Antibiotic-induced DNA damage results in a controlled loss of pH homeostasis and genome instability
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33173044
PubMed Central
PMC7655802
DOI
10.1038/s41598-020-76426-2
PII: 10.1038/s41598-020-76426-2
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky farmakologie MeSH
- Escherichia coli účinky léků genetika účinky záření MeSH
- koncentrace vodíkových iontů MeSH
- kyselina nalidixová farmakologie MeSH
- mikrobiální viabilita účinky léků účinky záření MeSH
- nestabilita genomu účinky léků genetika účinky záření MeSH
- poškození DNA účinky léků genetika účinky záření MeSH
- propidium farmakologie MeSH
- průtoková cytometrie MeSH
- retardační test MeSH
- rifampin farmakologie MeSH
- ultrafialové záření MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- kyselina nalidixová MeSH
- propidium MeSH
- rifampin MeSH
Extracellular pH has been assumed to play little if any role in how bacteria respond to antibiotics and antibiotic resistance development. Here, we show that the intracellular pH of Escherichia coli equilibrates to the environmental pH following treatment with the DNA damaging antibiotic nalidixic acid. We demonstrate that this allows the environmental pH to influence the transcription of various DNA damage response genes and physiological processes such as filamentation. Using purified RecA and a known pH-sensitive mutant variant RecA K250R we show how pH can affect the biochemical activity of a protein central to control of the bacterial DNA damage response system. Finally, two different mutagenesis assays indicate that environmental pH affects antibiotic resistance development. Specifically, at environmental pH's greater than six we find that mutagenesis plays a significant role in producing antibiotic resistant mutants. At pH's less than or equal to 6 the genome appears more stable but extensive filamentation is observed, a phenomenon that has previously been linked to increased survival in the presence of macrophages.
Zobrazit více v PubMed
EU, F. C. Transatlantic Taskforce on Antimicrobial Resistance: Progress report May 2014. 1–86 (2014).
Brauner A, Fridman O, Gefen O, Balaban NQ. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat. Rev. Microbiol. 2016;14:320–330. doi: 10.1038/nrmicro.2016.34. PubMed DOI
Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 2007;130:797–810. doi: 10.1016/j.cell.2007.06.049. PubMed DOI
Miller C, et al. SOS response induction by beta-lactams and bacterial defense against antibiotic lethality. Science. 2004;305:1629–1631. doi: 10.1126/science.1101630. PubMed DOI
Michel B. After 30 years of study, the bacterial SOS response still surprises us. PLoS Biol. 2005;3:1174–1176. doi: 10.1371/journal.pbio.0030255. PubMed DOI PMC
Courcelle J, Khodursky A, Peter B, Brown PO, Hanawalt PC. Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. Genetics. 2001;158:41–64. PubMed PMC
Harms, A., Maisonneuve, E. & Gerdes, K. Mechanisms of bacterial persistence during stress and antibiotic exposure. Science354, 1390 & aaf4269 (2016). PubMed
Dorr T, Vulic M, Lewis K. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. Plos Biol. 2010;8:e1000317. doi: 10.1371/journal.pbio.1000317. PubMed DOI PMC
Unoson C, Wagner EGH. A small SOS-induced toxin is targeted against the inner membrane in Escherichia coli. Mol. Microbiol. 2008;70:258–270. doi: 10.1111/j.1365-2958.2008.06416.x. PubMed DOI
