Pro-recombination Role of Srs2 Protein Requires SUMO (Small Ubiquitin-like Modifier) but Is Independent of PCNA (Proliferating Cell Nuclear Antigen) Interaction
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26861880
PubMed Central
PMC4817187
DOI
10.1074/jbc.m115.685891
PII: S0021-9258(20)41313-4
Knihovny.cz E-zdroje
- Klíčová slova
- DNA repair, homologous recombination, proliferating cell nuclear antigen (PCNA), protein-protein interaction, small ubiquitin-like modifier (SUMO),
- MeSH
- aminokyselinové motivy MeSH
- DNA fungální genetika metabolismus MeSH
- DNA-helikasy genetika metabolismus MeSH
- oprava DNA fyziologie MeSH
- proliferační antigen buněčného jádra genetika metabolismus MeSH
- protein SUMO-1 genetika metabolismus MeSH
- rekombinace genetická fyziologie MeSH
- ribozomální DNA genetika metabolismus MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- sumoylace fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA fungální MeSH
- DNA-helikasy MeSH
- proliferační antigen buněčného jádra MeSH
- protein SUMO-1 MeSH
- ribozomální DNA MeSH
- Saccharomyces cerevisiae - proteiny MeSH
- SRS2 protein, S cerevisiae MeSH Prohlížeč
Srs2 plays many roles in DNA repair, the proper regulation and coordination of which is essential. Post-translational modification by small ubiquitin-like modifier (SUMO) is one such possible mechanism. Here, we investigate the role of SUMO in Srs2 regulation and show that the SUMO-interacting motif (SIM) of Srs2 is important for the interaction with several recombination factors. Lack of SIM, but not proliferating cell nuclear antigen (PCNA)-interacting motif (PIM), leads to increased cell death under circumstances requiring homologous recombination for DNA repair. Simultaneous mutation of SIM in asrs2ΔPIMstrain leads to a decrease in recombination, indicating a pro-recombination role of SUMO. Thus SIM has an ambivalent function in Srs2 regulation; it not only mediates interaction with SUMO-PCNA to promote the anti-recombination function but it also plays a PCNA-independent pro-recombination role, probably by stimulating the formation of recombination complexes. The fact that deletion of PIM suppresses the phenotypes of Srs2 lacking SIM suggests that proper balance between the anti-recombination PCNA-bound and pro-recombination pools of Srs2 is crucial. Notably, sumoylation of Srs2 itself specifically stimulates recombination at the rDNA locus.
From the Department of Biology and
the Department of Biology University of Copenhagen Copenhagen 2200 Denmark and
Zobrazit více v PubMed
Krejci L., Altmannova V., Spirek M., and Zhao X. (2012) Homologous recombination and its regulation. Nucleic Acids Res. 40, 5795–5818 PubMed PMC
San Filippo J., Sung P., and Klein H. (2008) Mechanism of eukaryotic homologous recombination. Annu. Rev. Biochem. 77, 229–257 PubMed
Rong L., and Klein H. L. (1993) Purification and characterization of the SRS2 DNA helicase of the yeast Saccharomyces cerevisiae. J. Biol. Chem. 268, 1252–1259 PubMed
Marini V., and Krejci L. (2010) Srs2: the “Odd-Job Man” in DNA repair. DNA Repair 9, 268–275 PubMed PMC
Lawrence C. W., and Christensen R. B. (1979) Metabolic suppressors of trimethoprim and ultraviolet light sensitivities of Saccharomyces cerevisiae rad6 mutants. J. Bacteriol. 139, 866–876 PubMed PMC
Aboussekhra A., Chanet R., Zgaga Z., Cassier-Chauvat C., Heude M., and Fabre F. (1989) RADH, a gene of Saccharomyces cerevisiae encoding a putative DNA helicase involved in DNA repair: characteristics of radH mutants and sequence of the gene. Nucleic Acids Res. 17, 7211–7219 PubMed PMC
