Antibiotic-induced DNA damage results in a controlled loss of pH homeostasis and genome instability

. 2020 Nov 10 ; 10 (1) : 19422. [epub] 20201110

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33173044
Odkazy

PubMed 33173044
PubMed Central PMC7655802
DOI 10.1038/s41598-020-76426-2
PII: 10.1038/s41598-020-76426-2
Knihovny.cz E-zdroje

Extracellular pH has been assumed to play little if any role in how bacteria respond to antibiotics and antibiotic resistance development. Here, we show that the intracellular pH of Escherichia coli equilibrates to the environmental pH following treatment with the DNA damaging antibiotic nalidixic acid. We demonstrate that this allows the environmental pH to influence the transcription of various DNA damage response genes and physiological processes such as filamentation. Using purified RecA and a known pH-sensitive mutant variant RecA K250R we show how pH can affect the biochemical activity of a protein central to control of the bacterial DNA damage response system. Finally, two different mutagenesis assays indicate that environmental pH affects antibiotic resistance development. Specifically, at environmental pH's greater than six we find that mutagenesis plays a significant role in producing antibiotic resistant mutants. At pH's less than or equal to 6 the genome appears more stable but extensive filamentation is observed, a phenomenon that has previously been linked to increased survival in the presence of macrophages.

Zobrazit více v PubMed

EU, F. C. Transatlantic Taskforce on Antimicrobial Resistance: Progress report May 2014. 1–86 (2014).

Brauner A, Fridman O, Gefen O, Balaban NQ. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat. Rev. Microbiol. 2016;14:320–330. doi: 10.1038/nrmicro.2016.34. PubMed DOI

Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 2007;130:797–810. doi: 10.1016/j.cell.2007.06.049. PubMed DOI

Miller C, et al. SOS response induction by beta-lactams and bacterial defense against antibiotic lethality. Science. 2004;305:1629–1631. doi: 10.1126/science.1101630. PubMed DOI

Michel B. After 30 years of study, the bacterial SOS response still surprises us. PLoS Biol. 2005;3:1174–1176. doi: 10.1371/journal.pbio.0030255. PubMed DOI PMC

Courcelle J, Khodursky A, Peter B, Brown PO, Hanawalt PC. Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. Genetics. 2001;158:41–64. PubMed PMC

Harms, A., Maisonneuve, E. & Gerdes, K. Mechanisms of bacterial persistence during stress and antibiotic exposure. Science354, 1390 & aaf4269 (2016). PubMed

Dorr T, Vulic M, Lewis K. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. Plos Biol. 2010;8:e1000317. doi: 10.1371/journal.pbio.1000317. PubMed DOI PMC

Unoson C, Wagner EGH. A small SOS-induced toxin is targeted against the inner membrane in Escherichia coli. Mol. Microbiol. 2008;70:258–270. doi: 10.1111/j.1365-2958.2008.06416.x. PubMed DOI

Slonczewski JL, Fujisawa M, Dopson M, Krulwich TA. Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Adv. Microb. Physiol. 2009;55:1–79. doi: 10.1016/S0065-2911(09)05501-5. PubMed DOI

Slonczewski JL, Rosen BP, Alger JR, Macnab RM. pH homeostasis in Escherichia coli: measurement by 31P nuclear magnetic resonance of methylphosphonate and phosphate. Proc. Natl. Acad. Sci. USA. 1981;78:6271–6275. doi: 10.1073/pnas.78.10.6271. PubMed DOI PMC

Baba T, et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2006;2:2006-0008. doi: 10.1038/msb4100050. PubMed DOI PMC

Kitagawa M, et al. Complete set of ORF clones of Escherichia coli ASKA library (A complete Set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res. 2005;12:291–299. doi: 10.1093/dnares/dsi012. PubMed DOI

