The relationship between geographic range size and rates of species diversification
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37689787
PubMed Central
PMC10492861
DOI
10.1038/s41467-023-41225-6
PII: 10.1038/s41467-023-41225-6
Knihovny.cz E-zdroje
- MeSH
- analýza dat * MeSH
- horní končetina MeSH
- nesouhlas a spor * MeSH
- savci genetika MeSH
- vznik druhů (genetika) MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Range size is a universal characteristic of every biological species, and is often assumed to affect diversification rate. There are strong theoretical arguments that large-ranged species should have higher rates of diversification. On the other hand, the observation that small-ranged species are often phylogenetically clustered might indicate high diversification of small-ranged species. This discrepancy between theory and the data may be caused by the fact that typical methods of data analysis do not account for range size changes during speciation. Here we use a cladogenetic state-dependent diversification model applied to mammals to show that range size changes during speciation are ubiquitous and small-ranged species indeed diversify generally slower, as theoretically expected. However, both range size and diversification are strongly influenced by idiosyncratic and spatially localized events, such as colonization of an archipelago or a mountain system, which often override the general pattern of range size evolution.
Zobrazit více v PubMed
Darwin, C. On the origin of species by means of natural selection. (John Murray, 1859).
Rosenzweig, M. L. Species diversity in space and time. (Cambridge University Press, 1995).
Rosenzweig, M. L. Geographical speciation: on range size and the probability of isolate formation. in Proceedings of the Washington State University conference on biomathematics and biostatistics. (ed. Wollkinf, D.) (Washington State University Press, 1978).
Chown, S. L. Speciation and rarity: separating cause from consequence. in The biology of rarity. Population and community biology series (eds. Kunin, W. E. & Gaston, K. J.) (Springer, 1997).
Gaston, K. J. & Chown, S. L. Geographic range size and speciation. in Evolution of biological diversity (eds. May, R. M. & Magurran, A. E.) (Oxford University Press, 1999).
Pigot AL, Phillimore AB, Owens IPF, Orme CDL. The shape and temporal dynamics of phylogenetic trees arising from geographic speciation. Syst. Biol. 2010;59:660–673. PubMed
Kisel Y, Timothy TG. Speciation has a spatial scale that depends on levels of gene flow. Am. Nat. 2010;175:316–334. PubMed
Kisel Y, Mcinnes L, Toomey NH, Orme CDL. How diversification rates and diversity limits combine to create large-scale species-area relationships. Philos. Trans. R. Soc. B Biol. Sci. 2011;366:2514–2525. PubMed PMC
Gavrilets S, Vose A. Dynamic patterns of adaptive radiation. Proc. Natl Acad. Sci. USA. 2005;102:18040–18045. PubMed PMC
Schluter D, Pennell MW. Speciation gradients and the distribution of biodiversity. Nature. 2017;546:48–55. PubMed
Rosenzweig ML. Loss of speciation rate will impoverish future diversity. Proc. Natl Acad. Sci. USA. 2001;98:5404–5410. PubMed PMC
Wang S, Chen A, Fang J, Pacala SW. Speciation rates decline through time in individual-based models of speciation and extinction. Am. Nat. 2013;182:83–93. PubMed
Storch D, Bohdalková E, Okie J. The more-individuals hypothesis revisited: the role of community abundance in species richness regulation and the productivity–diversity relationship. Ecol. Lett. 2018;21:920–937. PubMed
Rangel, T. F. et al. Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves. Science361, eaar5452 (2018). PubMed
Hubbell, S. The unified neutral theory of biodiversity and biogeography. (Princeton University Press, 2001).
Harnik PG. Direct and indirect effects of biological factors on extinction risk in fossil bivalves. Proc. Natl Acad. Sci. Usa. 2011;108:13594–13599. PubMed PMC
Jablonski D. Extinction and the spatial dynamics of biodiversity. Proc. Natl Acad. Sci. Usa. 2008;105:11528–11535. PubMed PMC
Kiessling W, Aberhan M. Geographical distribution and extinction risk: Lessons from Triassic-Jurassic marine benthic organisms. J. Biogeogr. 2007;34:1473–1489.
