Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

An Assessment of Novel Biomarkers in Bone Metastatic Disease Using Multiplex Measurement and Multivariate Analysis

J. Windrichova, R. Kucera, R. Fuchsova, O. Topolcan, O. Fiala, J. Svobodova, J. Finek, D. Slipkova,

. 2018 ; 17 (-) : 1533033818807466.

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19012243

AIM: Current diagnostics of bone metastatic disease is not satisfactory for early detection or regular process monitoring. The combination of biomarkers and the multiparametric approach was described as effective in other oncology diagnoses. The aim of the study was to improve the difference diagnostics between bone-metastatic disease and solid tumors using mutivariate logistic regression model. METHODS: We assessed the group of 131 patients with the following diagnoses: prostate cancer, breast cancer, lung cancer, and colorectal cancer. According to the results of scintigraphy, the cohort was divided into 2 groups based on the occurrence of bone metastases. Group 0 was a control group of 75 patients with no signs of bone metastases and group 1 included 56 patients with bone metastases. RESULTS: We used stepwise selection multivariate logistic regression for choosing the multimarker formula for calculation of risk score for bone metastases diagnostics. For detection of bone metastasis, it was shown to be most effective measurement of 3 biomarkers: procollagen type 1 N-terminal propeptide, growth differentiation factor-15, and osteonectin and combining with calculation of risk score by designating measured concentrations in mathematical formula: bone risk score = procollagen type 1 N-terminal propeptide × 0.0500 + growth differentiation factor-15 × 1.4179 + osteonectin × 0.00555. CONCLUSION: We identified growth differentiation factor-15 as the best individual marker for bone metastasis diagnostics. The best formula for risk score includes levels of 3 biomarkers-procollagen type 1 N-terminal propeptide, growth differentiation factor-15, and osteonectin. The new score has better performance described by higher area under the curve than individual biomarkers. A further study is necessary to confirm these findings incorporating a larger number of patients.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19012243
003      
CZ-PrNML
005      
20190408130530.0
007      
ta
008      
190405s2018 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1177/1533033818807466 $2 doi
035    __
$a (PubMed)30343636
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Windrichova, Jindra $u 1 Department of Immunochemistry, University Hospital and Faculty of Medicine in Pilsen, Charles University, Plzen, Czech Republic.
245    13
$a An Assessment of Novel Biomarkers in Bone Metastatic Disease Using Multiplex Measurement and Multivariate Analysis / $c J. Windrichova, R. Kucera, R. Fuchsova, O. Topolcan, O. Fiala, J. Svobodova, J. Finek, D. Slipkova,
520    9_
$a AIM: Current diagnostics of bone metastatic disease is not satisfactory for early detection or regular process monitoring. The combination of biomarkers and the multiparametric approach was described as effective in other oncology diagnoses. The aim of the study was to improve the difference diagnostics between bone-metastatic disease and solid tumors using mutivariate logistic regression model. METHODS: We assessed the group of 131 patients with the following diagnoses: prostate cancer, breast cancer, lung cancer, and colorectal cancer. According to the results of scintigraphy, the cohort was divided into 2 groups based on the occurrence of bone metastases. Group 0 was a control group of 75 patients with no signs of bone metastases and group 1 included 56 patients with bone metastases. RESULTS: We used stepwise selection multivariate logistic regression for choosing the multimarker formula for calculation of risk score for bone metastases diagnostics. For detection of bone metastasis, it was shown to be most effective measurement of 3 biomarkers: procollagen type 1 N-terminal propeptide, growth differentiation factor-15, and osteonectin and combining with calculation of risk score by designating measured concentrations in mathematical formula: bone risk score = procollagen type 1 N-terminal propeptide × 0.0500 + growth differentiation factor-15 × 1.4179 + osteonectin × 0.00555. CONCLUSION: We identified growth differentiation factor-15 as the best individual marker for bone metastasis diagnostics. The best formula for risk score includes levels of 3 biomarkers-procollagen type 1 N-terminal propeptide, growth differentiation factor-15, and osteonectin. The new score has better performance described by higher area under the curve than individual biomarkers. A further study is necessary to confirm these findings incorporating a larger number of patients.
650    _2
$a dospělí $7 D000328
650    _2
$a senioři $7 D000368
650    _2
$a senioři nad 80 let $7 D000369
650    _2
$a nádorové biomarkery $x metabolismus $7 D014408
650    _2
$a nádory kostí $x metabolismus $x patologie $x sekundární $7 D001859
650    _2
$a kosti a kostní tkáň $x metabolismus $x patologie $7 D001842
650    _2
$a kohortové studie $7 D015331
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a růstový diferenciační faktor 15 $x metabolismus $7 D055436
650    _2
$a lidé $7 D006801
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé středního věku $7 D008875
650    _2
$a multivariační analýza $7 D015999
650    _2
$a osteonektin $x metabolismus $7 D015676
650    _2
$a radioisotopová scintigrafie $x metody $7 D011877
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kucera, Radek $u 1 Department of Immunochemistry, University Hospital and Faculty of Medicine in Pilsen, Charles University, Plzen, Czech Republic.
700    1_
$a Fuchsova, Radka $u 1 Department of Immunochemistry, University Hospital and Faculty of Medicine in Pilsen, Charles University, Plzen, Czech Republic.
700    1_
$a Topolcan, Ondrej $u 1 Department of Immunochemistry, University Hospital and Faculty of Medicine in Pilsen, Charles University, Plzen, Czech Republic.
700    1_
$a Fiala, Ondrej $u 2 Department of Oncology and Radiotherapy, University Hospital and Faculty of Medicine in Pilsen, Charles University, Plzen, Czech Republic. 3 Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Plzen, Czech Republic.
700    1_
$a Svobodova, Jana $u 4 Osteocenter, Second Internal Clinic, University Hospital Pilsen, Pilsen, Czech Republic.
700    1_
$a Finek, Jindrich $u 2 Department of Oncology and Radiotherapy, University Hospital and Faculty of Medicine in Pilsen, Charles University, Plzen, Czech Republic.
700    1_
$a Slipkova, Dagmar $u 1 Department of Immunochemistry, University Hospital and Faculty of Medicine in Pilsen, Charles University, Plzen, Czech Republic.
773    0_
$w MED00185813 $t Technology in cancer research & treatment $x 1533-0338 $g Roč. 17, č. - (2018), s. 1533033818807466
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30343636 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190405 $b ABA008
991    __
$a 20190408130543 $b ABA008
999    __
$a ok $b bmc $g 1391553 $s 1050548
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 17 $c - $d 1533033818807466 $i 1533-0338 $m Technology in cancer research & treatment $n Technol Cancer Res Treat $x MED00185813
LZP    __
$a Pubmed-20190405

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...