The relationship between geographic range size and rates of species diversification

. 2023 Sep 09 ; 14 (1) : 5559. [epub] 20230909

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37689787
Odkazy

PubMed 37689787
PubMed Central PMC10492861
DOI 10.1038/s41467-023-41225-6
PII: 10.1038/s41467-023-41225-6
Knihovny.cz E-zdroje

Range size is a universal characteristic of every biological species, and is often assumed to affect diversification rate. There are strong theoretical arguments that large-ranged species should have higher rates of diversification. On the other hand, the observation that small-ranged species are often phylogenetically clustered might indicate high diversification of small-ranged species. This discrepancy between theory and the data may be caused by the fact that typical methods of data analysis do not account for range size changes during speciation. Here we use a cladogenetic state-dependent diversification model applied to mammals to show that range size changes during speciation are ubiquitous and small-ranged species indeed diversify generally slower, as theoretically expected. However, both range size and diversification are strongly influenced by idiosyncratic and spatially localized events, such as colonization of an archipelago or a mountain system, which often override the general pattern of range size evolution.

Zobrazit více v PubMed

Darwin, C. On the origin of species by means of natural selection. (John Murray, 1859).

Rosenzweig, M. L. Species diversity in space and time. (Cambridge University Press, 1995).

Rosenzweig, M. L. Geographical speciation: on range size and the probability of isolate formation. in Proceedings of the Washington State University conference on biomathematics and biostatistics. (ed. Wollkinf, D.) (Washington State University Press, 1978).

Chown, S. L. Speciation and rarity: separating cause from consequence. in The biology of rarity. Population and community biology series (eds. Kunin, W. E. & Gaston, K. J.) (Springer, 1997).

Gaston, K. J. & Chown, S. L. Geographic range size and speciation. in Evolution of biological diversity (eds. May, R. M. & Magurran, A. E.) (Oxford University Press, 1999).

Pigot AL, Phillimore AB, Owens IPF, Orme CDL. The shape and temporal dynamics of phylogenetic trees arising from geographic speciation. Syst. Biol. 2010;59:660–673. PubMed

Kisel Y, Timothy TG. Speciation has a spatial scale that depends on levels of gene flow. Am. Nat. 2010;175:316–334. PubMed

Kisel Y, Mcinnes L, Toomey NH, Orme CDL. How diversification rates and diversity limits combine to create large-scale species-area relationships. Philos. Trans. R. Soc. B Biol. Sci. 2011;366:2514–2525. PubMed PMC

Gavrilets S, Vose A. Dynamic patterns of adaptive radiation. Proc. Natl Acad. Sci. USA. 2005;102:18040–18045. PubMed PMC

Schluter D, Pennell MW. Speciation gradients and the distribution of biodiversity. Nature. 2017;546:48–55. PubMed

Rosenzweig ML. Loss of speciation rate will impoverish future diversity. Proc. Natl Acad. Sci. USA. 2001;98:5404–5410. PubMed PMC

Wang S, Chen A, Fang J, Pacala SW. Speciation rates decline through time in individual-based models of speciation and extinction. Am. Nat. 2013;182:83–93. PubMed

Storch D, Bohdalková E, Okie J. The more-individuals hypothesis revisited: the role of community abundance in species richness regulation and the productivity–diversity relationship. Ecol. Lett. 2018;21:920–937. PubMed

Rangel, T. F. et al. Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves. Science361, eaar5452 (2018). PubMed

Hubbell, S. The unified neutral theory of biodiversity and biogeography. (Princeton University Press, 2001).

Harnik PG. Direct and indirect effects of biological factors on extinction risk in fossil bivalves. Proc. Natl Acad. Sci. Usa. 2011;108:13594–13599. PubMed PMC

Jablonski D. Extinction and the spatial dynamics of biodiversity. Proc. Natl Acad. Sci. Usa. 2008;105:11528–11535. PubMed PMC

Kiessling W, Aberhan M. Geographical distribution and extinction risk: Lessons from Triassic-Jurassic marine benthic organisms. J. Biogeogr. 2007;34:1473–1489.