Harrison S, Noss R. Endemism hotspots are linked to stable climatic refugia. Ann. Bot. 2017;119:207–214. PubMed PMC
Mishler BD, et al. Phylogenetic measures of biodiversity and neo- and paleo-endemism in Australian Acacia. Nat. Commun. 2014;5:4473. PubMed
Davis EB, Koo MS, Conroy C, Patton JL, Moritz C. The California Hotspots Project: Identifying regions of rapid diversification of mammals. Mol. Ecol. 2008;17:120–138. PubMed
Veron S, Haevermans T, Govaerts R, Mouchet M, Pellens R. Distribution and relative age of endemism across islands worldwide. Sci. Rep. 2019;9:1–12. PubMed PMC
Buira A, Fernández-Mazuecos M, Aedo C, Molina-Venegas R. The contribution of the edaphic factor as a driver of recent plant diversification in a Mediterranean biodiversity hotspot. J. Ecol. 2021;109:987–999.
Feng G, Mao L, Sandel B, Swenson NG, Svenning JC. High plant endemism in China is partially linked to reduced glacial-interglacial climate change. J. Biogeogr. 2016;43:145–154.
Feng G, et al. Species and phylogenetic endemism in angiosperm trees across the Northern Hemisphere are jointly shaped by modern climate and glacial–interglacial climate change. Glob. Ecol. Biogeogr. 2019;28:1393–1402.
Fjeldså J, Lovett JC. Geographical patterns of old and young species in African forest biota: The significance of specific montane areas as evolutionary centres. Biodivers. Conserv. 1997;6:325–346.
Kling, M. M., Mishler, B. D., Thornhill, A. H., Baldwin, B. G. & Ackerly, D. D. Facets of phylodiversity: Evolutionary diversification, divergence and survival as conservation targets. Philos. Trans. R. Soc. B Biol. Sci. 374, 20170397 (2019). PubMed PMC
Steinbauer MJ, et al. Topography-driven isolation, speciation and a global increase of endemism with elevation. Glob. Ecol. Biogeogr. 2016;25:1097–1107.
Smyčka J, et al. Reprint of: Disentangling drivers of plant endemism and diversification in the European Alps - a phylogenetic and spatially explicit approach. Perspect. Plant Ecol. Evol. Syst. 2018;30:31–40.
Greenberg DA, et al. Evolutionary legacies in contemporary tetrapod imperilment. Ecol. Lett. 2021;24:2464–2476. PubMed PMC
Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO. The global diversity of birds in space and time. Nature. 2012;491:444–448. PubMed
Hay, E. M., McGee, M. D. & Chown, S. L. Geographic range size and speciation in honeyeaters. BMC Ecol. Evol. 22, 86 (2022). PubMed PMC
Webb TJ, Gaston KJ. On the heritability of geographic range sizes. Am. Nat. 2003;161:553–566. PubMed
Hunt G, Roy K, Jablonski D. Species‐level heritability reaffirmed: A comment on “On the heritability of geographic range sizes. Am. Nat. 2005;166:129–135. PubMed
Machac A, Zrzavý J, Storch D. Range size heritability in carnivora is driven by geographic constraints. Am. Nat. 2011;177:767–779. PubMed
Pagel M. Inferring the historical patterns of biological evolution. Nature. 1999;401:877–884. PubMed
Tung Ho,LS, Ané C. A linear-time algorithm for gaussian and non-gaussian trait evolution models. Syst. Biol. 2014;63:397–408. PubMed
Moen D, Morlon H. Why does diversification slow down? Trends Ecol. Evol. 2014;29:190–197. PubMed
Hughes C, Eastwood R. Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the Andes. Proc. Natl Acad. Sci. 2006;103:10334–10339. PubMed PMC
Jønsson KA, Holt BG. Islands contribute disproportionately high amounts of evolutionary diversity in passerine birds. Nat. Commun. 2015;6:8539. PubMed PMC
Pouchon C, et al. Phylogenomic analysis of the explosive adaptive radiation of the Espeletia complex (Asteraceae) in the tropical Andes. Syst. Biol. 2018;67:1041–1060. PubMed
Ding WN, Ree RH, Spicer RA, Xing YW. Ancient orogenic and monsoon-driven assembly of the world’s richest temperate alpine flora. Science. 2020;369:578–581. PubMed
Lagomarsino LP, Condamine FL, Antonelli A, Mulch A, Davis CC. The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae) N. Phytol. 2016;210:1430–1442. PubMed PMC
Brown RM, et al. Evolutionary processes of diversification in a model island archipelago. Annu. Rev. Ecol. Evol. Syst. 2013;44:411–435.