Gomez-Gomez JM, Manfredi C, Alonso JC, Blazquez J. A novel role for RecA under non-stress: promotion of swarming motility in Escherichia coli K-12. BMC Biol. 2007;5:14. doi: 10.1186/1741-7007-5-14. PubMed DOI PMC

Thomason, L. C., Costantino, N. & Court, D. L. E. coli genome manipulation by P1 transduction. In Current Protocols in Molecular Biology (eds. Ausubel, F. M. et al.) Chapter 1, Unit 1 17 (2007). PubMed

Warren DJ. Preparation of highly efficient electrocompetent Escherichia coli using glycerol/mannitol density step centrifugation. Anal. Biochem. 2011;413:206–207. doi: 10.1016/j.ab.2011.02.036. PubMed DOI

Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA. 2000;97:6640–6645. doi: 10.1073/pnas.120163297. PubMed DOI PMC

Crumplin GC, Smith JT. Nalidixic acid: an antibacterial paradox. Antimicrob. Agents Chemother. 1975;8:251–261. doi: 10.1128/AAC.8.3.251. PubMed DOI PMC

Sanofi-Aventis, U. S. NegGram Caplets (Nalidixic Acid, USP). https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/014214s058lbl.pdf. (2008).

Cormack BP, Valdivia RH, Falkow S. FACS-optimized mutants of the green fluorescent protein (GFP) Gene. 1996;173:33–38. doi: 10.1016/0378-1119(95)00685-0. PubMed DOI

Barrett CML, Ray N, Thomas JD, Robinson C, Bolhuis A. Quantitative export of a reporter protein, GFP, by the twin-arginine translocation pathway in Escherichia coli. Biochem. Biophys. Res. Commun. 2003;304:279–284. doi: 10.1016/S0006-291X(03)00583-7. PubMed DOI

Matulova P, et al. Cooperativity of Mus81.Mms4 with Rad54 in the resolution of recombination and replication intermediates. J. Biol. Chem. 2009;284:7733–7745. doi: 10.1074/jbc.M806192200. PubMed DOI PMC

Sebesta M, Burkovics P, Haracska L, Krejci L. Reconstitution of DNA repair synthesis in vitro and the role of polymerase and helicase activities. DNA Repair (Amst) 2011;10:567–576. doi: 10.1016/j.dnarep.2011.03.003. PubMed DOI PMC

Taylor MR, et al. Rad51 paralogs remodel pre-synaptic Rad51 filaments to stimulate homologous recombination. Cell. 2015;162:271–286. doi: 10.1016/j.cell.2015.06.015. PubMed DOI PMC

MuLler-Hill B, Kania J. Lac repressor can be fused to [beta]-galactosidase. Nature. 1974;249:561–563. doi: 10.1038/249561a0. PubMed DOI

Drlica K, et al. Quinolones: action and resistance updated. Curr. Top. Med. Chem. 2009;9:981–998. doi: 10.2174/156802609789630947. PubMed DOI PMC

Erental A, Sharon I, Engelberg-Kulka H. Two programmed cell death systems in Escherichia coli: an apoptotic-like death is inhibited by the mazEF-mediated death pathway. PLoS Biol. 2012;10:e1001281. doi: 10.1371/journal.pbio.1001281. PubMed DOI PMC

Wilks JC, Slonczewski JL. pH of the cytoplasm and periplasm of Escherichia coli: rapid measurement by green fluorescent protein fluorimetry. J. Bacteriol. 2007;189:5601–5607. doi: 10.1128/JB.00615-07. PubMed DOI PMC

Nugent SG, Kumar D, Rampton DS, Evans DF. Intestinal luminal pH in inflammatory bowel disease: possible determinants and implications for therapy with aminosalicylates and other drugs. Gut. 2001;48:571–577. doi: 10.1136/gut.48.4.571. PubMed DOI PMC

Tenaillon O, Skurnik D, Picard B, Denamur E. The population genetics of commensal Escherichia coli. Nat. Rev. Microbiol. 2010;8:207–217. doi: 10.1038/nrmicro2298. PubMed DOI

