Multiscale Experimental Evaluation of Agarose-Based Semi-Interpenetrating Polymer Network Hydrogels as Materials with Tunable Rheological and Transport Performance
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
REG LO1211
Ministerstvo Školství, Mládeže a Tělovýchovy
LD15047
Ministerstvo Školství, Mládeže a Tělovýchovy
GA17-15451S
Grantová Agentura České Republiky
PubMed
33142862
PubMed Central
PMC7693122
DOI
10.3390/polym12112561
PII: polym12112561
Knihovny.cz E-resources
- Keywords
- controlled release systems, cryo-scanning electron microscopy, diffusion, hydrogels, rheology, semi-interpenetrating polymer networks,
- Publication type
- Journal Article MeSH
This study introduces an original concept in the development of hydrogel materials for controlled release of charged organic compounds based on semi-interpenetrating polymer networks composed by an inert gel-forming polymer component and interpenetrating linear polyelectrolyte with specific binding affinity towards the carried active compound. As it is experimentally illustrated on the prototype hydrogels prepared from agarose interpenetrated by poly(styrene sulfonate) (PSS) and alginate (ALG), respectively, the main benefit brought by this concept is represented by the ability to tune the mechanical and transport performance of the material independently via manipulating the relative content of the two structural components. A unique analytical methodology is proposed to provide complex insight into composition-structure-performance relationships in the hydrogel material combining methods of analysis on the macroscopic scale, but also in the specific microcosms of the gel network. Rheological analysis has confirmed that the complex modulus of the gels can be adjusted in a wide range by the gelling component (agarose) with negligible effect of the interpenetrating component (PSS or ALG). On the other hand, the content of PSS as low as 0.01 wt.% of the gel resulted in a more than 10-fold decrease of diffusivity of model-charged organic solute (Rhodamine 6G).
See more in PubMed
Ahmed E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015;6:105–121. doi: 10.1016/j.jare.2013.07.006. PubMed DOI PMC
Kopeček J. Hydrogel biomaterials: A smart future? Biomaterials. 2007;28:5185–5192. doi: 10.1016/j.biomaterials.2007.07.044. PubMed DOI PMC
Wichterle O., Lím D. Hydrophilic Gels for Biological Use. Nature. 1960;185:117–118. doi: 10.1038/185117a0. DOI
Geckil H., Xu F., Zhang X., Moon S., Demirci U. Engineering hydrogels as extracellular matrix mimics. Nanomedicine. 2010;5:469–484. doi: 10.2217/nnm.10.12. PubMed DOI PMC
Oh J.K., Drumright R., Siegwart D.J., Matyjaszewski K. The development of microgels/nanogels for drug delivery applications. Prog. Polym. Sci. 2008;33:448–477. doi: 10.1016/j.progpolymsci.2008.01.002. DOI
Vinogradov S.V., Bronich T.K., Kabanov A.V. Nanosized cationic hydrogels for drug delivery: Preparation, properties and interactions with cells. Adv. Drug Deliver. Rev. 2002;54:135–147. doi: 10.1016/S0169-409X(01)00245-9. PubMed DOI
Tokarev I., Minko S. Stimuli-responsive hydrogel thin films. Soft Matter. 2009;5:511–524. doi: 10.1039/B813827C. DOI
Ishihara K., Ueda T., Nakabayashi N. Preparation of Phospholipid Polylners and Their Properties as Polymer Hydrogel Membranes. Polym. J. 1990;22:355–360. doi: 10.1295/polymj.22.355. DOI
Klouda L., Mikos A.G. Thermoresponsive hydrogels in biomedical applications. Eur. J. Pharm. Biopharm. 2008;68:34–45. doi: 10.1016/j.ejpb.2007.02.025. PubMed DOI PMC