Guo YY, Luo YB, Liu ZJ, Wang XQ. Reticulate evolution and sea-level fluctuations together drove species diversification of slipper orchids (Paphiopedilum) in South-East Asia. Mol. Ecol. 2015;24:2838–2855. PubMed
Goldberg EE, Lancaster LT, Ree RH. Phylogenetic inference of reciprocal effects between geographic range evolution and diversification. Syst. Biol. 2011;60:451–465. PubMed
Rolland J, Salamin N. Niche width impacts vertebrate diversification. Glob. Ecol. Biogeogr. 2016;25:1252–1263.
Hardy, N. B. & Otto, S. P. Specialization and generalization in the diversification of phytophagous insects: Tests of the musical chairs and oscillation hypotheses. Proc. R. Soc. B Biol. Sci. 281, 20132960 (2014). PubMed PMC
Beaulieu JM, O’Meara BC. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst. Biol. 2016;65:583–601. PubMed
Herrera-Alsina L, Van Els P, Etienne RS. Detecting the dependence of diversification on multiple traits from phylogenetic trees and trait data. Syst. Biol. 2019;68:317–328. PubMed
Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17 (2019). PubMed PMC
Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS One9, e89543 (2014). PubMed PMC
Magallón S, Sanderson MJ. Absolute diversification rates in angiosperm clades. Evolution. 2001;55:1762–1780. PubMed
Rosauer D, Laffan SW, Crisp MD, Donnellan SC, Cook LG. Phylogenetic endemism: A new approach for identifying geographical concentrations of evolutionary history. Mol. Ecol. 2009;18:4061–4072. PubMed
Borregaard MK, Gotelli NJ, Rahbek C. Are range-size distributions consistent with species-level heritability? Evolution. 2012;66:2216–2226. PubMed
Rappoport, E. H. Areography. Geographical strategies of Species. (Pergamon Press, 1982).
Šizling AL, Storch D, Keil P. Rapoport’s rule, species tolerances, and the latitudinal diversity gradient: Geometric considerations. Ecology. 2009;90:3575–3586. PubMed
Igea J, Tanentzap AJ. Angiosperm speciation cools down in the tropics. Ecol. Lett. 2020;23:692–700. PubMed PMC
Rabosky DL, et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature. 2018;559:392–395. PubMed
Machac A. The dynamics of bird diversity in the new world. Syst. Biol. 2020;69:1180–1199. PubMed PMC
Morales-Barbero J, Gouveia SF, Martinez PA. Historical climatic instability predicts the inverse latitudinal pattern in speciation rate of modern mammalian biota. J. Evol. Biol. 2021;34:339–351. PubMed
Rolland, J., Condamine, F. L., Jiguet, F. & Morlon, H. Faster speciation and reduced extinction in the tropics contribute to the mammalian latitudinal diversity gradient. PLoS Biol. 12 (2014). PubMed PMC
Tsang SM, et al. Dispersal out of Wallacea spurs diversification of Pteropus flying foxes, the world’s largest bats (Mammalia: Chiroptera) J. Biogeogr. 2020;47:527–537. PubMed PMC
Bellemain E, Ricklefs RE. Are islands the end of the colonization road? Trends Ecol. Evol. 2008;23:461–468. PubMed
Layos JKN, Geromo RB, Espina DM, Nishibori M. Insights on the historical biogeography of Philippine domestic pigs and its relationship with continental domestic pigs and wild boars. PLoS One. 2022;17:1–19. PubMed PMC
Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature405, 907–913 (2000). PubMed
Barton, N. H. Adaptation at the edge of a species. in Integrating ecology and evolution in a spatial context (eds. Silvertown, J. & Antonovics, J.) 365–392 (Cambridge University Press, 2001).