Slonczewski JL, Fujisawa M, Dopson M, Krulwich TA. Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Adv. Microb. Physiol. 2009;55:1–79. doi: 10.1016/S0065-2911(09)05501-5. PubMed DOI
Slonczewski JL, Rosen BP, Alger JR, Macnab RM. pH homeostasis in Escherichia coli: measurement by 31P nuclear magnetic resonance of methylphosphonate and phosphate. Proc. Natl. Acad. Sci. USA. 1981;78:6271–6275. doi: 10.1073/pnas.78.10.6271. PubMed DOI PMC
Baba T, et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2006;2:2006-0008. doi: 10.1038/msb4100050. PubMed DOI PMC
Kitagawa M, et al. Complete set of ORF clones of Escherichia coli ASKA library (A complete Set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res. 2005;12:291–299. doi: 10.1093/dnares/dsi012. PubMed DOI
Gomez-Gomez JM, Manfredi C, Alonso JC, Blazquez J. A novel role for RecA under non-stress: promotion of swarming motility in Escherichia coli K-12. BMC Biol. 2007;5:14. doi: 10.1186/1741-7007-5-14. PubMed DOI PMC
Thomason, L. C., Costantino, N. & Court, D. L. E. coli genome manipulation by P1 transduction. In Current Protocols in Molecular Biology (eds. Ausubel, F. M. et al.) Chapter 1, Unit 1 17 (2007). PubMed
Warren DJ. Preparation of highly efficient electrocompetent Escherichia coli using glycerol/mannitol density step centrifugation. Anal. Biochem. 2011;413:206–207. doi: 10.1016/j.ab.2011.02.036. PubMed DOI
Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA. 2000;97:6640–6645. doi: 10.1073/pnas.120163297. PubMed DOI PMC
Crumplin GC, Smith JT. Nalidixic acid: an antibacterial paradox. Antimicrob. Agents Chemother. 1975;8:251–261. doi: 10.1128/AAC.8.3.251. PubMed DOI PMC
Sanofi-Aventis, U. S. NegGram Caplets (Nalidixic Acid, USP). https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/014214s058lbl.pdf. (2008).
Cormack BP, Valdivia RH, Falkow S. FACS-optimized mutants of the green fluorescent protein (GFP) Gene. 1996;173:33–38. doi: 10.1016/0378-1119(95)00685-0. PubMed DOI
Barrett CML, Ray N, Thomas JD, Robinson C, Bolhuis A. Quantitative export of a reporter protein, GFP, by the twin-arginine translocation pathway in Escherichia coli. Biochem. Biophys. Res. Commun. 2003;304:279–284. doi: 10.1016/S0006-291X(03)00583-7. PubMed DOI
Matulova P, et al. Cooperativity of Mus81.Mms4 with Rad54 in the resolution of recombination and replication intermediates. J. Biol. Chem. 2009;284:7733–7745. doi: 10.1074/jbc.M806192200. PubMed DOI PMC
Sebesta M, Burkovics P, Haracska L, Krejci L. Reconstitution of DNA repair synthesis in vitro and the role of polymerase and helicase activities. DNA Repair (Amst) 2011;10:567–576. doi: 10.1016/j.dnarep.2011.03.003. PubMed DOI PMC
Taylor MR, et al. Rad51 paralogs remodel pre-synaptic Rad51 filaments to stimulate homologous recombination. Cell. 2015;162:271–286. doi: 10.1016/j.cell.2015.06.015. PubMed DOI PMC
MuLler-Hill B, Kania J. Lac repressor can be fused to [beta]-galactosidase. Nature. 1974;249:561–563. doi: 10.1038/249561a0. PubMed DOI
Drlica K, et al. Quinolones: action and resistance updated. Curr. Top. Med. Chem. 2009;9:981–998. doi: 10.2174/156802609789630947. PubMed DOI PMC
Erental A, Sharon I, Engelberg-Kulka H. Two programmed cell death systems in Escherichia coli: an apoptotic-like death is inhibited by the mazEF-mediated death pathway. PLoS Biol. 2012;10:e1001281. doi: 10.1371/journal.pbio.1001281. PubMed DOI PMC
