The role of bivalent ions in the regulation of D-loop extension mediated by DMC1 during meiotic recombination
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
Wellcome Trust - United Kingdom
PubMed
36388968
PubMed Central
PMC9641244
DOI
10.1016/j.isci.2022.105439
PII: S2589-0042(22)01711-4
Knihovny.cz E-zdroje
- Klíčová slova
- Cell biology, Structural biology,
- Publikační typ
- časopisecké články MeSH
During meiosis, programmed DNA double-strand breaks (DSBs) are repaired by homologous recombination. DMC1, a conserved recombinase, plays a central role in this process. DMC1 promotes DNA strand exchange between homologous chromosomes, thus creating the physical linkage between them. Its function is regulated not only by several accessory proteins but also by bivalent ions. Here, we show that whereas calcium ions in the presence of ATP cause a conformational change within DMC1, stimulating its DNA binding and D-loop formation, they inhibit the extension of the invading strand within the D-loop. Based on structural studies, we have generated mutants of two highly conserved amino acids - E162 and D317 - in human DMC1, which are deficient in calcium regulation. In vivo studies of their yeast homologues further showed that they exhibit severe defects in meiosis, thus emphasizing the importance of calcium ions in the regulation of DMC1 function and meiotic recombination.
Biomolecular Modelling Laboratory The Francis Crick Institute London UK
Department of Biology Masaryk University Brno 62500 Czech Republic
International Clinical Research Center St Anne's University Hospital Brno 65691 Czech Republic
Max Perutz Labs University of Vienna Dr Bohr Gasse 9 1030 Vienna Austria
National Center for Biomolecular Research Masaryk University Brno 62500 Czech Republic
Zobrazit více v PubMed
Arter M., Hurtado-Nieves V., Oke A., Zhuge T., Wettstein R., Fung J.C., Blanco M.G., Matos J. Regulated crossing-over requires inactivation of yen1/GEN1 resolvase during meiotic prophase I. Dev. Cell. 2018;45:785–800. doi: 10.1016/j.devcel.2018.05.020. PubMed DOI PMC
Bishop D.K., Nikolski Y., Oshiro J., Chon J., Shinohara M., Chen X. High copy number suppression of the meiotic arrest caused by a dmc1 mutation: REC114 imposes an early recombination block and RAD54 promotes a DMC1-independent DSB repair pathway. Gene Cell. 1999;4:425–444. doi: 10.1046/j.1365-2443.1999.00273.x. PubMed DOI
Bishop D.K., Park D., Xu L., Kleckner N. DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell. 1992;69:439–456. doi: 10.1016/0092-8674(92)90446-j. PubMed DOI
Brown M.S., Bishop D.K. DNA strand exchange and RecA homologs in meiosis. Cold Spring Harb. Perspect. Biol. 2014;7:a016659. doi: 10.1101/cshperspect.a016659. PubMed DOI PMC
Bugreev D.V., Mazin A.V. Ca2+ activates human homologous recombination protein Rad51 by modulating its ATPase activity. Proc. Natl. Acad. Sci. USA. 2004;101:9988–9993. doi: 10.1073/pnas.0402105101. PubMed DOI PMC
Bugreev D.V., Golub E.I., Stasiak A.Z., Stasiak A., Mazin A.V. Activation of human meiosis-specific recombinase Dmc1 by Ca2+ J. Biol. Chem. 2005;280:26886–26895. doi: 10.1074/jbc.M502248200. PubMed DOI
Busygina V., Gaines W.A., Xu Y., Kwon Y., Williams G.J., Lin S.W., Chang H.Y., Chi P., Wang H.W., Sung P. Functional attributes of the Saccharomyces cerevisiae meiotic recombinase Dmc1. DNA Repair. 2013;12:707–712. doi: 10.1016/j.dnarep.2013.05.004. PubMed DOI PMC
Carroll J., Swann K., Whittingham D., Whitaker M. Spatiotemporal dynamics of intracellular [Ca2+]i oscillations during the growth and meiotic maturation of mouse oocytes. Development. 1994;120:3507–3517. PubMed
