Reconstitution of DNA repair synthesis in vitro and the role of polymerase and helicase activities

. 2011 Jun 10 ; 10 (6) : 567-76. [epub] 20110512

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid21565563

Grantová podpora
WT076476 Wellcome Trust - United Kingdom

Odkazy

PubMed 21565563
PubMed Central PMC3119790
DOI 10.1016/j.dnarep.2011.03.003
PII: S1568-7864(11)00077-2
Knihovny.cz E-zdroje

The error-free repair of double-strand DNA breaks by homologous recombination (HR) ensures genomic stability using undamaged homologous sequence to copy genetic information. While some of the aspects of the initial steps of HR are understood, the molecular mechanisms underlying events downstream of the D-loop formation remain unclear. Therefore, we have reconstituted D-loop-based in vitro recombination-associated DNA repair synthesis assay and tested the efficacy of polymerases Pol δ and Pol η to extend invaded primer, and the ability of three helicases (Mph1, Srs2 and Sgs1) to displace this extended primer. Both Pol δ and Pol η extended up to 50% of the D-loop substrate, but differed in product length and dependency on proliferating cell nuclear antigen (PCNA). Mph1, but not Srs2 or Sgs1, displaced the extended primer very efficiently, supporting putative role of Mph1 in promoting the synthesis-dependent strand-annealing pathway. The experimental system described here can be employed to increase our understanding of HR events following D-loop formation, as well as the regulatory mechanisms involved.

Zobrazit více v PubMed

Paques F., Haber J.E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 1999;63:349–404. PubMed PMC

Sung P., Klein H. Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat. Rev. Mol. Cell Biol. 2006;7:739–750. PubMed

Lieber M.R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 2010;79:181–211. PubMed PMC

Mimitou E.P., Symington L.S. Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature. 2008;455:770–774. PubMed PMC

Zhu Z., Chung W.H., Shim E.Y., Lee S.E., Ira G. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell. 2008;134:981–994. PubMed PMC

Petukhova G., Stratton S.A., Sung P. Single strand DNA binding and annealing activities in the yeast recombination factor Rad59. J. Biol. Chem. 1999;274:33839–33842. PubMed

Sung P. Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase. J. Biol. Chem. 1997;272:28194–28197. PubMed

Sung P. Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase. Genes Dev. 1997;11:1111–1121. PubMed

Sung P., Krejci L., Van Komen S., Sehorn M.G. Rad51 recombinase and recombination mediators. J. Biol. Chem. 2003;278:42729–42732. PubMed

Krejci L., Van Komen S., Li Y., Villemain J., Reddy M.S., Klein H., Ellenberger T., Sung P. DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature. 2003;423:305–309. PubMed

Veaute X., Jeusset J., Soustelle C., Kowalczykowski S.C., Le Cam E., Fabre F. The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature. 2003;423:309–312. PubMed

Colavito S., Macris-Kiss M., Seong C., Gleeson O., Greene E.C., Klein H.L., Krejci L., Sung P. Functional significance of the Rad51-Srs2 complex in Rad51 presynaptic filament disruption. Nucleic Acids Res. 2009;37:6754–6764. PubMed PMC

Seong C., Colavito S., Kwon Y., Sung P., Krejci L. Regulation of Rad51 recombinase presynaptic filament assembly via interactions with the Rad52 mediator and the Srs2 anti-recombinase. J. Biol. Chem. 2009;284:24363–24371. PubMed PMC

Marini V., Krejci L. Srs2: the “Odd-Job Man” in DNA repair. DNA Repair (Amst.) 2010;9:268–275. PubMed PMC

Burgess R.C., Lisby M., Altmannova V., Krejci L., Sung P., Rothstein R. Localization of recombination proteins and Srs2 reveals anti-recombinase function in vivo. J. Cell Biol. 2009;185:969–981. PubMed PMC

Sung P. Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein. Science. 1994;265:1241–1243. PubMed

Sung P., Robberson D.L. DNA strand exchange mediated by a RAD51-ssDNA nucleoprotein filament with polarity opposite to that of RecA. Cell. 1995;82:453–461. PubMed