Wilks JC, Slonczewski JL. pH of the cytoplasm and periplasm of Escherichia coli: rapid measurement by green fluorescent protein fluorimetry. J. Bacteriol. 2007;189:5601–5607. doi: 10.1128/JB.00615-07. PubMed DOI PMC
Nugent SG, Kumar D, Rampton DS, Evans DF. Intestinal luminal pH in inflammatory bowel disease: possible determinants and implications for therapy with aminosalicylates and other drugs. Gut. 2001;48:571–577. doi: 10.1136/gut.48.4.571. PubMed DOI PMC
Tenaillon O, Skurnik D, Picard B, Denamur E. The population genetics of commensal Escherichia coli. Nat. Rev. Microbiol. 2010;8:207–217. doi: 10.1038/nrmicro2298. PubMed DOI
Yang L, Wang KJ, Li H, Denstedt JD, Cadieux PA. The Influence of urinary pH on antibiotic efficacy against bacterial uropathogens. Urology. 2014;84(731):e731–731.e737. PubMed
Canton J, Khezri R, Glogauer M, Grinstein S. Contrasting phagosome pH regulation and maturation in human M1 and M2 macrophages. Mol. Biol. Cell. 2014;25:3330–3341. doi: 10.1091/mbc.e14-05-0967. PubMed DOI PMC
Butala M, Zgur-Bertok D, Busby SJ. The bacterial LexA transcriptional repressor. CMLS. 2009;66:82–93. doi: 10.1007/s00018-008-8378-6. PubMed DOI PMC
Justice SS, Garcia-Lara J, Rothfield LI. Cell division inhibitors SulA and MinC/MinD block septum formation at different steps in the assembly of the Escherichia coli division machinery. Mol. Microbiol. 2000;37:410–423. doi: 10.1046/j.1365-2958.2000.02007.x. PubMed DOI
Trusca D, Scott S, Thompson C, Bramhill D. Bacterial SOS checkpoint protein SulA inhibits polymerization of purified FtsZ cell division protein. J. Bacteriol. 1998;180:3946–3953. doi: 10.1128/JB.180.15.3946-3953.1998. PubMed DOI PMC
Mukherjee A, Cao CN, Lutkenhaus J. Inhibition of FtsZ polymerization by SulA, an inhibitor of septation in Escherichia coli. Proc. Natl. Acad. Sci. USA. 1998;95:2885–2890. doi: 10.1073/pnas.95.6.2885. PubMed DOI PMC
Volkmer B, Heinemann M. Condition-dependent cell volume and concentration of Escherichia coli to facilitate data conversion for systems biology modeling. PLoS ONE. 2011;6:e23126. doi: 10.1371/journal.pone.0023126. PubMed DOI PMC
Patel M, Jiang QF, Woodgate R, Cox MM, Goodman MF. A new model for SOS-induced mutagenesis: how RecA protein activates DNA polymerase V. Crit. Rev. Biochem. Mol. 2010;45:171–184. doi: 10.3109/10409238.2010.480968. PubMed DOI PMC
Renzette N, et al. Localization of RecA in Escherichia coli K-12 using RecA-GFP. Mol. Microbiol. 2005;57:1074–1085. doi: 10.1111/j.1365-2958.2005.04755.x. PubMed DOI
Friedman N, Vardi S, Ronen M, Alon U, Stavans J. Precise temporal modulation in the response of the SOS DNA repair network in individual bacteria. PLoS Biol. 2005;3:e238. doi: 10.1371/journal.pbio.0030238. PubMed DOI PMC
Lewis LK, Harlow GR, Greggjolly LA, Mount DW. Identification of high-affinity binding-sites for LexA which define new DNA damage-inducible genes in Escherichia coli. J. Mol. Biol. 1994;241:507–523. doi: 10.1006/jmbi.1994.1528. PubMed DOI
Goodman MF, McDonald JP, Jaszczur MM, Woodgate R. Insights into the complex levels of regulation imposed on Escherichia coli DNA polymerase V. DNA Repair. 2016;44:42–50. doi: 10.1016/j.dnarep.2016.05.005. PubMed DOI PMC