Yang L, Wang KJ, Li H, Denstedt JD, Cadieux PA. The Influence of urinary pH on antibiotic efficacy against bacterial uropathogens. Urology. 2014;84(731):e731–731.e737. PubMed

Canton J, Khezri R, Glogauer M, Grinstein S. Contrasting phagosome pH regulation and maturation in human M1 and M2 macrophages. Mol. Biol. Cell. 2014;25:3330–3341. doi: 10.1091/mbc.e14-05-0967. PubMed DOI PMC

Butala M, Zgur-Bertok D, Busby SJ. The bacterial LexA transcriptional repressor. CMLS. 2009;66:82–93. doi: 10.1007/s00018-008-8378-6. PubMed DOI PMC

Justice SS, Garcia-Lara J, Rothfield LI. Cell division inhibitors SulA and MinC/MinD block septum formation at different steps in the assembly of the Escherichia coli division machinery. Mol. Microbiol. 2000;37:410–423. doi: 10.1046/j.1365-2958.2000.02007.x. PubMed DOI

Trusca D, Scott S, Thompson C, Bramhill D. Bacterial SOS checkpoint protein SulA inhibits polymerization of purified FtsZ cell division protein. J. Bacteriol. 1998;180:3946–3953. doi: 10.1128/JB.180.15.3946-3953.1998. PubMed DOI PMC

Mukherjee A, Cao CN, Lutkenhaus J. Inhibition of FtsZ polymerization by SulA, an inhibitor of septation in Escherichia coli. Proc. Natl. Acad. Sci. USA. 1998;95:2885–2890. doi: 10.1073/pnas.95.6.2885. PubMed DOI PMC

Volkmer B, Heinemann M. Condition-dependent cell volume and concentration of Escherichia coli to facilitate data conversion for systems biology modeling. PLoS ONE. 2011;6:e23126. doi: 10.1371/journal.pone.0023126. PubMed DOI PMC

Patel M, Jiang QF, Woodgate R, Cox MM, Goodman MF. A new model for SOS-induced mutagenesis: how RecA protein activates DNA polymerase V. Crit. Rev. Biochem. Mol. 2010;45:171–184. doi: 10.3109/10409238.2010.480968. PubMed DOI PMC

Renzette N, et al. Localization of RecA in Escherichia coli K-12 using RecA-GFP. Mol. Microbiol. 2005;57:1074–1085. doi: 10.1111/j.1365-2958.2005.04755.x. PubMed DOI

Friedman N, Vardi S, Ronen M, Alon U, Stavans J. Precise temporal modulation in the response of the SOS DNA repair network in individual bacteria. PLoS Biol. 2005;3:e238. doi: 10.1371/journal.pbio.0030238. PubMed DOI PMC

Lewis LK, Harlow GR, Greggjolly LA, Mount DW. Identification of high-affinity binding-sites for LexA which define new DNA damage-inducible genes in Escherichia coli. J. Mol. Biol. 1994;241:507–523. doi: 10.1006/jmbi.1994.1528. PubMed DOI

Goodman MF, McDonald JP, Jaszczur MM, Woodgate R. Insights into the complex levels of regulation imposed on Escherichia coli DNA polymerase V. DNA Repair. 2016;44:42–50. doi: 10.1016/j.dnarep.2016.05.005. PubMed DOI PMC

Sommer S, Boudsocq F, Devoret R, Bailone A. Specific RecA amino acid changes affect RecA-UmuD ' C interaction. Mol. Microbiol. 1998;28:281–291. doi: 10.1046/j.1365-2958.1998.00803.x. PubMed DOI

Giese KC, Michalowski CB, Little JW. RecA-dependent cleavage of LexA dimers. J. Mol. Biol. 2008;377:148–161. doi: 10.1016/j.jmb.2007.12.025. PubMed DOI PMC