Harrison S, Noss R. Endemism hotspots are linked to stable climatic refugia. Ann. Bot. 2017;119:207–214. PubMed PMC

Mishler BD, et al. Phylogenetic measures of biodiversity and neo- and paleo-endemism in Australian Acacia. Nat. Commun. 2014;5:4473. PubMed

Davis EB, Koo MS, Conroy C, Patton JL, Moritz C. The California Hotspots Project: Identifying regions of rapid diversification of mammals. Mol. Ecol. 2008;17:120–138. PubMed

Veron S, Haevermans T, Govaerts R, Mouchet M, Pellens R. Distribution and relative age of endemism across islands worldwide. Sci. Rep. 2019;9:1–12. PubMed PMC

Buira A, Fernández-Mazuecos M, Aedo C, Molina-Venegas R. The contribution of the edaphic factor as a driver of recent plant diversification in a Mediterranean biodiversity hotspot. J. Ecol. 2021;109:987–999.

Feng G, Mao L, Sandel B, Swenson NG, Svenning JC. High plant endemism in China is partially linked to reduced glacial-interglacial climate change. J. Biogeogr. 2016;43:145–154.

Feng G, et al. Species and phylogenetic endemism in angiosperm trees across the Northern Hemisphere are jointly shaped by modern climate and glacial–interglacial climate change. Glob. Ecol. Biogeogr. 2019;28:1393–1402.

Fjeldså J, Lovett JC. Geographical patterns of old and young species in African forest biota: The significance of specific montane areas as evolutionary centres. Biodivers. Conserv. 1997;6:325–346.

Kling, M. M., Mishler, B. D., Thornhill, A. H., Baldwin, B. G. & Ackerly, D. D. Facets of phylodiversity: Evolutionary diversification, divergence and survival as conservation targets. Philos. Trans. R. Soc. B Biol. Sci. 374, 20170397 (2019). PubMed PMC

Steinbauer MJ, et al. Topography-driven isolation, speciation and a global increase of endemism with elevation. Glob. Ecol. Biogeogr. 2016;25:1097–1107.

Smyčka J, et al. Reprint of: Disentangling drivers of plant endemism and diversification in the European Alps - a phylogenetic and spatially explicit approach. Perspect. Plant Ecol. Evol. Syst. 2018;30:31–40.

Greenberg DA, et al. Evolutionary legacies in contemporary tetrapod imperilment. Ecol. Lett. 2021;24:2464–2476. PubMed PMC

Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO. The global diversity of birds in space and time. Nature. 2012;491:444–448. PubMed

Hay, E. M., McGee, M. D. & Chown, S. L. Geographic range size and speciation in honeyeaters. BMC Ecol. Evol. 22, 86 (2022). PubMed PMC

Webb TJ, Gaston KJ. On the heritability of geographic range sizes. Am. Nat. 2003;161:553–566. PubMed

Hunt G, Roy K, Jablonski D. Species‐level heritability reaffirmed: A comment on “On the heritability of geographic range sizes. Am. Nat. 2005;166:129–135. PubMed

Machac A, Zrzavý J, Storch D. Range size heritability in carnivora is driven by geographic constraints. Am. Nat. 2011;177:767–779. PubMed

Pagel M. Inferring the historical patterns of biological evolution. Nature. 1999;401:877–884. PubMed

Tung Ho,LS, Ané C. A linear-time algorithm for gaussian and non-gaussian trait evolution models. Syst. Biol. 2014;63:397–408. PubMed

Moen D, Morlon H. Why does diversification slow down? Trends Ecol. Evol. 2014;29:190–197. PubMed

Hughes C, Eastwood R. Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the Andes. Proc. Natl Acad. Sci. 2006;103:10334–10339. PubMed PMC

Jønsson KA, Holt BG. Islands contribute disproportionately high amounts of evolutionary diversity in passerine birds. Nat. Commun. 2015;6:8539. PubMed PMC

Pouchon C, et al. Phylogenomic analysis of the explosive adaptive radiation of the Espeletia complex (Asteraceae) in the tropical Andes. Syst. Biol. 2018;67:1041–1060. PubMed

Ding WN, Ree RH, Spicer RA, Xing YW. Ancient orogenic and monsoon-driven assembly of the world’s richest temperate alpine flora. Science. 2020;369:578–581. PubMed

Lagomarsino LP, Condamine FL, Antonelli A, Mulch A, Davis CC. The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae) N. Phytol. 2016;210:1430–1442. PubMed PMC

Brown RM, et al. Evolutionary processes of diversification in a model island archipelago. Annu. Rev. Ecol. Evol. Syst. 2013;44:411–435.