Schiestl R. H., Prakash S., and Prakash L. (1990) The SRS2 suppressor of rad6 mutations of Saccharomyces cerevisiae acts by channeling DNA lesions into the RAD52 DNA repair pathway. Genetics 124, 817–831 PubMed PMC
Ulrich H. D. (2001) The srs2 suppressor of UV sensitivity acts specifically on the RAD5- and MMS2-dependent branch of the RAD6 pathway. Nucleic Acids Res. 29, 3487–3494 PubMed PMC
Rong L., Palladino F., Aguilera A., and Klein H. L. (1991) The hyper-gene conversion hpr5–1 mutation of Saccharomyces cerevisiae is an allele of the SRS2/RADH gene. Genetics 127, 75–85 PubMed PMC
Aguilera A., and Klein H. L. (1988) Genetic control of intrachromosomal recombination in Saccharomyces cerevisiae: I. Isolation and genetic characterization of hyper-recombination mutations. Genetics 119, 779–790 PubMed PMC
Palladino F., and Klein H. L. (1992) Analysis of mitotic and meiotic defects in Saccharomyces cerevisiae SRS2 DNA helicase mutants. Genetics 132, 23–37 PubMed PMC
Aboussekhra A., Chanet R., Adjiri A., and Fabre F. (1992) Semidominant suppressors of Srs2 helicase mutations of Saccharomyces cerevisiae map in the RAD51 gene, whose sequence predicts a protein with similarities to procaryotic RecA proteins. Mol. Cell. Biol. 12, 3224–3234 PubMed PMC
Chanet R., Heude M., Adjiri A., Maloisel L., and Fabre F. (1996) Semidominant mutations in the yeast Rad51 protein and their relationships with the Srs2 helicase. Mol. Cell. Biol. 16, 4782–4789 PubMed PMC
Lee S. K., Johnson R. E., Yu S. L., Prakash L., and Prakash S. (1999) Requirement of yeast SGS1 and SRS2 genes for replication and transcription. Science 286, 2339–2342 PubMed
Gangloff S., Soustelle C., and Fabre F. (2000) Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases. Nat. Genet. 25, 192–194 PubMed
Klein H. L. (2001) Mutations in recombinational repair and in checkpoint control genes suppress the lethal combination of srs2Delta with other DNA repair genes in Saccharomyces cerevisiae. Genetics 157, 557–565 PubMed PMC
Krejci L., Van Komen S., Li Y., Villemain J., Reddy M. S., Klein H., Ellenberger T., and Sung P. (2003) DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature 423, 305–309 PubMed
Veaute X., Jeusset J., Soustelle C., Kowalczykowski S. C., Le Cam E., and Fabre F. (2003) The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423, 309–312 PubMed
Krejci L., Macris M., Li Y., Van Komen S., Villemain J., Ellenberger T., Klein H., and Sung P. (2004) Role of ATP hydrolysis in the antirecombinase function of Saccharomyces cerevisiae Srs2 protein. J. Biol. Chem. 279, 23193–23199 PubMed
Colavito S., Macris-Kiss M., Seong C., Gleeson O., Greene E. C., Klein H. L., Krejci L., and Sung P. (2009) Functional significance of the Rad51-Srs2 complex in Rad51 presynaptic filament disruption. Nucleic Acids Res. 37, 6754–6764 PubMed PMC
Antony E., Tomko E. J., Xiao Q., Krejci L., Lohman T. M., and Ellenberger T. (2009) Srs2 disassembles Rad51 filaments by a protein-protein interaction triggering ATP turnover and dissociation of Rad51 from DNA. Mol. Cell 35, 105–115 PubMed PMC
Burkovics P., Sebesta M., Sisakova A., Plault N., Szukacsov V., Robert T., Pinter L., Marini V., Kolesar P., Haracska L., Gangloff S., and Krejci L. (2013) Srs2 mediates PCNA-SUMO-dependent inhibition of DNA repair synthesis. EMBO J. 32, 742–755 PubMed PMC
Pâques F., and Haber J. E. (1997) Two pathways for removal of nonhomologous DNA ends during double-strand break repair in Saccharomyces cerevisiae. Mol. Cell. Biol. 17, 6765–6771 PubMed PMC
Sugawara N., Ira G., and Haber J. E. (2000) DNA length dependence of the single-strand annealing pathway and the role of Saccharomyces cerevisiae RAD59 in double-strand break repair. Mol. Cell. Biol. 20, 5300–5309 PubMed PMC
