• This record comes from PubMed

Esc2 promotes Mus81 complex-activity via its SUMO-like and DNA binding domains

. 2017 Jan 09 ; 45 (1) : 215-230. [epub] 20160930

Language English Country Great Britain, England Media print-electronic

Document type Journal Article

Replication across damaged DNA templates is accompanied by transient formation of sister chromatid junctions (SCJs). Cells lacking Esc2, an adaptor protein containing no known enzymatic domains, are defective in the metabolism of these SCJs. However, how Esc2 is involved in the metabolism of SCJs remains elusive. Here we show interaction between Esc2 and a structure-specific endonuclease Mus81-Mms4 (the Mus81 complex), their involvement in the metabolism of SCJs, and the effects Esc2 has on the enzymatic activity of the Mus81 complex. We found that Esc2 specifically interacts with the Mus81 complex via its SUMO-like domains, stimulates enzymatic activity of the Mus81 complex in vitro, and is involved in the Mus81 complex-dependent resolution of SCJs in vivo Collectively, our data point to the possibility that the involvement of Esc2 in the metabolism of SCJs is, in part, via modulation of the activity of the Mus81 complex.

See more in PubMed

Jackson S.P., Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461:1071–1078. PubMed PMC

Branzei D. Ubiquitin family modifications and template switching. FEBS Lett. 2011;585:2810–2817. PubMed

Ulrich H.D. Timing and spacing of ubiquitin-dependent DNA damage bypass. FEBS Lett. 2011;585:2861–2867. PubMed

Zhang H., Lawrence C.W. The error-free component of the RAD6/RAD18 DNA damage tolerance pathway of budding yeast employs sister-strand recombination. Proc. Natl. Acad. Sci. U.S.A. 2005;102:15954–15959. PubMed PMC

Branzei D., Vanoli F., Foiani M. SUMOylation regulates Rad18-mediated template switch. Nature. 2008;456:915–920. PubMed

Minca E.C., Kowalski D. Multiple Rad5 activities mediate sister chromatid recombination to bypass DNA damage at stalled replication forks. Mol. Cell. 2010;38:649–661. PubMed PMC

Vanoli F., Fumasoni M., Szakal B., Maloisel L., Branzei D. Replication and recombination factors contributing to recombination-dependent bypass of DNA lesions by template switch. PLoS Genet. 2010;6:e1001205. PubMed PMC

Karras G.I., Fumasoni M., Sienski G., Vanoli F., Branzei D., Jentsch S. Noncanonical role of the 9-1-1 clamp in the error-free DNA damage tolerance pathway. Mol. Cell. 2012 doi:10.1016/j.molcel.2012.11.016. PubMed

Szakal B., Branzei D. Premature Cdk1/Cdc5/Mus81 pathway activation induces aberrant replication and deleterious crossover. EMBO J. 2013;32:1155–1167. PubMed PMC

Ashton T.M., Mankouri H.W., Heidenblut A., McHugh P.J., Hickson I.D. Pathways for Holliday junction processing during homologous recombination in Saccharomyces cerevisiae. Mol. Cell. Biol. 2011;31:1921–1933. PubMed PMC

Ciccia A., Constantinou A., West SC. Identification and characterization of the human Mus81-Eme1 endonuclease. J. Biol. Chem. 2003;278:25172–25178. PubMed

Whitby M.C., Osman F., Dixon J. Cleavage of model replication forks by fission yeast Mus81-Eme1 and budding yeast Mus81-Mms4. J. Biol. Chem. 2003;278:6928–6935. PubMed

Ogrunc M., Sancar A. Identification and characterization of human MUS81-MMS4 structure-specific endonuclease. J. Biol. Chem. 2003;278:21715–21720. PubMed

Fricke W.M., Bastin-Shanower S.A., Brill S.J. Substrate specificity of the Saccharomyces cerevisiae Mus81–Mms4 endonuclease. DNA Repair (Amst.) 2005;4:243–251. PubMed

Ehmsen K.T., Heyer W.D. Saccharomyces cerevisiae Mus81-Mms4 is a catalytic, DNA structure-selective endonuclease. Nucleic Acids Res. 2008;36:2182–2195. PubMed PMC

Interthal H., Heyer W.D. MUS81 encodes a novel Helix-hairpin-Helix protein involved in the response to UV- and methylation-induced DNA damage in Saccharomyces cerevisiae. Mol. Gen. Genet. MGG. 2000;263:812–827. PubMed