Guo YY, Luo YB, Liu ZJ, Wang XQ. Reticulate evolution and sea-level fluctuations together drove species diversification of slipper orchids (Paphiopedilum) in South-East Asia. Mol. Ecol. 2015;24:2838–2855. PubMed

Goldberg EE, Lancaster LT, Ree RH. Phylogenetic inference of reciprocal effects between geographic range evolution and diversification. Syst. Biol. 2011;60:451–465. PubMed

Rolland J, Salamin N. Niche width impacts vertebrate diversification. Glob. Ecol. Biogeogr. 2016;25:1252–1263.

Hardy, N. B. & Otto, S. P. Specialization and generalization in the diversification of phytophagous insects: Tests of the musical chairs and oscillation hypotheses. Proc. R. Soc. B Biol. Sci. 281, 20132960 (2014). PubMed PMC

Beaulieu JM, O’Meara BC. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst. Biol. 2016;65:583–601. PubMed

Herrera-Alsina L, Van Els P, Etienne RS. Detecting the dependence of diversification on multiple traits from phylogenetic trees and trait data. Syst. Biol. 2019;68:317–328. PubMed

Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17 (2019). PubMed PMC

Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS One9, e89543 (2014). PubMed PMC

Magallón S, Sanderson MJ. Absolute diversification rates in angiosperm clades. Evolution. 2001;55:1762–1780. PubMed

Rosauer D, Laffan SW, Crisp MD, Donnellan SC, Cook LG. Phylogenetic endemism: A new approach for identifying geographical concentrations of evolutionary history. Mol. Ecol. 2009;18:4061–4072. PubMed

Borregaard MK, Gotelli NJ, Rahbek C. Are range-size distributions consistent with species-level heritability? Evolution. 2012;66:2216–2226. PubMed

Rappoport, E. H. Areography. Geographical strategies of Species. (Pergamon Press, 1982).

Šizling AL, Storch D, Keil P. Rapoport’s rule, species tolerances, and the latitudinal diversity gradient: Geometric considerations. Ecology. 2009;90:3575–3586. PubMed

Igea J, Tanentzap AJ. Angiosperm speciation cools down in the tropics. Ecol. Lett. 2020;23:692–700. PubMed PMC

Rabosky DL, et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature. 2018;559:392–395. PubMed

Machac A. The dynamics of bird diversity in the new world. Syst. Biol. 2020;69:1180–1199. PubMed PMC

Morales-Barbero J, Gouveia SF, Martinez PA. Historical climatic instability predicts the inverse latitudinal pattern in speciation rate of modern mammalian biota. J. Evol. Biol. 2021;34:339–351. PubMed

Rolland, J., Condamine, F. L., Jiguet, F. & Morlon, H. Faster speciation and reduced extinction in the tropics contribute to the mammalian latitudinal diversity gradient. PLoS Biol. 12 (2014). PubMed PMC

Tsang SM, et al. Dispersal out of Wallacea spurs diversification of Pteropus flying foxes, the world’s largest bats (Mammalia: Chiroptera) J. Biogeogr. 2020;47:527–537. PubMed PMC

Bellemain E, Ricklefs RE. Are islands the end of the colonization road? Trends Ecol. Evol. 2008;23:461–468. PubMed

Layos JKN, Geromo RB, Espina DM, Nishibori M. Insights on the historical biogeography of Philippine domestic pigs and its relationship with continental domestic pigs and wild boars. PLoS One. 2022;17:1–19. PubMed PMC

Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature405, 907–913 (2000). PubMed

Barton, N. H. Adaptation at the edge of a species. in Integrating ecology and evolution in a spatial context (eds. Silvertown, J. & Antonovics, J.) 365–392 (Cambridge University Press, 2001).