Parsons, D. J., Pelletier, T. A., Wieringa, J. G., Duckett, D. J. & Carstens, B. C. Analysis of biodiversity data suggests that mammal species are hidden in predictable places. Proc. Natl. Acad. Sci. USA. 119, e2103400119 (2022). PubMed PMC
Hortal J, et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 2015;46:523–549.
Graham CH, Storch D, Machac A. Phylogenetic scale in ecology and evolution. Glob. Ecol. Biogeogr. 2018;27:175–187.
Valente L, et al. A simple dynamic model explains the diversity of island birds worldwide. Nature. 2020;579:92–96. PubMed
Cantalapiedra, J. L. et al. Conserving evolutionary history does not result in greater diversity over geological time scales. Proc. R. Soc. B Biol. Sci. 286, 20182896 (2019). PubMed PMC
Taberlet P, et al. Genetic diversity in widespread species is not congruent with species richness in alpine plant communities. Ecol. Lett. 2012;15:1439–1448. PubMed
Singhal, S. et al. No link between population isolation and speciation rate in squamate reptiles. Proc. Natl. Acad. Sci. USA. 119, e2113388119 (2022). PubMed PMC
IUCN Red List. http://www.iucnredlist.org.
Wickham, H., François, R., Henry, L. & Müller, K. dplyr: A Grammar of Data Manipulation. (2021). https://cran.r-project.org/package=dplyr
Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. (2021). https://cran.r-project.org/package=rgdal
Hijmans, R. J. raster: Geographic Data Analysis and Modeling. (2021). https://cran.r-project.org/package=raster
Bivand, R. & Lewin-Koh, N. maptools: Tools for Handling Spatial Objects. (2021). https://cran.r-project.org/package=maptools
Blondel, E. cleangeo: Cleaning Geometries from Spatial Objects. (2021). https://cran.r-project.org/package=cleangeo
Paradis E, Schliep K. Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–528. PubMed
Revell LJ. phytools: An R package for phylogenetic comparative biology (and other things) Methods Ecol. Evol. 2012;3:217–223.
Upham NS, Esselstyn JA, Jetz W. Molecules and fossils tell distinct yet complementary stories of mammal diversification. Curr. Biol. 2021;31:4195–4206. PubMed PMC
Redding DW, Mooers AO. Incorporating evolutionary measures into conservation prioritization. Conserv. Biol. 2006;20:1670–1678. PubMed
Kembel SW, et al. Picante: R tools for integrating phylogenies and ecology. J. R. Stat. Soc. Ser. B Stat. Methodol. 2011;26:1463–1464. PubMed
Rabosky DL, Donnellan SC, Grundler M, Lovette IJ. Analysis and visualization of complex macroevolutionary dynamics: An example from Australian Scincid lizards. Syst. Biol. 2014;63:610–627. PubMed
Fitzjohn RG, Maddison WP, Otto SP. Estimating trait-dependent speciation and extinction rates from incompletely resolved phylogenies. Syst. Biol. 2009;58:595–611. PubMed
Bartoszek K. Quantifying the effects of anagenetic and cladogenetic evolution. Math. Biosci. 2014;254:42–57. PubMed
Duchen P, Alfaro ML, Rolland J, Salamin N, Silvestro D. On the effect of asymmetrical trait inheritance on models of trait evolution. Syst. Biol. 2021;70:376–388. PubMed PMC
Louca S, Doebeli M. Efficient comparative phylogenetics on large trees. Bioinformatics. 2018;34:1053–1055. PubMed
Rowan, T. Functional stability analysis of numerical algorithms. (University of Texas at Austin, 1990).
Burnham, K. & Anderson, D. Model selection and multimodel inference. (Springer, 2002).
Smyčka, J., Toszogyova, A. & Storch, D. The relationship between geographic range size and rates of species diversification. Range_size_diversification10.5281/zenodo.8186544 (2023). PubMed PMC
The relationship between geographic range size and rates of species diversification