Osman F., Whitby M. Exploring the roles of Mus81-Eme1/Mms4 at perturbed replication forks. DNA Repair (Amst.) 2007;6:1004–1017. PubMed

Regairaz M., Zhang Y.-W., Fu H., Agama K.K., Tata N., Agrawal S., Aladjem M.I., Pommier Y. Mus81-mediated DNA cleavage resolves replication forks stalled by topoisomerase I–DNA complexes. J. Cell Biol. 2011;195:739–749. PubMed PMC

Mayle R., Campbell I.M., Beck C.R., Yu Y., Wilson M., Shaw C.A., Bjergbaek L., Lupski J.R., Ira G. Mus81 and converging forks limit the mutagenicity of replication fork breakage. Science. 2015;349:742–747. PubMed PMC

Oh S.D., Lao J.P., Hwang P.Y.-H., Taylor A.F., Smith G.R., Hunter N. BLM ortholog, Sgs1, prevents aberrant crossing-over by suppressing formation of multichromatid joint molecules. Cell. 2008;130:259–272. PubMed PMC

Jessop L., Lichten M. Mus81/Mms4 endonuclease and Sgs1 helicase collaborate to ensure proper recombination intermediate metabolism during meiosis. Mol. Cell. 2008;31:313–323. PubMed PMC

Ying S., Minocherhomji S., Chan K.L., Palmai-Pallag T., Chu W., Wass T., Mankouri H.W., Liu Y., Hickson I.D. MUS81 promotes common fragile site expression. Nat. Cell Biol. 2013;15:1001–1007. PubMed

Naim V., Wilhelm T., Debatisse M., Rosselli F. ERCC1 and MUS81–EME1 promote sister chromatid separation by processing late replication intermediates at common fragile sites during mitosis. Nat. Cell Biol. 2013;15:1008–1015. PubMed

Minocherhomji S., Ying S., Bjerregaard V.A., Bursomanno S., Aleliunaite A., Wu W., Mankouri H.W., Shen H., Liu Y., Hickson I.D. Replication stress activates DNA repair synthesis in mitosis. Nature. 2015;528:286–290. PubMed

Matos J., Blanco M.G., Maslen S., Skehel J.M., West S.C. Regulatory control of the resolution of DNA recombination intermediates during meiosis and mitosis. Cell. 2011;147:158–172. PubMed PMC

Gallo-Fernández M., Saugar I., Ortiz-Bazán M.Á., Vázquez M.V., Tercero J.A. Cell cycle-dependent regulation of the nuclease activity of Mus81–Eme1/Mms4. Nucleic Acids Res. 2012;40:8325–8335. PubMed PMC

Gritenaite D., Princz L.N., Szakal B., Bantele S.C.S., Wendeler L., Schilbach S., Habermann B.H., Matos J., Lisby M., Branzei D., et al. A cell cycle-regulated Slx4–Dpb11 complex promotes the resolution of DNA repair intermediates linked to stalled replication. Genes Dev. 2014;28:1604–1619. PubMed PMC

Dhillon N., Kamakaka R.T. A Histone Variant, Htz1p, and a Sir1p-like Protein, Esc2p, Mediate Silencing at HMR. Mol. Cell. 2000;6:769–780. PubMed

Novatchkova M., Bachmair A., Eisenhaber B., Eisenhaber F. Proteins with two SUMO/like domains in chromatin/associated complexes: The RENi (Rad60/Esc2/NIP45) family. BMC Bioinformatics. 2005;6:22. PubMed PMC

Sollier J., Driscoll R., Castellucci F., Foiani M., Jackson S.P., Branzei D. The Saccharomyces cerevisiae Esc2 and Smc5-6 Proteins Promote Sister Chromatid Junction-mediated Intra-S Repair. Mol. Biol. Cell. 2009;20:1671–1682. PubMed PMC

Mankouri H.W., Ngo H.-P., Hickson I.D. Esc2 and Sgs1 act in functionally distinct branches of the homologous recombination repair pathway in Saccharomyces cerevisiae. Mol. Biol. Cell. 2009;20:1683–1694. PubMed PMC

Urulangodi M., Sebesta M., Menolfi D., Szakal B., Sollier J., Sisakova A., Krejci L., Branzei D. Local regulation of the Srs2 helicase by the SUMO-like domain protein Esc2 promotes recombination at sites of stalled replication. Genes Dev. 2015;29:2067–2080. PubMed PMC

Thomas B.J., Rothstein R. Elevated recombination rates in transcriptionally active DNA. Cell. 1989;56:619–630. PubMed