Petukhova G., Stratton S., Sung P. Catalysis of homologous DNA pairing by yeast Rad51 and Rad54 proteins. Nature. 1998;393:91–94. PubMed

Jaskelioff M., Van Komen S., Krebs J.E., Sung P., Peterson C.L. Rad54p is a chromatin remodeling enzyme required for heteroduplex DNA joint formation with chromatin. J. Biol. Chem. 2003;278:9212–9218. PubMed

Wolner B., Peterson C.L. ATP-dependent and ATP-independent roles for the Rad54 chromatin remodeling enzyme during recombinational repair of a DNA double strand break. J. Biol. Chem. 2005;280:10855–10860. PubMed

Li X., Stith C.M., Burgers P.M., Heyer W.D. PCNA is required for initiation of recombination-associated DNA synthesis by DNA polymerase delta. Mol. Cell. 2009;36:704–713. PubMed PMC

Holmes A.M., Haber J.E. Double-strand break repair in yeast requires both leading and lagging strand DNA polymerases. Cell. 1999;96:415–424. PubMed

Wang X., Ira G., Tercero J.A., Holmes A.M., Diffley J.F., Haber J.E. Role of DNA replication proteins in double-strand break-induced recombination in Saccharomyces cerevisiae. Mol. Cell Biol. 2004;24:6891–6899. PubMed PMC

Prakash R., Satory D., Dray E., Papusha A., Scheller J., Kramer W., Krejci L., Klein H., Haber J.E., Sung P., Ira G. Yeast Mph1 helicase dissociates Rad51-made D-loops: implications for crossover control in mitotic recombination. Genes Dev. 2009;23:67–79. PubMed PMC

Saponaro M., Callahan D., Zheng X., Krejci L., Haber J.E., Klein H.L., Liberi G. Cdk1 targets Srs2 to complete synthesis-dependent strand annealing and to promote recombinational repair. PLoS Genet. 2010;6:e1000858. PubMed PMC

Dupaigne P., Le Breton C., Fabre F., Gangloff S., Le Cam E., Veaute X. The Srs2 helicase activity is stimulated by Rad51 filaments on dsDNA: implications for crossover incidence during mitotic recombination. Mol. Cell. 2008;29:243–254. PubMed

Ira G., Malkova A., Liberi G., Foiani M., Haber J.E. Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast. Cell. 2003;115:401–411. PubMed PMC

Matulova P., Marini V., Burgess R.C., Sisakova A., Kwon Y., Rothstein R., Sung P., Krejci L. Cooperativity of Mus81. Mms4 with Rad54 in the resolution of recombination and replication intermediates. J. Biol. Chem. 2009;284:7733–7745. PubMed PMC

Ayyagari R., Impellizzeri K.J., Yoder B.L., Gary S.L., Burgers P.M. A mutational analysis of the yeast proliferating cell nuclear antigen indicates distinct roles in DNA replication and DNA repair. Mol. Cell. Biol. 1995;15:4420–4429. PubMed PMC

Burgers P.M., Gerik K.J. Structure and processivity of two forms of Saccharomyces cerevisiae DNA polymerase delta. J. Biol. Chem. 1998;273:19756–19762. PubMed

Van Komen S., Macris M., Sehorn M.G., Sung P. Purification and assays of Saccharomyces cerevisiae homologous recombination proteins. Methods Enzymol. 2006;408:445–463. PubMed

Finkelstein J., Antony E., Hingorani M.M., O’Donnell M. Overproduction and analysis of eukaryotic multiprotein complexes in Escherichia coli using a dual-vector strategy. Anal. Biochem. 2003;319:78–87. PubMed

Prakash R., Krejci L., Van Komen S., Anke Schurer K., Kramer W., Sung P. Saccharomyces cerevisiae MPH1 gene, required for homologous recombination-mediated mutation avoidance, encodes a 3′ to 5′ DNA helicase. J. Biol. Chem. 2005;280:7854–7860. PubMed

Johnson R.E., Prakash S., Prakash L. Efficient bypass of a thymine–thymine dimer by yeast DNA polymerase, Poleta. Science. 1999;283:1001–1004. PubMed

Lydeard J.R., Jain S., Yamaguchi M., Haber J.E. Break-induced replication and telomerase-independent telomere maintenance require Pol32. Nature. 2007;448:820–823. PubMed