Hegde V., and Klein H. (2000) Requirement for the SRS2 DNA helicase gene in non-homologous end joining in yeast. Nucleic Acids Res. 28, 2779–2783 PubMed PMC
Wilson T. E. (2002) A genomics-based screen for yeast mutants with an altered recombination/end-joining repair ratio. Genetics 162, 677–688 PubMed PMC
Ira G., and Haber J. E. (2002) Characterization of RAD51-independent break-induced replication that acts preferentially with short homologous sequences. Mol. Cell. Biol. 22, 6384–6392 PubMed PMC
Ira G., Malkova A., Liberi G., Foiani M., and Haber J. E. (2003) Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast. Cell 115, 401–411 PubMed PMC
Carter S. D., Vigasová D., Chen J., Chovanec M., and Aström S. U. (2009) Nej1 recruits the Srs2 helicase to DNA double-strand breaks and supports repair by a single-strand annealing-like mechanism. Proc. Natl. Acad. Sci. U.S.A. 106, 12037–12042 PubMed PMC
Vaze M. B., Pellicioli A., Lee S. E., Ira G., Liberi G., Arbel-Eden A., Foiani M., and Haber J. E. (2002) Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase. Mol. Cell 10, 373–385 PubMed
Aylon Y., Liefshitz B., Bitan-Banin G., and Kupiec M. (2003) Molecular dissection of mitotic recombination in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 23, 1403–1417 PubMed PMC
Dupaigne P., Le Breton C., Fabre F., Gangloff S., Le Cam E., and Veaute X. (2008) The Srs2 helicase activity is stimulated by Rad51 filaments on dsDNA: implications for crossover incidence during mitotic recombination. Mol. Cell 29, 243–254 PubMed
Sebesta M., Burkovics P., Haracska L., and Krejci L. (2011) Reconstitution of DNA repair synthesis in vitro and the role of polymerase and helicase activities. DNA Repair 10, 567–576 PubMed PMC
Miura T., Shibata T., and Kusano K. (2013) Putative antirecombinase Srs2 DNA helicase promotes noncrossover homologous recombination avoiding loss of heterozygosity. Proc. Natl. Acad. Sci. U.S.A. 110, 16067–16072 PubMed PMC
Friedl A. A., Liefshitz B., Steinlauf R., and Kupiec M. (2001) Deletion of the SRS2 gene suppresses elevated recombination and DNA damage sensitivity in rad5 and rad18 mutants of Saccharomyces cerevisiae. Mutat. Res. 486, 137–146 PubMed
Ruiz J. F., Gómez-González B., and Aguilera A. (2009) Chromosomal translocations caused by either pol32-dependent or pol32-independent triparental break-induced replication. Mol. Cell. Biol. 29, 5441–5454 PubMed PMC
Debrauwère H., Loeillet S., Lin W., Lopes J., and Nicolas A. (2001) Links between replication and recombination in Saccharomyces cerevisiae: a hypersensitive requirement for homologous recombination in the absence of Rad27 activity. Proc. Natl. Acad. Sci. U.S.A. 98, 8263–8269 PubMed PMC
Pfander B., Moldovan G.-L., Sacher M., Hoege C., and Jentsch S. (2005) SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436, 428–433 PubMed
Papouli E., Chen S., Davies A. A., Huttner D., Krejci L., Sung P., and Ulrich H. D. (2005) Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol. Cell 19, 123–133 PubMed
Hoege C., Pfander B., Moldovan G.-L., Pyrowolakis G., and Jentsch S. (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135–141 PubMed
Le Breton C., Dupaigne P., Robert T., Le Cam E., Gangloff S., Fabre F., and Veaute X. (2008) Srs2 removes deadly recombination intermediates independently of its interaction with SUMO-modified PCNA. Nucleic Acids Res. 36, 4964–4974 PubMed PMC
Kolesar P., Sarangi P., Altmannova V., Zhao X., and Krejci L. (2012) Dual roles of the SUMO-interacting motif in the regulation of Srs2 sumoylation. Nucleic Acids Res. 40, 7831–7843 PubMed PMC