Chan Y.L., Brown M.S., Qin D., Handa N., Bishop D.K. The third exon of the budding yeast meiotic recombination gene HOP2 is required for calcium-dependent and recombinase Dmc1-specific stimulation of homologous strand assimilation. J. Biol. Chem. 2014;289:18076–18086. doi: 10.1074/jbc.M114.558601. PubMed DOI PMC
Chang H.Y., Liao C.Y., Su G.C., Lin S.W., Wang H.W., Chi P. Functional relationship of ATP hydrolysis, presynaptic filament stability, and homologous DNA pairing activity of the human meiotic recombinase DMC1. J. Biol. Chem. 2015;290:19863–19873. doi: 10.1074/jbc.M115.666289. PubMed DOI PMC
Cloud V., Chan Y.L., Grubb J., Budke B., Bishop D.K. Rad51 is an accessory factor for Dmc1-mediated joint molecule formation during meiosis. Science. 2012;337:1222–1225. doi: 10.1126/science.1219379. PubMed DOI PMC
Finkelstein J., Antony E., Hingorani M.M., O'Donnell M. Overproduction and analysis of eukaryotic multiprotein complexes in Escherichia coli using a dual-vector strategy. Anal. Biochem. 2003;319:78–87. doi: 10.1016/s0003-2697(03)00273-2. PubMed DOI
Goldstein A.L., McCusker J.H. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast. 1999;15:1541–1553. doi: 10.1002/(SICI)1097-0061. PubMed DOI
Grigaitis R., Ranjha L., Wild P., Kasaciunaite K., Ceppi I., Kissling V., Henggeler A., Susperregui A., Peter M., Seidel R., et al. Phosphorylation of the RecQ helicase Sgs1/BLM controls its DNA unwinding activity during meiosis and mitosis. Dev. Cell. 2020;53:706–723.e5. doi: 10.1016/j.devcel.2020.05.016. PubMed DOI
Grigaitis R., Susperregui A., Wild P., Matos J. Characterization of DNA helicases and nucleases from meiotic extracts of S. cerevisiae. Methods Cell Biol. 2018;144:371–388. doi: 10.1016/bs.mcb.2018.03.029. PubMed DOI
Grushcow J.M., Holzen T.M., Park K.J., Weinert T., Lichten M., Bishop D.K. Saccharomyces cerevisiae checkpoint genes MEC1, RAD17 and RAD24 are required for normal meiotic recombination partner choice. Genetics. 1999;153:607–620. PubMed PMC
Beigi Harchegani A., Irandoost A., Mirnamniha M., Rahmani H., Tahmasbpour E., Shahriary A. Possible mechanisms for the effects of calcium deficiency on male infertility. Int. J. Fertil. Steril. 2019;12:267–272. doi: 10.22074/ijfs.2019.5420. PubMed DOI PMC
Hunter N. Meiotic recombination: the essence of heredity. Cold Spring Harb. Perspect. Biol. 2015;7:a016618. doi: 10.1101/cshperspect.a016618. PubMed DOI PMC
Hunter N., Kleckner N. The single-end invasion: an asymmetric intermediate at the double-strand break to double-holliday junction transition of meiotic recombination. Cell. 2001;106:59–70. doi: 10.1016/s0092-8674(01)00430-5. PubMed DOI
Kagawa W., Kurumizaka H. From meiosis to postmeiotic events: uncovering the molecular roles of the meiosis-specific recombinase Dmc1. FEBS J. 2010;277:590–598. doi: 10.1111/j.1742-4658.2009.07503.x. PubMed DOI
Kaneuchi T., Sartain C.V., Takeo S., Horner V.L., Buehner N.A., Aigaki T., Wolfner M.F. Calcium waves occur as Drosophila oocytes activate. Proc. Natl. Acad. Sci. USA. 2015;112:791–796. doi: 10.1073/pnas.1420589112. PubMed DOI PMC
Kant C.R., Rao B.J., Sainis J.K. DNA binding and pairing activity of OsDmc1, a recombinase from rice. Plant Mol. Biol. 2005;57:1–11. doi: 10.1007/s11103-004-5828-x. PubMed DOI
Kelso A.A., Say A.F., Sharma D., Ledford L.L., Turchick A., Saski C.A., King A.V., Attaway C.C., Temesvari L.A., Sehorn M.G. Entamoeba histolytica Dmc1 catalyzes homologous DNA pairing and strand exchange that is stimulated by calcium and hop2-mnd1. PLoS One. 2015;10 doi: 10.1371/journal.pone.0139399. PubMed DOI PMC
Kim K.P., Weiner B.M., Zhang L., Jordan A., Dekker J., Kleckner N. Sister cohesion and structural axis components mediate homolog bias of meiotic recombination. Cell. 2010;143:924–937. doi: 10.1016/j.cell.2010.11.015. PubMed DOI PMC