Matulova P., Marini V., Burgess R.C., Sisakova A., Kwon Y., Rothstein R., Sung P., Krejci L. Cooperativity of Mus81·Mms4 with Rad54 in the resolution of recombination and replication intermediates. J. Biol. Chem. 2009;284:7733–7745. PubMed PMC

Silva S., Gallina I., Eckert-Boulet N., Lisby M. Live cell microscopy of DNA damage response in Saccharomyces cerevisiae. Methods Mol Biol. 2012;920:433–443. PubMed

Orm M., Cubitt A.B., Kallio K., Gross L.A., Tsien R.Y., Remington S.J. Crystal structure of the Aequorea victoria green fluorescent protein. Science. 1996;273:1392–1395. PubMed

Goedhart J., von Stetten D., Noirclerc-Savoye M., Lelimousin M., Joosen L., Hink M.A., van Weeren L., Gadella T.W.J., Royant A. Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93% Nat. Commun. 2012;3:751. PubMed PMC

Bartosova Z., Krejci L. Nucleases in homologous recombination as targets for cancer therapy. FEBS Lett. 2014;588:2446–2456. PubMed

Ayyagari R., Gomes X.V., Gordenin D.A., Burgers P.M.J. Okazaki fragment maturation in yeast: I. Distribution of functions between FEN1 and DNA2. J. Biol. Chem. 2003;278:1618–1625. PubMed

Kao H.I., Henricksen L.A., Liu Y., Bambara R.A. Cleavage specificity of Saccharomyces cerevisiae flap endonuclease 1 suggests a double-flap structure as the cellular substrate. J. Biol. Chem. 2002;277:14379–14389. PubMed

Tomkinson A.E., Bardwell A.J., Bardwell L., Tappe N.J., Friedberg E.C. Yeast DNA repair and recombination proteins Rad1 and Rad10 constitute a single-stranded-DNA endonuclease. Nature. 1993;362:860–862. PubMed

Chen X.-B., Melchionna R., Denis C.-M., Gaillard P.-H.L., Blasina A., Van de Weyer I., Boddy M.N., Russell P., Vialard J., McGowan C.H. Human Mus81-associated endonuclease cleaves Holliday junctions in vitro. Mol. Cell. 2001;8:1117–1127. PubMed

Boddy M.N., Gaillard P.-H.L., McDonald W.H., Shanahan P., Yates J.R., Russell P. Mus81-Eme1 are essential components of a Holliday junction resolvase. Cell. 2001;107:537–548. PubMed

Ip S.C.Y., Rass U., Blanco M.G., Flynn H.R., Skehel J.M., West S.C. Identification of Holliday junction resolvases from humans and yeast. Nature. 2008;456:357–361. PubMed

Ho C.K., Mazón G., Lam A.F., Symington L.S. Mus81 and Yen1 promote reciprocal exchange during mitotic recombination to maintain genome integrity in budding yeast. Mol. Cell. 2010;40:988–1000. PubMed PMC

Blanco M.G., Matos J., Rass U., Ip S.C.Y., West S.C. Functional overlap between the structure-specific nucleases Yen1 and Mus81-Mms4 for DNA-damage repair in S. cerevisiae. DNA Repair (Amst.) 2010;9:394–402. PubMed

Giannattasio M., Zwicky K., Follonier C., Foiani M., Lopes M., Branzei D. Visualization of recombination-mediated damage bypass by template switching. Nat. Struct. Mol. Biol. 2014 doi:10.1038/nsmb.2888. PubMed PMC

Gangloff S., Fabre F., Soustelle C. Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases. Nat. Genet. 2000;25:192–194. PubMed

Krejci L., Altmannova V., Spirek M., Zhao X. Homologous recombination and its regulation. Nucleic Acids Res. 2012;40:5795–5818. PubMed PMC

Branzei D., Foiani M. Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol. 2010;11:208–219. PubMed

Hicks J.M., Hsu V.L. The extended left-handed helix: a simple nucleic acid-binding motif. Proteins. 2004;55:330–338. PubMed

Siligardi G., Drake A.F. The importance of extended conformations and, in particular, the PII conformation for the molecular recognition of peptides. Biopolymers. 1995;37:281–292. PubMed

Chen C.-F., Brill S.J. Binding and activation of DNA topoisomerase III by the Rmi1 subunit. J. Biol. Chem. 2007;282:28971–28979. PubMed PMC

Cejka P., Plank J.L., Bachrati C.Z., Hickson I.D., Kowalczykowski S.C. Rmi1 stimulates decatenation of double Holliday junctions during dissolution by Sgs1–Top3. Nat. Struct. Mol. Biol. 2010;17:1377–1382. PubMed PMC