Burgess R. C., Lisby M., Altmannova V., Krejci L., Sung P., and Rothstein R. (2009) Localization of recombination proteins and Srs2 reveals anti-recombinase function in vivo. J. Cell Biol. 185, 969–981 PubMed PMC
Armstrong A. A., Mohideen F., and Lima C. D. (2012) Recognition of SUMO-modified PCNA requires tandem receptor motifs in Srs2. Nature 483, 59–63 PubMed PMC
Kim S. O., Yoon H., Park S. O., Lee M., Shin J.-S., Ryu K.-S., Lee J.-O., Seo Y.-S., Jung H. S., and Choi B.-S. (2012) Srs2 possesses a non-canonical PIP box in front of its SBM for precise recognition of SUMOylated PCNA. J. Mol. Cell Biol. 4, 258–261 PubMed
Saponaro M., Callahan D., Zheng X., Krejci L., Haber J. E., Klein H. L., and Liberi G. (2010) Cdk1 targets Srs2 to complete synthesis-dependent strand annealing and to promote recombinational repair. PLoS Genet. 6, e1000858. PubMed PMC
Chiolo I., Carotenuto W., Maffioletti G., Petrini J. H., Foiani M., and Liberi G. (2005) Srs2 and Sgs1 DNA helicases associate with Mre11 in different subcomplexes following checkpoint activation and CDK1-mediated Srs2 phosphorylation. Mol. Cell. Biol. 25, 5738–5751 PubMed PMC
Thomas B. J., and Rothstein R. (1989) Elevated recombination rates in transcriptionally active DNA. Cell 56, 619–630 PubMed
Zhao X., Muller E. G., and Rothstein R. (1998) A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol. Cell 2, 329–340 PubMed
Sherman F., Fink G. R., and Hicks J. B. (1989) Laboratory Course Manual for Methods in Yeast Genetics 186 S., 10 Abb., 2 Tab. Cold Spring Harbor 1986. Cold Spring Harbor Laboratory; ISBN: 0–87969-197–2
Erdeniz N., Mortensen U. H., and Rothstein R. (1997) Cloning-free PCR-based allele replacement methods. Genome Res. 7, 1174–1183 PubMed PMC
Bencsath K. P., Podgorski M. S., Pagala V. R., Slaughter C. A., and Schulman B. A. (2002) Identification of a multifunctional binding site on Ubc9p required for Smt3p conjugation. J. Biol. Chem. 277, 47938–47945 PubMed
Johnson E. S., and Blobel G. (1997) Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. J. Biol. Chem. 272, 26799–26802 PubMed
Johnson E. S., Schwienhorst I., Dohmen R. J., and Blobel G. (1997) The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J. 16, 5509–5519 PubMed PMC
Takahashi Y., Toh-E A., and Kikuchi Y. (2003) Comparative analysis of yeast PIAS-type SUMO ligases in vivo and in vitro. J. Biochem. 133, 415–422 PubMed
Trujillo K. M., and Sung P. (2001) DNA structure-specific nuclease activities in the Saccharomyces cerevisiae Rad50*Mre11 complex. J. Biol. Chem. 276, 35458–35464 PubMed
Krejci L., Song B., Bussen W., Rothstein R., Mortensen U. H., and Sung P. (2002) Interaction with Rad51 is indispensable for recombination mediator function of Rad52. J. Biol. Chem. 277, 40132–40141 PubMed
Chamankhah M., and Xiao W. (1999) Formation of the yeast Mre11-Rad50-Xrs2 complex is correlated with DNA repair and telomere maintenance. Nucleic Acids Res. 27, 2072–2079 PubMed PMC
Huang M. E., de Calignon A., Nicolas A., and Galibert F. (2000) POL32, a subunit of the Saccharomyces cerevisiae DNA polymerase delta, defines a link between DNA replication and the mutagenic bypass repair pathway. Curr. Genet. 38, 178–187 PubMed
Krejci L., Damborsky J., Thomsen B., Duno M., and Bendixen C. (2001) Molecular dissection of interactions between Rad51 and members of the recombination-repair group. Mol. Cell. Biol. 21, 966–976 PubMed PMC
Davis A. P., and Symington L. S. (2001) The yeast recombinational repair protein Rad59 interacts with Rad52 and stimulates single-strand annealing. Genetics 159, 515–525 PubMed PMC
