-
Je něco špatně v tomto záznamu ?
An Assessment of Novel Biomarkers in Bone Metastatic Disease Using Multiplex Measurement and Multivariate Analysis
J. Windrichova, R. Kucera, R. Fuchsova, O. Topolcan, O. Fiala, J. Svobodova, J. Finek, D. Slipkova,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2018
PubMed Central
od 2017
Europe PubMed Central
od 2017
ProQuest Central
od 2016-04-01
Health & Medicine (ProQuest)
od 2016-04-01
ROAD: Directory of Open Access Scholarly Resources
od 2002
PubMed
30343636
DOI
10.1177/1533033818807466
Knihovny.cz E-zdroje
- MeSH
- dospělí MeSH
- kohortové studie MeSH
- kosti a kostní tkáň metabolismus patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- multivariační analýza MeSH
- nádorové biomarkery metabolismus MeSH
- nádory kostí metabolismus patologie sekundární MeSH
- osteonektin metabolismus MeSH
- radioisotopová scintigrafie metody MeSH
- růstový diferenciační faktor 15 metabolismus MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
AIM: Current diagnostics of bone metastatic disease is not satisfactory for early detection or regular process monitoring. The combination of biomarkers and the multiparametric approach was described as effective in other oncology diagnoses. The aim of the study was to improve the difference diagnostics between bone-metastatic disease and solid tumors using mutivariate logistic regression model. METHODS: We assessed the group of 131 patients with the following diagnoses: prostate cancer, breast cancer, lung cancer, and colorectal cancer. According to the results of scintigraphy, the cohort was divided into 2 groups based on the occurrence of bone metastases. Group 0 was a control group of 75 patients with no signs of bone metastases and group 1 included 56 patients with bone metastases. RESULTS: We used stepwise selection multivariate logistic regression for choosing the multimarker formula for calculation of risk score for bone metastases diagnostics. For detection of bone metastasis, it was shown to be most effective measurement of 3 biomarkers: procollagen type 1 N-terminal propeptide, growth differentiation factor-15, and osteonectin and combining with calculation of risk score by designating measured concentrations in mathematical formula: bone risk score = procollagen type 1 N-terminal propeptide × 0.0500 + growth differentiation factor-15 × 1.4179 + osteonectin × 0.00555. CONCLUSION: We identified growth differentiation factor-15 as the best individual marker for bone metastasis diagnostics. The best formula for risk score includes levels of 3 biomarkers-procollagen type 1 N-terminal propeptide, growth differentiation factor-15, and osteonectin. The new score has better performance described by higher area under the curve than individual biomarkers. A further study is necessary to confirm these findings incorporating a larger number of patients.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19012243
- 003
- CZ-PrNML
- 005
- 20190408130530.0
- 007
- ta
- 008
- 190405s2018 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1177/1533033818807466 $2 doi
- 035 __
- $a (PubMed)30343636
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Windrichova, Jindra $u 1 Department of Immunochemistry, University Hospital and Faculty of Medicine in Pilsen, Charles University, Plzen, Czech Republic.
- 245 13
- $a An Assessment of Novel Biomarkers in Bone Metastatic Disease Using Multiplex Measurement and Multivariate Analysis / $c J. Windrichova, R. Kucera, R. Fuchsova, O. Topolcan, O. Fiala, J. Svobodova, J. Finek, D. Slipkova,
- 520 9_
- $a AIM: Current diagnostics of bone metastatic disease is not satisfactory for early detection or regular process monitoring. The combination of biomarkers and the multiparametric approach was described as effective in other oncology diagnoses. The aim of the study was to improve the difference diagnostics between bone-metastatic disease and solid tumors using mutivariate logistic regression model. METHODS: We assessed the group of 131 patients with the following diagnoses: prostate cancer, breast cancer, lung cancer, and colorectal cancer. According to the results of scintigraphy, the cohort was divided into 2 groups based on the occurrence of bone metastases. Group 0 was a control group of 75 patients with no signs of bone metastases and group 1 included 56 patients with bone metastases. RESULTS: We used stepwise selection multivariate logistic regression for choosing the multimarker formula for calculation of risk score for bone metastases diagnostics. For detection of bone metastasis, it was shown to be most effective measurement of 3 biomarkers: procollagen type 1 N-terminal propeptide, growth differentiation factor-15, and osteonectin and combining with calculation of risk score by designating measured concentrations in mathematical formula: bone risk score = procollagen type 1 N-terminal propeptide × 0.0500 + growth differentiation factor-15 × 1.4179 + osteonectin × 0.00555. CONCLUSION: We identified growth differentiation factor-15 as the best individual marker for bone metastasis diagnostics. The best formula for risk score includes levels of 3 biomarkers-procollagen type 1 N-terminal propeptide, growth differentiation factor-15, and osteonectin. The new score has better performance described by higher area under the curve than individual biomarkers. A further study is necessary to confirm these findings incorporating a larger number of patients.
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a senioři $7 D000368
- 650 _2
- $a senioři nad 80 let $7 D000369
- 650 _2
- $a nádorové biomarkery $x metabolismus $7 D014408
- 650 _2
- $a nádory kostí $x metabolismus $x patologie $x sekundární $7 D001859
- 650 _2
- $a kosti a kostní tkáň $x metabolismus $x patologie $7 D001842
- 650 _2
- $a kohortové studie $7 D015331
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a růstový diferenciační faktor 15 $x metabolismus $7 D055436
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a lidé středního věku $7 D008875
- 650 _2
- $a multivariační analýza $7 D015999
- 650 _2
- $a osteonektin $x metabolismus $7 D015676
- 650 _2
- $a radioisotopová scintigrafie $x metody $7 D011877
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kucera, Radek $u 1 Department of Immunochemistry, University Hospital and Faculty of Medicine in Pilsen, Charles University, Plzen, Czech Republic.
- 700 1_
- $a Fuchsova, Radka $u 1 Department of Immunochemistry, University Hospital and Faculty of Medicine in Pilsen, Charles University, Plzen, Czech Republic.
- 700 1_
- $a Topolcan, Ondrej $u 1 Department of Immunochemistry, University Hospital and Faculty of Medicine in Pilsen, Charles University, Plzen, Czech Republic.
- 700 1_
- $a Fiala, Ondrej $u 2 Department of Oncology and Radiotherapy, University Hospital and Faculty of Medicine in Pilsen, Charles University, Plzen, Czech Republic. 3 Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Plzen, Czech Republic.
- 700 1_
- $a Svobodova, Jana $u 4 Osteocenter, Second Internal Clinic, University Hospital Pilsen, Pilsen, Czech Republic.
- 700 1_
- $a Finek, Jindrich $u 2 Department of Oncology and Radiotherapy, University Hospital and Faculty of Medicine in Pilsen, Charles University, Plzen, Czech Republic.
- 700 1_
- $a Slipkova, Dagmar $u 1 Department of Immunochemistry, University Hospital and Faculty of Medicine in Pilsen, Charles University, Plzen, Czech Republic.
- 773 0_
- $w MED00185813 $t Technology in cancer research & treatment $x 1533-0338 $g Roč. 17, č. - (2018), s. 1533033818807466
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30343636 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190405 $b ABA008
- 991 __
- $a 20190408130543 $b ABA008
- 999 __
- $a ok $b bmc $g 1391553 $s 1050548
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 17 $c - $d 1533033818807466 $i 1533-0338 $m Technology in cancer research & treatment $n Technol Cancer Res Treat $x MED00185813
- LZP __
- $a Pubmed-20190405