Parsons, D. J., Pelletier, T. A., Wieringa, J. G., Duckett, D. J. & Carstens, B. C. Analysis of biodiversity data suggests that mammal species are hidden in predictable places. Proc. Natl. Acad. Sci. USA. 119, e2103400119 (2022). PubMed PMC

Hortal J, et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 2015;46:523–549.

Graham CH, Storch D, Machac A. Phylogenetic scale in ecology and evolution. Glob. Ecol. Biogeogr. 2018;27:175–187.

Valente L, et al. A simple dynamic model explains the diversity of island birds worldwide. Nature. 2020;579:92–96. PubMed

Cantalapiedra, J. L. et al. Conserving evolutionary history does not result in greater diversity over geological time scales. Proc. R. Soc. B Biol. Sci. 286, 20182896 (2019). PubMed PMC

Taberlet P, et al. Genetic diversity in widespread species is not congruent with species richness in alpine plant communities. Ecol. Lett. 2012;15:1439–1448. PubMed

Singhal, S. et al. No link between population isolation and speciation rate in squamate reptiles. Proc. Natl. Acad. Sci. USA. 119, e2113388119 (2022). PubMed PMC

IUCN Red List. http://www.iucnredlist.org.

Wickham, H., François, R., Henry, L. & Müller, K. dplyr: A Grammar of Data Manipulation. (2021). https://cran.r-project.org/package=dplyr

Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. (2021). https://cran.r-project.org/package=rgdal

Hijmans, R. J. raster: Geographic Data Analysis and Modeling. (2021). https://cran.r-project.org/package=raster

Bivand, R. & Lewin-Koh, N. maptools: Tools for Handling Spatial Objects. (2021). https://cran.r-project.org/package=maptools

Blondel, E. cleangeo: Cleaning Geometries from Spatial Objects. (2021). https://cran.r-project.org/package=cleangeo

Paradis E, Schliep K. Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–528. PubMed

Revell LJ. phytools: An R package for phylogenetic comparative biology (and other things) Methods Ecol. Evol. 2012;3:217–223.

Upham NS, Esselstyn JA, Jetz W. Molecules and fossils tell distinct yet complementary stories of mammal diversification. Curr. Biol. 2021;31:4195–4206. PubMed PMC

Redding DW, Mooers AO. Incorporating evolutionary measures into conservation prioritization. Conserv. Biol. 2006;20:1670–1678. PubMed

Kembel SW, et al. Picante: R tools for integrating phylogenies and ecology. J. R. Stat. Soc. Ser. B Stat. Methodol. 2011;26:1463–1464. PubMed

Rabosky DL, Donnellan SC, Grundler M, Lovette IJ. Analysis and visualization of complex macroevolutionary dynamics: An example from Australian Scincid lizards. Syst. Biol. 2014;63:610–627. PubMed

Fitzjohn RG, Maddison WP, Otto SP. Estimating trait-dependent speciation and extinction rates from incompletely resolved phylogenies. Syst. Biol. 2009;58:595–611. PubMed

Bartoszek K. Quantifying the effects of anagenetic and cladogenetic evolution. Math. Biosci. 2014;254:42–57. PubMed

Duchen P, Alfaro ML, Rolland J, Salamin N, Silvestro D. On the effect of asymmetrical trait inheritance on models of trait evolution. Syst. Biol. 2021;70:376–388. PubMed PMC

Louca S, Doebeli M. Efficient comparative phylogenetics on large trees. Bioinformatics. 2018;34:1053–1055. PubMed

Rowan, T. Functional stability analysis of numerical algorithms. (University of Texas at Austin, 1990).

Burnham, K. & Anderson, D. Model selection and multimodel inference. (Springer, 2002).

Smyčka, J., Toszogyova, A. & Storch, D. The relationship between geographic range size and rates of species diversification. Range_size_diversification10.5281/zenodo.8186544 (2023). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...