Klouda L. Thermoresponsive hydrogels in biomedical applications. Eur. J. Pharm. Biopharm. 2015;97:338–349. doi: 10.1016/j.ejpb.2015.05.017. PubMed DOI
Qiu Y., Park K. Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliver. Rev. 2001;53:321–339. doi: 10.1016/S0169-409X(01)00203-4. PubMed DOI
Gupta P., Vermani K., Garg S. Hydrogels: From controlled release to pH-responsive drug delivery. Drug Discov. Today. 2002;7:569–579. doi: 10.1016/S1359-6446(02)02255-9. PubMed DOI
Miyata T., Asami N., Uragami T. A reversibly antigen-responsive hydrogel. Nature. 1999;399:766–769. doi: 10.1038/21619. PubMed DOI
Miyata T., Uragami T., Nakamae K. Biomolecule-sensitive hydrogels. Adv. Drug Deliver. Rev. 2002;54:79–98. doi: 10.1016/S0169-409X(01)00241-1. PubMed DOI
Spiller K.L., Laurencin S.J., Charlton D., Maher S.A., Lowman A.M. Superporous hydrogels for cartilage repair: Evaluation of the morphological and mechanical properties. Acta Biomater. 2008;4:17–25. doi: 10.1016/j.actbio.2007.09.001. PubMed DOI
Chen J., Park H., Park K. Synthesis of superporous hydrogels: Hydrogels with fast swelling and superabsorbent properties. J. Biomed. Mater. Res. 1999;44:53–62. doi: 10.1002/(SICI)1097-4636(199901)44:1<53::AID-JBM6>3.0.CO;2-W. PubMed DOI
Petka W.A., Harden J.L., McGrath K.P., Wirtz D., Tirrell D.A. Reversible Hydrogels from Self-Assembling Artificial Proteins. Science. 1998;281:389–392. doi: 10.1126/science.281.5375.389. PubMed DOI
Ehrick J.D., Deo S.K., Browning T.W., Bachas L.G., Madou M.J., Daunert S. Genetically engineered protein in hydrogels tailors stimuli-responsive characteristics. Nat. Mater. 2005;4:298–302. doi: 10.1038/nmat1352. PubMed DOI
Gong J.P., Katsuyama Y., Kurokawa T., Osada Y. Double-Network Hydrogels with Extremely High Mechanical Strength. Adv. Mater. 2003;15:1155–1158. doi: 10.1002/adma.200304907. DOI
Yasuda K., Ping Gong J., Katsuyama Y., Nakayama A., Tanabe Y., Kondo E., Ueno M., Osada Y. Biomechanical properties of high-toughness double network hydrogels. Biomaterials. 2005;26:4468–4475. doi: 10.1016/j.biomaterials.2004.11.021. PubMed DOI
Lee K.Y., Mooney D.J. Hydrogels for Tissue Engineering. Chem. Rev. 2001;101:1869–1880. doi: 10.1021/cr000108x. PubMed DOI
Drury J.L., Mooney D.J. Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials. 2003;24:4337–4351. doi: 10.1016/S0142-9612(03)00340-5. PubMed DOI
Slaughter B.V., Khurshid S.S., Fisher O.Z., Khademhosseini A., Peppas N.A. Hydrogels in Regenerative Medicine. Adv. Mater. 2009;21:3307–3329. doi: 10.1002/adma.200802106. PubMed DOI PMC
Annabi N., Tamayol A., Uquillas J.A., Akbari M., Bertassoni L.E., Cha C., Camci-Unal G., Dokmeci M.R., Peppas N.A., Khademhosseini A. 25th Anniversary Article: Rational Design and Applications of Hydrogels in Regenerative Medicine. Adv. Mater. 2014;26:85–124. doi: 10.1002/adma.201303233. PubMed DOI PMC
van der Linden H.J., Herber S., Olthuis W., Bergveld P. Stimulus-sensitive hydrogels and their applications in chemical (micro)analysis. Analyst. 2003;128:325–331. doi: 10.1039/b210140h. PubMed DOI
Rubina A.Y., Pan’kov S.V., Dementieva E.I., Pen’kov D.N., Butygin A.V., Vasiliskov V.A., Chudinov A.V., Mikheikin A.L., Mikhailovich V.M., Mirzabekov A.D. Hydrogel drop microchips with immobilized DNA: Properties and methods for large-scale production. Anal. Biochem. 2004;325:92–106. doi: 10.1016/j.ab.2003.10.010. PubMed DOI
Wang K.L., Burban J.H., Cussler E.L. Responsive Gels: Volume Transitions II. Springer; Berlin/Heidelberg, Germany: 1993. Hydrogels as separation agents; pp. 67–79.