Takahashi Y., Kahyo T., Toh-E A., Yasuda H., and Kikuchi Y. (2001) Yeast Ull1/Siz1 is a novel SUMO1/Smt3 ligase for septin components and functions as an adaptor between conjugating enzyme and substrates. J. Biol. Chem. 276, 48973–48977 PubMed
Marini V., and Krejci L. (2012) Unwinding of synthetic replication and recombination substrates by Srs2. DNA Repair 11, 789–798 PubMed PMC
Altmannova V., Eckert-Boulet N., Arneric M., Kolesar P., Chaloupkova R., Damborsky J., Sung P., Zhao X., Lisby M., and Krejci L. (2010) Rad52 SUMOylation affects the efficiency of the DNA repair. Nucleic Acids Res. 38, 4708–4721 PubMed PMC
Shi I., Hallwyl S. C., Seong C., Mortensen U., Rothstein R., and Sung P. (2009) Role of the Rad52 amino-terminal DNA binding activity in DNA strand capture in homologous recombination. J. Biol. Chem. 284, 33275–33284 PubMed PMC
Hall B. M., Ma C.-X., Liang P., and Singh K. K. (2009) Fluctuation analysis CalculatOR: a web tool for the determination of mutation rate using Luria-Delbruck fluctuation analysis. Bioinformatics. 25, 1564–1565 PubMed PMC
Kerscher O. (2007) SUMO junction-what's your function? New insights through SUMO-interacting motifs. EMBO Rep. 8, 550–555 PubMed PMC
Altmannová V., Kolesár P., and Krejčí L. (2012) SUMO Wrestles with Recombination. Biomolecules. 2, 350–375 PubMed PMC
Smith J., and Rothstein R. (1999) An allele of RFA1 suppresses RAD52-dependent double-strand break repair in Saccharomyces cerevisiae. Genetics 151, 447–458 PubMed PMC
Mortensen U. H., Erdeniz N., Feng Q., and Rothstein R. (2002) A molecular genetic dissection of the evolutionarily conserved N terminus of yeast Rad52. Genetics 161, 549–562 PubMed PMC
Smith J., and Rothstein R. (1995) A mutation in the gene encoding the Saccharomyces cerevisiae single-stranded DNA-binding protein Rfa1 stimulates a RAD52-independent pathway for direct-repeat recombination. Mol. Cell. Biol. 15, 1632–1641 PubMed PMC
Kaeberlein M., McVey M., and Guarente L. (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13, 2570–2580 PubMed PMC
Eckert-Boulet N., and Lisby M. (2009) Regulation of rDNA stability by sumoylation. DNA Repair 8, 507–516 PubMed
Paliwal S., Kanagaraj R., Sturzenegger A., Burdova K., and Janscak P. (2014) Human RECQ5 helicase promotes repair of DNA double-strand breaks by synthesis-dependent strand annealing. Nucleic Acids Res. 42, 2380–2390 PubMed PMC
Lao J. P., Oh S. D., Shinohara M., Shinohara A., and Hunter N. (2008) Rad52 promotes postinvasion steps of meiotic double-strand-break repair. Mol. Cell 29, 517–524 PubMed PMC
Sugiyama T., Kantake N., Wu Y., and Kowalczykowski S. C. (2006) Rad52-mediated DNA annealing after Rad51-mediated DNA strand exchange promotes second ssDNA capture. EMBO J. 25, 5539–5548 PubMed PMC
Chavdarova M., Marini V., Sisakova A., Sedlackova H., Vigasova D., Brill S. J., Lisby M., and Krejci L. (2015) Srs2 promotes Mus81-Mms4-mediated resolution of recombination intermediates. Nucleic Acids Res. 43, 3626–3642 PubMed PMC
Moldovan G.-L., Dejsuphong D., Petalcorin M. I., Hofmann K., Takeda S., Boulton S. J., and D'Andrea A. D. (2012) Inhibition of homologous recombination by the PCNA-interacting protein PARI. Mol. Cell 45, 75–86 PubMed PMC
Burkovics P, Dome L, Juhasz S, Altmannova V, Sebesta M, Pacesa M, Fugger K, Sorensen CS, Lee MY, Haracska L, Krejci L (2016) The PCNA-associated protein PARI negatively regulates homologous recombination via the inhibition of DNA repair synthesis. Nucleic Acids Res. 10.1093/nar/gkw024 PubMed DOI PMC
Merker R. J., and Klein H. L. (2002) hpr1Delta affects ribosomal DNA recombination and cell life span in Saccharomyces cerevisiae. Mol. Cell. Biol. 22, 421–429 PubMed PMC
Esc2 promotes Mus81 complex-activity via its SUMO-like and DNA binding domains