Lao J.P., Cloud V., Huang C.C., Grubb J., Thacker D., Lee C.Y., Dresser M.E., Hunter N., Bishop D.K. Meiotic crossover control by concerted action of Rad51-Dmc1 in homolog template bias and robust homeostatic regulation. PLoS Genet. 2013;9 doi: 10.1371/journal.pgen.1003978. PubMed DOI PMC
Lee M.H., Chang Y.C., Hong E.L., Grubb J., Chang C.S., Bishop D.K., Wang T.F. Calcium ion promotes yeast Dmc1 activity via formation of long and fine helical filaments with single-stranded DNA. J. Biol. Chem. 2005;280:40980–40984. doi: 10.1074/jbc.M505896200. PubMed DOI
Lindgren A., Bungard D., Pierce M., Xie J., Vershon A., Winter E. The pachytene checkpoint in Saccharomyces cerevisiae requires the Sum1 transcriptional repressor. EMBO J. 2000;19:6489–6497. doi: 10.1093/emboj/19.23.6489. PubMed DOI PMC
Liu Y., Gaines W.A., Callender T., Busygina V., Oke A., Sung P., Fung J.C., Hollingsworth N.M. Down-regulation of Rad51 activity during meiosis in yeast prevents competition with Dmc1 for repair of double-strand breaks. PLoS Genet. 2014;10 doi: 10.1371/journal.pgen.1004005. PubMed DOI PMC
Loidl J., Klein F., Engebrecht J. Genetic and morphological approaches for the analysis of meiotic chromosomes in yeast. Methods Cell Biol. 1998;53:257–285. doi: 10.1016/s0091-679x(08)60882-1. PubMed DOI
Longtine M.S., McKenzie A., 3rd, Demarini D.J., Shah N.G., Wach A., Brachat A., Philippsen P., Pringle J.R. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast. 1998;14:953–961. doi: 10.1002/(SICI)1097-0061. PubMed DOI
Luo S.C., Yeh H.Y., Lan W.H., Wu Y.M., Yang C.H., Chang H.Y., Su G.C., Lee C.Y., Wu W.J., Li H.W., et al. Identification of fidelity-governing factors in human recombinases DMC1 and RAD51 from cryo-EM structures. Nat. Commun. 2021;12:115. doi: 10.1038/s41467-020-20258-1. PubMed DOI PMC
Lydall D., Nikolsky Y., Bishop D.K., Weinert T. A meiotic recombination checkpoint controlled by mitotic checkpoint genes. Nature. 1996;383:840–843. doi: 10.1038/383840a0. PubMed DOI
Matos J., Blanco M.G., Maslen S., Skehel J.M., West S.C. Regulatory control of the resolution of DNA recombination intermediates during meiosis and mitosis. Cell. 2011;147:158–172. doi: 10.1016/j.cell.2011.08.032. PubMed DOI PMC
Matos J., Lipp J.J., Bogdanova A., Guillot S., Okaz E., Junqueira M., Shevchenko A., Zachariae W. Dbf4-dependent CDC7 kinase links DNA replication to the segregation of homologous chromosomes in meiosis I. Cell. 2008;135:662–678. doi: 10.1016/j.cell.2008.10.026. PubMed DOI
Matulova P., Marini V., Burgess R.C., Sisakova A., Kwon Y., Rothstein R., Sung P., Krejci L. Cooperativity of Mus81.Mms4 with Rad54 in the resolution of recombination and replication intermediates. J. Biol. Chem. 2009;284:7733–7745. doi: 10.1074/jbc.M806192200. PubMed DOI PMC
McDougall A., Sardet C. Function and characteristics of repetitive calcium waves associated with meiosis. Curr. Biol. 1995;5:318–328. doi: 10.1016/s0960-9822(95)00062-5. PubMed DOI
Nimonkar A.V., Dombrowski C.C., Siino J.S., Stasiak A.Z., Stasiak A., Kowalczykowski S.C. Saccharomyces cerevisiae Dmc1 and Rad51 proteins preferentially function with Tid1 and Rad54 proteins, respectively, to promote DNA strand invasion during genetic recombination. J. Biol. Chem. 2012;287:28727–28737. doi: 10.1074/jbc.M112.373290. PubMed DOI PMC
Niu H., Wan L., Busygina V., Kwon Y., Allen J.A., Li X., Kunz R.C., Kubota K., Wang B., Sung P., et al. Regulation of meiotic recombination via Mek1-mediated Rad54 phosphorylation. Mol. Cell. 2009;36:393–404. doi: 10.1016/j.molcel.2009.09.029. PubMed DOI PMC