Ozay O., Ekici S., Baran Y., Kubilay S., Aktas N., Sahiner N. Utilization of magnetic hydrogels in the separation of toxic metal ions from aqueous environments. Desalination. 2010;260:57–64. doi: 10.1016/j.desal.2010.04.067. DOI
Hoare T.R., Kohane D.S. Hydrogels in drug delivery: Progress and challenges. Polymer. 2008;49:1993–2007. doi: 10.1016/j.polymer.2008.01.027. DOI
Narayanaswamy R., Torchilin V.P. Hydrogels and Their Applications in Targeted Drug Delivery. Molecules. 2019;24:603. doi: 10.3390/molecules24030603. PubMed DOI PMC
Li J., Mooney D.J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 2016;1:1–17. doi: 10.1038/natrevmats.2016.71. PubMed DOI PMC
Trongsatitkul T., Budhlall B.M. Microgels or microcapsules? Role of morphology on the release kinetics of thermoresponsive PNIPAm-co-PEGMa hydrogels. Polym. Chem. 2013;4:1502–1516. doi: 10.1039/C2PY20889J. DOI
Perugini P., Genta I., Conti B., Modena T., Pavanetto F. Long-term release of clodronate from biodegradable microspheres. AAPS PharmSciTech. 2001;2:6–14. doi: 10.1208/pt020310. PubMed DOI PMC
Lee B.H., Lee Y.M., Sohn Y.S., Song S.-C. A Thermosensitive Poly(organophosphazene) Gel. Macromolecules. 2002;35:3876–3879. doi: 10.1021/ma012093q. DOI
Andrade-Vivero P., Fernandez-Gabriel E., Alvarez-Lorenzo C., Concheiro A. Improving the Loading and Release of NSAIDs from pHEMA Hydrogels by Copolymerization with Functionalized Monomers. J. Pharm. Sci. 2007;96:802–813. doi: 10.1002/jps.20761. PubMed DOI
Sato T., Uchida R., Tanigawa H., Uno K., Murakami A. Application of polymer gels containing side-chain phosphate groups to drug-delivery contact lenses. J. Appl. Polym. Sci. 2005;98:731–735. doi: 10.1002/app.22080. DOI
Young S., Wong M., Tabata Y., Mikos A.G. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J. Control. Release. 2005;109:256–274. doi: 10.1016/j.jconrel.2005.09.023. PubMed DOI
Jenkins A.D., Kratochvíl P., Stepto R.F.T., Suter U.W. Glossary of basic terms in polymer science (IUPAC Recommendations 1996) Pure Appl. Chem. 1996;68:2287–2311. doi: 10.1351/pac199668122287. DOI
Zoratto N., Matricardi P. Polymeric Gels. Woodhead Publishing; Cambridge, UK: 2018. Semi-IPNs and IPN-based hydrogels; pp. 91–124. PubMed
Aminabhavi T.M., Nadagouda M.N., More U.A., Joshi S.D., Kulkarni V.H., Noolvi M.N., Kulkarni P.V. Controlled release of therapeutics using interpenetrating polymeric networks. Expert Opin. Drug Deliv. 2015;12:669–688. doi: 10.1517/17425247.2014.974871. PubMed DOI
Rinaudo M. Main properties and current applications of some polysaccharides as biomaterials. Polym. Int. 2008;57:397–430. doi: 10.1002/pi.2378. DOI
Zarrintaj P., Manouchehri S., Ahmadi Z., Saeb M.R., Urbanska A.M., Kaplan D.L., Mozafari M. Agarose-based biomaterials for tissue engineering. Carbohydr. Polym. 2018;187:66–84. doi: 10.1016/j.carbpol.2018.01.060. PubMed DOI
Wang N., Wu X.S. Preparation and Characterization of Agarose Hydrogel Nanoparticles for Protein and Peptide Drug Delivery. Pharm. Dev. Technol. 1997;2:135–142. doi: 10.3109/10837459709022618. PubMed DOI
Liang S., Xu J., Weng L., Dai H., Zhang X., Zhang L. Protein diffusion in agarose hydrogel in situ measured by improved refractive index method. J. Control. Release. 2006;115:189–196. doi: 10.1016/j.jconrel.2006.08.006. PubMed DOI