Nickoloff J.A., Sweetser D.B., Clikeman J.A., Khalsa G.J., Wheeler S.L. Multiple heterologies increase mitotic double-strand break-induced allelic gene conversion tract lengths in yeast. Genetics. 1999;153:665–679. PubMed PMC

Langston L.D., O’Donnell M. DNA polymerase delta is highly processive with proliferating cell nuclear antigen and undergoes collision release upon completing DNA. J. Biol. Chem. 2006;283:29522–29531. PubMed PMC

Judd S.R., Petes T.D. Physical lengths of meiotic and mitotic gene conversion tracts in Saccharomyces cerevisiae. Genetics. 1988;118:401–410. PubMed PMC

Borts R.H., Haber J.E. Length and distribution of meiotic gene conversion tracts and crossovers in Saccharomyces cerevisiae. Genetics. 1989;123:69–80. PubMed PMC

Hicks W.M., Kim M., Haber J.E. Increased mutagenesis and unique mutation signature associated with mitotic gene conversion. Science. 2010;329:82–85. PubMed PMC

McIlwraith M.J., Vaisman A., Liu Y., Fanning E., Woodgate R., West S.C. Human DNA polymerase eta promotes DNA synthesis from strand invasion intermediates of homologous recombination. Mol. Cell. 2005;20:783–792. PubMed

McIlwraith M.J., West S.C. DNA repair synthesis facilitates RAD52-mediated second-end capture during DSB repair. Mol. Cell. 2008;29:510–516. PubMed

Jin Y.H., Ayyagari R., Resnick M.A., Gordenin D.A., Burgers P.M. Okazaki fragment maturation in yeast. II. Cooperation between the polymerase and 3′–5′-exonuclease activities of Pol delta in the creation of a ligatable nick. J. Biol. Chem. 2003;278:1626–1633. PubMed

Washington M.T., Johnson R.E., Prakash S., Prakash L. Fidelity and processivity of Saccharomyces cerevisiae DNA polymerase eta. J. Biol. Chem. 1999;274:36835–36838. PubMed

Lo Y.C., Paffett K.S., Amit O., Clikeman J.A., Sterk R., Brenneman M.A., Nickoloff J.A. Sgs1 regulates gene conversion tract lengths and crossovers independently of its helicase activity. Mol. Cell Biol. 2006;26:4086–4094. PubMed PMC

Jain S., Sugawara N., Lydeard J., Vaze M., Tanguy Le Gac N., Haber J.E. A recombination execution checkpoint regulates the choice of homologous recombination pathway during DNA double-strand break repair. Genes Dev. 2009;23:291–303. PubMed PMC

Wu L., Hickson I.D. The Bloom's syndrome helicase suppresses crossing over during homologous recombination. Nature. 2003;426:870–874. PubMed

Wu L., Bachrati C.Z., Ou J., Xu C., Yin J., Chang M., Wang W., Li L., Brown G.W., Hickson I.D. BLAP75/RMI1 promotes the BLM-dependent dissolution of homologous recombination intermediates. Proc. Natl. Acad. Sci. U. S. A. 2006;103:4068–4073. PubMed PMC

Raynard S., Bussen W., Sung P. A double Holliday junction dissolvasome comprising BLM, topoisomerase IIIalpha, and BLAP75. J. Biol. Chem. 2006;281:13861–13864. PubMed

Huang M.E., Rio A.G., Galibert M.D., Galibert F. Pol32, a subunit of Saccharomyces cerevisiae DNA polymerase delta, suppresses genomic deletions and is involved in the mutagenic bypass pathway. Genetics. 2002;160:1409–1422. PubMed PMC

Papouli E, Chen S., Davies A.A., Huttner D., Krejci L., Sung P., Ulrich H.D. Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol. Cell. 2005;19:123–133. PubMed

Pfander B., Moldovan G.L., Sacher M., Hoege C., Jentsch S. SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature. 2005;436:428–433. PubMed

Le Breton C., Dupaigne P., Robert T., Le Cam E., Gangloff S., Fabre F., Veaute X. Srs2 removes deadly recombination intermediates independently of its interaction with SUMO-modified PCNA. Nucleic Acids Res. 2008;36:243–254. PubMed PMC