Oh S.D., Jessop L., Lao J.P., Allers T., Lichten M., Hunter N. Stabilization and electrophoretic analysis of meiotic recombination intermediates in Saccharomyces cerevisiae. Methods Mol. Biol. 2009;557:209–234. doi: 10.1007/978-1-59745-527-5_14. PubMed DOI
Oh S.D., Lao J.P., Hwang P.Y.H., Taylor A.F., Smith G.R., Hunter N. BLM ortholog, Sgs1, prevents aberrant crossing-over by suppressing formation of multichromatid joint molecules. Cell. 2007;130:259–272. doi: 10.1016/j.cell.2007.05.035. PubMed DOI PMC
Pak J., Segall J. Role of Ndt80, Sum1, and Swe1 as targets of the meiotic recombination checkpoint that control exit from pachytene and spore formation in Saccharomyces cerevisiae. Mol. Cell Biol. 2002;22:6430–6440. doi: 10.1128/mcb.22.18.6430-6440.2002. PubMed DOI PMC
Passy S.I., Yu X., Li Z., Radding C.M., Masson J.Y., West S.C., Egelman E.H. Human Dmc1 protein binds DNA as an octameric ring. Proc. Natl. Acad. Sci. USA. 1999;96:10684–10688. doi: 10.1073/pnas.96.19.10684. PubMed DOI PMC
Petronczki M., Matos J., Mori S., Gregan J., Bogdanova A., Schwickart M., Mechtler K., Shirahige K., Zachariae W., Nasmyth K. Monopolar attachment of sister kinetochores at meiosis I requires casein kinase 1. Cell. 2006;126:1049–1064. doi: 10.1016/j.cell.2006.07.029. PubMed DOI
Petukhova G.V., Pezza R.J., Vanevski F., Ploquin M., Masson J.Y., Camerini-Otero R.D. The Hop2 and Mnd1 proteins act in concert with Rad51 and Dmc1 in meiotic recombination. Nat. Struct. Mol. Biol. 2005;12:449–453. doi: 10.1038/nsmb923. PubMed DOI
Pezza R.J., Petukhova G.V., Ghirlando R., Camerini-Otero R.D. Molecular activities of meiosis-specific proteins Hop2, Mnd1, and the Hop2-Mnd1 complex. J. Biol. Chem. 2006;281:18426–18434. doi: 10.1074/jbc.M601073200. PubMed DOI
Pezza R.J., Voloshin O.N., Vanevski F., Camerini-Otero R.D. Hop2/Mnd1 acts on two critical steps in Dmc1-promoted homologous pairing. Genes Dev. 2007;21:1758–1766. doi: 10.1101/gad.1562907. PubMed DOI PMC
Pittman D.L., Cobb J., Schimenti K.J., Wilson L.A., Cooper D.M., Brignull E., Handel M.A., Schimenti J.C. Meiotic prophase arrest with failure of chromosome synapsis in mice deficient for Dmc1, a germline-specific RecA homolog. Mol. Cell. 1998;1:697–705. doi: 10.1016/s1097-2765(00)80069-6. PubMed DOI
Qian X., He Y., Ma X., Fodje M.N., Grochulski P., Luo Y. Calcium stiffens archaeal Rad51 recombinase from Methanococcus voltae for homologous recombination. J. Biol. Chem. 2006;281:39380–39387. doi: 10.1074/jbc.M607785200. PubMed DOI
Qian X., He Y., Wu Y., Luo Y. Asp302 determines potassium dependence of a RadA recombinase from Methanococcus voltae. J. Mol. Biol. 2006;360:537–547. doi: 10.1016/j.jmb.2006.05.058. PubMed DOI
Rajanikant C., Kumbhakar M., Pal H., Rao B.J., Sainis J.K. DNA strand exchange activity of rice recombinase OsDmc1 monitored by fluorescence resonance energy transfer and the role of ATP hydrolysis. FEBS J. 2006;273:1497–1506. doi: 10.1111/j.1742-4658.2006.05170.x. PubMed DOI
Reitz D., Grubb J., Bishop D.K. A mutant form of Dmc1 that bypasses the requirement for accessory protein Mei5-Sae3 reveals independent activities of Mei5-Sae3 and Rad51 in Dmc1 filament stability. PLoS Genet. 2019;15 doi: 10.1371/journal.pgen.1008217. PubMed DOI PMC
Sakane I., Kamataki C., Takizawa Y., Nakashima M., Toki S., Ichikawa H., Ikawa S., Shibata T., Kurumizaka H. Filament formation and robust strand exchange activities of the rice DMC1A and DMC1B proteins. Nucleic Acids Res. 2008;36:4266–4276. doi: 10.1093/nar/gkn405. PubMed DOI PMC
Sasanuma H., Tawaramoto M.S., Lao J.P., Hosaka H., Sanda E., Suzuki M., Yamashita E., Hunter N., Shinohara M., Nakagawa A., Shinohara A. A new protein complex promoting the assembly of Rad51 filaments. Nat. Commun. 2013;4:1676. doi: 10.1038/ncomms2678. PubMed DOI PMC