Bergink S., Ammon T., Kern M., Schermelleh L., Leonhardt H., Jentsch S. Role of Cdc48/p97 as a SUMO-targeted segregase curbing Rad51–Rad52 interaction. Nat Cell Biol. 2013;15:526–532. PubMed

Song J., Zhang Z., Hu W., Chen Y. Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation. J. Biol. Chem. 2005;280:40122–40129. PubMed

Psakhye I., Jentsch S. Protein group modification and synergy in the SUMO pathway as exemplified in DNA repair. Cell. 151:807–820. PubMed

Jentsch S., Psakhye I. Control of nuclear activities by substrate-selective and protein-group SUMOylation. Annu. Rev. Genet. 2013;47:167–186. PubMed

Kolesar P., Altmannova V., Silva S., Lisby M., Krejci L. Pro-recombination role of Srs2 protein requires SUMO (small ubiquitin-like modifier) but Is independent of PCNA (proliferating cell nuclear antigen) interaction. J. Biol. Chem. 2016;291:7594–7607. PubMed PMC

Ryu T., Spatola B., Delabaere L., Bowlin K., Hopp H., Kunitake R., Karpen G.H., Chiolo I. Heterochromatic breaks move to the nuclear periphery to continue recombinational repair. Nat. Cell Biol. 2015;17:1401–1411. PubMed PMC

Gomes X.V., Burgers P.M.J. Two modes of FEN1 binding to PCNA regulated by DNA. EMBO J. 2000;19:3811–3821. PubMed PMC

Tom S., Henricksen L.A., Bambara R.A. Mechanism whereby proliferating cell nuclear antigen stimulates flap endonuclease 1. J. Biol. Chem. 2000;275:10498–10505. PubMed

Cho I.-T., Kim D.-H., Kang Y.-H., Lee C.-H., Amangyelid T., Nguyen T.A., Hurwitz J., Seo Y.-S. Human replication factor C stimulates flap endonuclease 1. J. Biol. Chem. 2009;284:10387–10399. PubMed PMC

Mazina O.M., Mazin A.V. Human Rad54 protein stimulates human Mus81-Eme1 endonuclease. Proc. Natl. Acad. Sci. U.S.A. 2008;105:18249–18254. PubMed PMC

Chavdarova M., Marini V., Sisakova A., Sedlackova H., Vigasova D., Brill S.J., Lisby M., Krejci L. Srs2 promotes Mus81–Mms4-mediated resolution of recombination intermediates. Nucleic Acids Res. 2015;43:3626–3642. PubMed PMC

Wu L., Hickson I.D. The Bloom's syndrome helicase suppresses crossing over during homologous recombination. Nat. Cell Biol. 2003;426:870–874. PubMed

Cejka P., Plank J.L., Dombrowski C.C., Kowalczykowski S.C. Decatenation of DNA by the S. cerevisiae Sgs1-Top3-Rmi1 and RPA complex: a mechanism for disentangling chromosomes. Mol. Cell. 2012;47:886–896. PubMed PMC

Fricke W.M., Brill S.J. Slx1—Slx4 is a second structure-specific endonuclease functionally redundant with Sgs1—Top3. Genes Dev. 2003;17:1768–1778. PubMed PMC

Zakharyevich K., Tang S., Ma Y., Hunter N. Delineation of joint molecule resolution pathways in meiosis identifies a crossover-specific resolvase. Cell. 2012;149:334–347. PubMed PMC

Ranjha L., Anand R., Cejka P. The Saccharomyces cerevisiae Mlh1-Mlh3 heterodimer Is an endonuclease that preferentially binds to Holliday junctions. J. Biol. Chem. 2014;289:5674–5686. PubMed PMC

Bellaoui M., Chang M., Ou J., Xu H., Boone C., Brown G.W. Elg1 forms an alternative RFC complex important for DNA replication and genome integrity. EMBO J. 2003;22:4304–4313. PubMed PMC

West S.C., Blanco M.G., Chan Y.W., Matos J., Sarbajna S., Wyatt H.D.M. Resolution of Recombination Intermediates: Mechanisms and Regulation. Cold Spring Harb. Symp. Quant. Biol. 2015;80:103–109. PubMed

Newest 20 citations...

See more in
Medvik | PubMed

Role of PCNA and RFC in promoting Mus81-complex activity

. 2017 Oct 02 ; 15 (1) : 90. [epub] 20171002

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...