Cox JM, et al. Defective dissociation of a “Slow” RecA mutant protein imparts an Escherichia coli growth defect. J. Biol. Chem. 2008;283:24909–24921. doi: 10.1074/jbc.M803934200. PubMed DOI PMC

Cairns J, Foster PL. Adaptive reversion of a frameshift mutation in Escherichia coli. Genetics. 1991;128:695–701. PubMed PMC

Frisch RL, et al. Separate DNA Pol II- and Pol IV-dependent pathways of stress-induced mutation during double-strand-break repair in Escherichia coli are controlled by RpoS. J. Bacteriol. 2010;192:4694–4700. doi: 10.1128/JB.00570-10. PubMed DOI PMC

Rosenberg SM, Hastings PJ. Adaptive point mutation and adaptive amplification pathways in the Escherichia coli Lac system: stress responses producing genetic change. J. Bacteriol. 2004;186:4838–4843. doi: 10.1128/JB.186.15.4838-4843.2004. PubMed DOI PMC

Mcentee K, Weinstock GM, Lehman IR. Binding of the Reca protein of Escherichia coli to single-stranded and double-stranded DNA. J. Biol. Chem. 1981;256:8835–8844. PubMed

Pinsince JM, Muench KA, Bryant FR, Griffith JD. 2 Mutant Reca proteins possessing Ph-dependent strand exchange activity exhibit Ph-dependent presynaptic filament formation. J. Mol. Biol. 1993;233:59–66. doi: 10.1006/jmbi.1993.1484. PubMed DOI

Muench KA, Bryant FR. An obligatory Ph-mediated isomerization on the [Asn-160]Reca protein-promoted DNA strand exchange-reaction pathway. J. Biol. Chem. 1990;265:11560–11566. PubMed

Bell JC, Plank JL, Dombrowski CC, Kowalczykowski SC. Direct imaging of RecA nucleation and growth on single molecules of SSB-coated ssDNA. Nature. 2012;491:274–U144. doi: 10.1038/nature11598. PubMed DOI PMC

Kim SH, Park J, Joo C, Kim D, Ha T. Dynamic growth and shrinkage govern the pH dependence of RecA filament stability. PLoS ONE. 2015;10:e0115611. doi: 10.1371/journal.pone.0115611. PubMed DOI PMC

Krulwich TA, Sachs G, Padan E. Molecular aspects of bacterial pH sensing and homeostasis. Nat. Rev. Microbiol. 2011;9:330–343. doi: 10.1038/nrmicro2549. PubMed DOI PMC

Shan Y, et al. ATP-dependent persister formation in Escherichia coli. Mbio. 2017;8:e02267–e2316. doi: 10.1128/mBio.02267-16. PubMed DOI PMC

Laureti L, Demol J, Fuchs RP, Pages V. Bacterial proliferation: keep dividing and don’t mind the gap. PLoS Genet. 2015;11:e1005757. doi: 10.1371/journal.pgen.1005757. PubMed DOI PMC

Lopes M, Foiani M, Sogo JM. Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol. Cell. 2006;21:15–27. doi: 10.1016/j.molcel.2005.11.015. PubMed DOI

Justice SS, Hunstad DA, Cegelski L, Hultgren SJ. Morphological plasticity as a bacterial survival strategy. Nat. Rev. Microbiol. 2008;6:162–168. doi: 10.1038/nrmicro1820. PubMed DOI

Horvath DJ, et al. Morphological plasticity promotes resistance to phagocyte killing of uropathogenic Escherichia coli. Microbes Infect. 2011;13:426–437. doi: 10.1016/j.micinf.2010.12.004. PubMed DOI PMC

Justice SS, Hunstad DA, Seed PC, Hultgren SJ. Filamentation by Escherichia coli subverts innate defenses during urinary tract infection. Proc. Natl. Acad. Sci. USA. 2006;103:19884–19889. doi: 10.1073/pnas.0606329104. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...