Scherthan H., Wang H., Adelfalk C., White E.J., Cowan C., Cande W.Z., Kaback D.B. Chromosome mobility during meiotic prophase in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 2007;104:16934–16939. doi: 10.1073/pnas.0704860104. PubMed DOI PMC
Schwacha A., Kleckner N. Interhomolog bias during meiotic recombination: meiotic functions promote a highly differentiated interhomolog-only pathway. Cell. 1997;90:1123–1135. doi: 10.1016/s0092-8674(00)80378-5. PubMed DOI
Sebesta M., Burkovics P., Haracska L., Krejci L. Reconstitution of DNA repair synthesis in vitro and the role of polymerase and helicase activities. DNA Repair. 2011;10:567–576. doi: 10.1016/j.dnarep.2011.03.003. PubMed DOI PMC
Sehorn M.G., Sigurdsson S., Bussen W., Unger V.M., Sung P. Human meiotic recombinase Dmc1 promotes ATP-dependent homologous DNA strand exchange. Nature. 2004;429:433–437. doi: 10.1038/nature02563. PubMed DOI
Špírek M., Mlcoušková J., Belán O., Gyimesi M., Harami G.M., Molnár E., Novacek J., Kovács M., Krejci L. Human RAD51 rapidly forms intrinsically dynamic nucleoprotein filaments modulated by nucleotide binding state. Nucleic Acids Res. 2018;46:3967–3980. doi: 10.1093/nar/gky111. PubMed DOI PMC
Strynadka N.C., James M.N. Towards an understanding of the effects of calcium on protein structure and function. Curr. Opin. Struct. Biol. 1991;1:905–914. doi: 10.1016/0959-440x(91)90085-8. DOI
Suizu T., Tsutsumi H., Kawado A., Suginami K., Imayasu S., Murata K. Calcium ion influx during sporulation in the yeast Saccharomyces cerevisiae. Can. J. Microbiol. 1995;41:1035–1037. doi: 10.1139/m95-143. PubMed DOI
Tsubouchi H., Roeder G.S. The importance of genetic recombination for fidelity of chromosome pairing in meiosis. Dev. Cell. 2003;5:915–925. doi: 10.1016/s1534-5807(03)00357-5. PubMed DOI
Whitaker M., Patel R. Calcium and cell cycle control. Development. 1990;108:525–542. PubMed
Wu Y., Qian X., He Y., Moya I.A., Luo Y. Crystal structure of an ATPase-active form of Rad51 homolog from Methanococcus voltae. Insights into potassium dependence. J. Biol. Chem. 2005;280:722–728. doi: 10.1074/jbc.M411093200. PubMed DOI
Xu L., Weiner B.M., Kleckner N. Meiotic cells monitor the status of the interhomolog recombination complex. Genes Dev. 1997;11:106–118. doi: 10.1101/gad.11.1.106. PubMed DOI
Xue C., Molnarova L., Steinfeld J.B., Zhao W., Ma C., Spirek M., Kaniecki K., Kwon Y., Belan O., Krejci K., et al. Single-molecule visualization of human RECQ5 interactions with single-stranded DNA recombination intermediates. Nucleic Acids Research. 2021;49:285–305. doi: 10.1093/nar/gkaa1184. PubMed DOI PMC
Yoshida K., Kondoh G., Matsuda Y., Habu T., Nishimune Y., Morita T. The mouse RecA-like gene Dmc1 is required for homologous chromosome synapsis during meiosis. Mol. Cell. 1998;1:707–718. doi: 10.1016/s1097-2765(00)80070-2. PubMed DOI
Zhang K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 2016;193:1–12. doi: 10.1016/j.jsb.2015.11.003. PubMed DOI PMC
Zhao W., Sung P. Significance of ligand interactions involving Hop2-Mnd1 and the RAD51 and DMC1 recombinases in homologous DNA repair and XX ovarian dysgenesis. Nucleic Acids Res. 2015;43:4055–4066. doi: 10.1093/nar/gkv259. PubMed DOI PMC
Zheng S.Q., Palovcak E., Armache J.P., Verba K.A., Cheng Y., Agard D.A. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods. 2017;14:331–332. doi: 10.1038/nmeth.4193. PubMed DOI PMC
Zivanov J., Nakane T., Forsberg B.O., Kimanius D., Hagen W.J., Lindahl E., Scheres S.H. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife. 2018;7:e42166. doi: 10.7554/eLife.42166. PubMed DOI PMC