Marras-Marquez T., Peña J., Veiga-Ochoa M.D. Agarose drug delivery systems upgraded by surfactants inclusion: Critical role of the pore architecture. Carbohydr. Polym. 2014;103:359–368. doi: 10.1016/j.carbpol.2013.12.026. PubMed DOI
Meilander N.J., Yu X., Ziats N.P., Bellamkonda R.V. Lipid-based microtubular drug delivery vehicles. J. Control. Release. 2001;71:141–152. doi: 10.1016/S0168-3659(01)00214-0. PubMed DOI
Narahashi T., Yamada M., Frazier D.T. Cationic Forms of Local Anaesthetics block Action Potentials from Inside the Nerve Membrane. Nature. 1969;223:748–749. doi: 10.1038/223748a0. PubMed DOI
Gunasekaran P., Rajasekaran G., Han E.H., Chung Y.-H., Choi Y.-J., Yang Y.J., Lee J.E., Kim H.N., Lee K., Kim J.-S., et al. Cationic Amphipathic Triazines with Potent Anti-bacterial, Anti-inflammatory and Anti-atopic Dermatitis Properties. Sci. Rep. 2019;9:1292. doi: 10.1038/s41598-018-37785-z. PubMed DOI PMC
Broderick E., Lyons H., Pembroke T., Byrne H., Murray B., Hall M. The characterisation of a novel, covalently modified, amphiphilic alginate derivative, which retains gelling and non-toxic properties. J. Colloid Interface Sci. 2006;298:154–161. doi: 10.1016/j.jcis.2005.12.026. PubMed DOI
Aymard P., Martin D.R., Plucknett K., Foster T.J., Clark A.H., Norton I.T. Influence of thermal history on the structural and mechanical properties of agarose gels. Biopolymers. 2001;59:131–144. doi: 10.1002/1097-0282(200109)59:3<131::AID-BIP1013>3.0.CO;2-8. PubMed DOI
Lapasin R., Pricl S. Rheology of Industrial Polysaccharides: Theory and Applications. Springer; Boston, MA, USA: 1995.
Pescosolido L., Feruglio L., Farra R., Fiorentino S., Colombo I., Coviello T., Matricardi P., Hennink W.E., Vermonden T., Grassi M. Mesh size distribution determination of interpenetrating polymer network hydrogels. Soft Matter. 2012;8:7708–7715. doi: 10.1039/c2sm25677k. DOI
Draper N.R., Smith H. Applied Regression Analysis. John Wiley & Sons, Inc; New York, NY, USA: 1996.
Sedláček P., Smilek J., Klučáková M. How the interactions with humic acids affect the mobility of ionic dyes in hydrogels—2. Non-stationary diffusion experiments. React. Funct. Polym. 2014;75:41–50. doi: 10.1016/j.reactfunctpolym.2013.12.002. DOI
Smilek J., Sedláček P., Kalina M., Klučáková M. On the role of humic acids’ carboxyl groups in the binding of charged organic compounds. Chemosphere. 2015;138:503–510. doi: 10.1016/j.chemosphere.2015.06.093. PubMed DOI
Sedláček P., Smilek J., Laštůvková M., Kalina M., Klučáková M. Hydrogels: Invaluable experimental tool for demonstrating diffusion phenomena in physical chemistry laboratory courses. J. Mater. Educ. 2017;39:59–90.
Crank J. The Mathematics of Diffusion. Oxford University Press Inc; New York, NY, USA: 1979.
ImageJ Website. [(accessed on 20 August 2020)]; Available online: https://imagej.nih.gov/ij/
Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Normand V., Lootens D.L., Amici E., Plucknett K.P., Aymard P. New Insight into Agarose Gel Mechanical Properties. Biomacromolecules. 2000;1:730–738. doi: 10.1021/bm005583j. PubMed DOI
Grillet A.M., Wyatt N.B., Gloe L.M. Rheology. InTech; Rijeka, Croatia: 2012. Polymer Gel Rheology and Adhesion; pp. 59–80.
