alarcón, D. , Marzal, A. , & Renner, S. C. (2020). Effects of forest structure on the interaction between avian hosts, dipteran vectors and haemosporidian parasites. BMC Ecology, 20(1), 1–13. 10.1186/s12898-020-00315-5 PubMed DOI PMC
Villar Couto, C. M. , Cumming, G. S. , Lacorte, G. A. , Congrains, C. , Izbicki, R. , Braga, E. M. , Rocha, C. D. , Moralez‐Silva, E. , Henry, D. A. W. , Manu, S. A. , Abalaka, J. , Regalla, A. , da Silva, A. S. , Diop, M. S. , & Del Lama, S. N. (2019). Avian haemosporidians in the cattle egret (Bubulcus ibis) from central‐western and southern Africa: High diversity and prevalence. PLoS One, 14(2), 1–16. 10.1371/journal.pone.0212425 PubMed DOI PMC
Vincenzo, E. A. , Bensch, S. , & Canbäck, B. (2017). malaviR: An R interface to MalAvi. R package version 0.1.0. https://github.com/vincenzoaellis/malaviR
Waldenström, J. , Bensch, S. , Hasselquist, D. , & Östman, Ö. (2004). A New Nested Polymerase Chain Reaction Method Very Efficient in Detecting Plasmodium and Haemoproteus Infections From Avian Blood. Journal of Parasitology, 90(1), 191–194. 10.1645/ge-3221rn PubMed DOI
Wood, M. J. , Cosgrove, C. L. , Wilkin, T. A. , Knowles, S. C. L. , Day, K. P. , & Sheldon, B. C. (2007). Within‐population variation in prevalence and lineage distribution of avian malaria in blue tits, Cyanistes caeruleus . Molecular Ecology, 16, 3263–3273. PubMed
Zamora‐Vilchis, I. , Williams, S. E. , & Johnson, C. N. (2012). Environmental temperature affects prevalence of blood parasites of birds on an elevation gradient: Implications for disease in a warming climate. PLoS One, 7(6), e39208. 10.1371/journal.pone.0039208 PubMed DOI PMC
Zhou, G. , Munga, S. , Minakawa, N. , Githeko, A. K. , & Yan, G. (2007). Spatial relationship between adult malaria vector abundance and environmental factors in western Kenya highlands. American Journal of Tropical Medicine and Hygiene, 77(1), 29–35. PMID: 17620627. 10.4269/ajtmh.2007.77.29 PubMed DOI