Sommer S, Boudsocq F, Devoret R, Bailone A. Specific RecA amino acid changes affect RecA-UmuD ' C interaction. Mol. Microbiol. 1998;28:281–291. doi: 10.1046/j.1365-2958.1998.00803.x. PubMed DOI
Giese KC, Michalowski CB, Little JW. RecA-dependent cleavage of LexA dimers. J. Mol. Biol. 2008;377:148–161. doi: 10.1016/j.jmb.2007.12.025. PubMed DOI PMC
Cox JM, et al. Defective dissociation of a “Slow” RecA mutant protein imparts an Escherichia coli growth defect. J. Biol. Chem. 2008;283:24909–24921. doi: 10.1074/jbc.M803934200. PubMed DOI PMC
Cairns J, Foster PL. Adaptive reversion of a frameshift mutation in Escherichia coli. Genetics. 1991;128:695–701. PubMed PMC
Frisch RL, et al. Separate DNA Pol II- and Pol IV-dependent pathways of stress-induced mutation during double-strand-break repair in Escherichia coli are controlled by RpoS. J. Bacteriol. 2010;192:4694–4700. doi: 10.1128/JB.00570-10. PubMed DOI PMC
Rosenberg SM, Hastings PJ. Adaptive point mutation and adaptive amplification pathways in the Escherichia coli Lac system: stress responses producing genetic change. J. Bacteriol. 2004;186:4838–4843. doi: 10.1128/JB.186.15.4838-4843.2004. PubMed DOI PMC
Mcentee K, Weinstock GM, Lehman IR. Binding of the Reca protein of Escherichia coli to single-stranded and double-stranded DNA. J. Biol. Chem. 1981;256:8835–8844. PubMed
Pinsince JM, Muench KA, Bryant FR, Griffith JD. 2 Mutant Reca proteins possessing Ph-dependent strand exchange activity exhibit Ph-dependent presynaptic filament formation. J. Mol. Biol. 1993;233:59–66. doi: 10.1006/jmbi.1993.1484. PubMed DOI
Muench KA, Bryant FR. An obligatory Ph-mediated isomerization on the [Asn-160]Reca protein-promoted DNA strand exchange-reaction pathway. J. Biol. Chem. 1990;265:11560–11566. PubMed
Bell JC, Plank JL, Dombrowski CC, Kowalczykowski SC. Direct imaging of RecA nucleation and growth on single molecules of SSB-coated ssDNA. Nature. 2012;491:274–U144. doi: 10.1038/nature11598. PubMed DOI PMC
Kim SH, Park J, Joo C, Kim D, Ha T. Dynamic growth and shrinkage govern the pH dependence of RecA filament stability. PLoS ONE. 2015;10:e0115611. doi: 10.1371/journal.pone.0115611. PubMed DOI PMC
Krulwich TA, Sachs G, Padan E. Molecular aspects of bacterial pH sensing and homeostasis. Nat. Rev. Microbiol. 2011;9:330–343. doi: 10.1038/nrmicro2549. PubMed DOI PMC
Shan Y, et al. ATP-dependent persister formation in Escherichia coli. Mbio. 2017;8:e02267–e2316. doi: 10.1128/mBio.02267-16. PubMed DOI PMC
Laureti L, Demol J, Fuchs RP, Pages V. Bacterial proliferation: keep dividing and don’t mind the gap. PLoS Genet. 2015;11:e1005757. doi: 10.1371/journal.pgen.1005757. PubMed DOI PMC
Lopes M, Foiani M, Sogo JM. Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol. Cell. 2006;21:15–27. doi: 10.1016/j.molcel.2005.11.015. PubMed DOI
Justice SS, Hunstad DA, Cegelski L, Hultgren SJ. Morphological plasticity as a bacterial survival strategy. Nat. Rev. Microbiol. 2008;6:162–168. doi: 10.1038/nrmicro1820. PubMed DOI
Horvath DJ, et al. Morphological plasticity promotes resistance to phagocyte killing of uropathogenic Escherichia coli. Microbes Infect. 2011;13:426–437. doi: 10.1016/j.micinf.2010.12.004. PubMed DOI PMC
Justice SS, Hunstad DA, Seed PC, Hultgren SJ. Filamentation by Escherichia coli subverts innate defenses during urinary tract infection. Proc. Natl. Acad. Sci. USA. 2006;103:19884–19889. doi: 10.1073/pnas.0606329104. PubMed DOI PMC