Weng L., Chen X., Chen W. Rheological Characterization of in Situ Crosslinkable Hydrogels Formulated from Oxidized Dextran and N -Carboxyethyl Chitosan. Biomacromolecules. 2007;8:1109–1115. doi: 10.1021/bm0610065. PubMed DOI PMC
Trenkmann I., Bok S., Korampally V.R., Gangopadhyay S., Graaf H., von Borczyskowski C. Counting single Rhodamine 6G dye molecules in organosilicate nanoparticles. Chem. Phys. 2012;406:41–46. doi: 10.1016/j.chemphys.2012.02.014. PubMed DOI PMC
Penzkofer A., Leupacher W. Fluorescence behaviour of highly concentrated rhodamine 6G solutions. J. Lumin. 1987;37:61–72. doi: 10.1016/0022-2313(87)90167-0. DOI
Doty P., Steiner R.F. Light Scattering and Spectrophotometry of Colloidal Solutions. J. Chem. Phys. 1950;18:1211–1220. doi: 10.1063/1.1747913. DOI
Horne D.S. Determination of the fractal dimension using turbidimetric techniques. Application to aggregating protein systems. Faraday Discuss. Chem. Soc. 1987;83:259–280. doi: 10.1039/dc9878300259. DOI
Camerini-Otero R.D., Day L.A. The wavelength dependence of the turbidity of solutions of macromolecules. Biopolymers. 1978;17:2241–2249. doi: 10.1002/bip.1978.360170916. DOI
Leone M., Sciortino F., Migliore M., Fornili S.L., Vittorelli M.B.P. Order parameters of gels and gelation kinetics of aqueous agarose systems: Relation to the spinodal decomposition of the sol. Biopolymers. 1987;26:743–761. doi: 10.1002/bip.360260513. DOI
Aymard P., Williams M.A.K., Clark A.H., Norton I.T. A Turbidimetric Study of Phase Separating Biopolymer Mixtures during Thermal Ramping. Langmuir. 2000;16:7383–7391. doi: 10.1021/la000549b. DOI
Singh T.R.R. Hydrogels. CRC Press; Boca Raton, FL, USA: 2018.
Stellwagen N.C. Effect of the electric field on the apparent mobility of large DNA fragments in agarose gels. Biopolymers. 1985;24:2243–2255. doi: 10.1002/bip.360241207. PubMed DOI
Flory P.J. Principles of Polymer Chemistry. Cornell University Press; Ithaca, New York, NY, USA: 1953.
Larson R.G. The Structure and Rheology of Complex Fluids. Oxford University Press Inc.; New York, NY, USA: 1999.
Chai Q., Jiao Y., Yu X. Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them. Gels. 2017;3:6. doi: 10.3390/gels3010006. PubMed DOI PMC
Calhoun M.A., Bentil S.A., Elliott E., Otero J.J., Winter J.O., Dupaix R.B. Beyond linear elastic modulus: Viscoelastic models for brain and brain mimetic hydrogels. ACS Biomater. Sci. Eng. 2019;5:3964–3973. doi: 10.1021/acsbiomaterials.8b01390. PubMed DOI
Smilek J., Jarábková S., Velcer T., Pekař M. Compositional and Temperature Effects on the Rheological Properties of Polyelectrolyte–Surfactant Hydrogels. Polymers. 2019;11:927. doi: 10.3390/polym11050927. PubMed DOI PMC
Galway M.E., Heckman J.W., Jr., Hyde G.J., Fowke L.C. Methods in Cell Biology. Volume 49. Academic Press; Cambridge, MA, USA: 1995. Advances in high-pressure and plunge-freeze fixation; pp. 3–19. PubMed DOI
Hrubanova K., Nebesarova J., Ruzicka F., Krzyzanek V. The innovation of cryo-SEM freeze-fracturing methodology demonstrated on high pressure frozen biofilm. Micron. 2018;110:28–35. doi: 10.1016/j.micron.2018.04.006. PubMed DOI
Paradossi G., Cavalieri F., Chiessi E., Spagnoli C., Cowman M.K. Poly (vinyl alcohol) as versatile biomaterial for potential biomedical applications. J. Mater. Sci. Mater. 2003;14:687–691. doi: 10.1023/A:1024907615244. PubMed DOI
Holly F.J., Refojo M.F. Wettability of hydrogels I. Poly(2-hydroxyethyl methacrylate) J. Biomed. Mater. Res. 1975;9:315–326. doi: 10.1002/jbm.820090307. PubMed DOI
Zhu J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials. 2010;31:4639–4656. doi: 10.1016/j.biomaterials.2010.02.044. PubMed DOI PMC
Osmałek T., Froelich A., Tasarek S. Application of gellan gum in pharmacy and medicine. Int. J. Pharm. 2014;466:328–340. doi: 10.1016/j.ijpharm.2014.03.038. PubMed DOI
Park H., Park K., Shalaby W.S.W. Biodegradable Hydrogels for Drug Delivery. CRC Press; Boca Raton, FL, USA: 2011.