Chu S., DeRisi J., Eisen M., Mulholland J., Botstein D., Brown P.O., Herskowitz I. The transcriptional program of sporulation in budding yeast. Science. 1998;282:699–705. PubMed

Roberts C.J., Nelson B., Marton M.J., Stoughton R., Meyer M.R., Bennett H.A., He Y.D., Dai H., Walker H.W.L., Hughes T.R. Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science. 2000;287:873–880. PubMed

Tay Y.D., Sidebotham J.M., Wu L. Mph1 requires mismatch repair-independent and -dependent functions of MutSalpha to regulate crossover formation during homologous recombination repair. Nucleic Acids Res. 2010;38:1889–1901. PubMed PMC

Kiianits K., Solinger J.A., Heyer W.D. Terminal association of Rad54 protein with the Rad51–dsDNA filament. Proc. Natl. Acad. Sci. U. S. A. 2006;103:9767–9772. PubMed PMC

Ristic D., Wyman C., Paulusma C., Kanaar R. The architecture of the human Rad54–DNA complex provides evidence for protein translocation along DNA. Proc. Natl. Acad. Sci. U. S. A. 2001;98:8454–8460. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Concurrent D-loop cleavage by Mus81 and Yen1 yields half-crossover precursors

. 2024 Jul 08 ; 52 (12) : 7012-7030.

The role of bivalent ions in the regulation of D-loop extension mediated by DMC1 during meiotic recombination

. 2022 Nov 18 ; 25 (11) : 105439. [epub] 20221025

Antibiotic-induced DNA damage results in a controlled loss of pH homeostasis and genome instability

. 2020 Nov 10 ; 10 (1) : 19422. [epub] 20201110

Role of PCNA and RFC in promoting Mus81-complex activity

. 2017 Oct 02 ; 15 (1) : 90. [epub] 20171002

A structure-function analysis of the yeast Elg1 protein reveals the importance of PCNA unloading in genome stability maintenance

. 2017 Apr 07 ; 45 (6) : 3189-3203.

Unloading of homologous recombination factors is required for restoring double-stranded DNA at damage repair loci

. 2017 Jan 17 ; 36 (2) : 213-231. [epub] 20161208

The PCNA-associated protein PARI negatively regulates homologous recombination via the inhibition of DNA repair synthesis

. 2016 Apr 20 ; 44 (7) : 3176-89. [epub] 20160120

Pro-recombination Role of Srs2 Protein Requires SUMO (Small Ubiquitin-like Modifier) but Is Independent of PCNA (Proliferating Cell Nuclear Antigen) Interaction

. 2016 Apr 01 ; 291 (14) : 7594-607. [epub] 20160209

The structure and DNA-binding properties of Mgm101 from a yeast with a linear mitochondrial genome

. 2016 Mar 18 ; 44 (5) : 2227-39. [epub] 20160106

Mte1 interacts with Mph1 and promotes crossover recombination and telomere maintenance

. 2016 Mar 15 ; 30 (6) : 700-17. [epub] 20160310

Srs2 promotes Mus81-Mms4-mediated resolution of recombination intermediates

. 2015 Apr 20 ; 43 (7) : 3626-42. [epub] 20150312

Strand invasion by HLTF as a mechanism for template switch in fork rescue

. 2014 Feb ; 42 (3) : 1711-20. [epub] 20131105

The PCNA interaction protein box sequence in Rad54 is an integral part of its ATPase domain and is required for efficient DNA repair and recombination

. 2013 ; 8 (12) : e82630. [epub] 20131220

Role of PCNA and TLS polymerases in D-loop extension during homologous recombination in humans

. 2013 Sep ; 12 (9) : 691-8. [epub] 20130531

Srs2 mediates PCNA-SUMO-dependent inhibition of DNA repair synthesis

. 2013 Mar 06 ; 32 (5) : 742-55. [epub] 20130208

Unwinding of synthetic replication and recombination substrates by Srs2

. 2012 Oct 01 ; 11 (10) : 789-98. [epub] 20120824

Homologous recombination and its regulation

. 2012 Jul ; 40 (13) : 5795-818. [epub] 20120330

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...