Xiong X.Y., Tam K.C., Gan L.H. Polymeric Nanostructures for Drug Delivery Applications Based on Pluronic Copolymer Systems. J. Nanosci. Nanotechno. 2006;6:2638–2650. doi: 10.1166/jnn.2006.449. PubMed DOI
Amiji M., Tailor R., Ly M.-K., Goreham J. Gelatin-Poly(Ethylene Oxide) Semi-interpenetrating Polymer Network with pH-Sensitive Swelling and Enzyme-Degradable Properties for Oral Drug Delivery. Drug Dev. Ind. Pharm. 1997;23:575–582. doi: 10.3109/03639049709149822. DOI
Elisseeff J., McIntosh W., Anseth K., Riley S., Ragan P., Langer R. Photoencapsulation of chondrocytes in poly(ethylene oxide)-based semi-interpenetrating networks. J. Biomed. Mater. Res. 2000;51:164–171. doi: 10.1002/(SICI)1097-4636(200008)51:2<164::AID-JBM4>3.0.CO;2-W. PubMed DOI
Sedláček P., Smilek J., Klučáková M. How the interactions with humic acids affect the mobility of ionic dyes in hydrogels—Results from diffusion cells. React. Funct. Polym. 2013;73:1500–1509. doi: 10.1016/j.reactfunctpolym.2013.07.008. DOI
Larrañeta E., Stewart S., Ervine M., Al-Kasasbeh R., Donnelly R. Hydrogels for Hydrophobic Drug Delivery. Classification, Synthesis and Applications. J. Funct. Biomater. 2018;9:13. doi: 10.3390/jfb9010013. PubMed DOI PMC
Venerová T., Pekař M. Rheological properties of gels formed by physical interactions between hyaluronan and cationic surfactants. Carbohydr. Polym. 2017;170:176–181. doi: 10.1016/j.carbpol.2017.04.087. PubMed DOI
Enev V., Sedláček P., Jarábková S., Velcer T., Pekař M. ATR-FTIR spectroscopy and thermogravimetry characterization of water in polyelectrolyte-surfactant hydrogels. Colloids Surf. A. 2019;575:1–9. doi: 10.1016/j.colsurfa.2019.04.089. DOI
Moschakis T. Microrheology and particle tracking in food gels and emulsions. Curr. Opin. Colloid Interface Sci. 2013;18:311–323. doi: 10.1016/j.cocis.2013.04.011. DOI
Rathgeber S., Beauvisage H.-J., Chevreau H., Willenbacher N., Oelschlaeger C. Microrheology with Fluorescence Correlation Spectroscopy. Langmuir. 2009;25:6368–6376. doi: 10.1021/la804170k. PubMed DOI
García-Aparicio C., Quijada-Garrido I., Garrido L. Diffusion of small molecules in a chitosan/water gel determined by proton localized NMR spectroscopy. J. Colloid Interface Sci. 2012;368:14–20. doi: 10.1016/j.jcis.2011.11.028. PubMed DOI
Severs N., Shotton D. Rapid Freezing of Biological Specimens for Freeze Fracture and Deep Etching. Cell Biol. 2006;3:249–255.
Landry M.R. Thermoporometry by differential scanning calorimetry: Experimental considerations and applications. Thermochim. Acta. 2005;433:27–50. doi: 10.1016/j.tca.2005.02.015. DOI