Human RAD51 rapidly forms intrinsically dynamic nucleoprotein filaments modulated by nucleotide binding state

. 2018 May 04 ; 46 (8) : 3967-3980.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29481689

Formation of RAD51 filaments on single-stranded DNA is an essential event during homologous recombination, which is required for homology search, strand exchange and protection of replication forks. Formation of nucleoprotein filaments (NF) is required for development and genomic stability, and its failure is associated with developmental abnormalities and tumorigenesis. Here we describe the structure of the human RAD51 NFs and of its Walker box mutants using electron microscopy. Wild-type RAD51 filaments adopt an 'open' conformation when compared to a 'closed' structure formed by mutants, reflecting alterations in helical pitch. The kinetics of formation/disassembly of RAD51 filaments show rapid and high ssDNA coverage via low cooperativity binding of RAD51 units along the DNA. Subsequently, a series of isomerization or dissociation events mediated by nucleotide binding state creates intrinsically dynamic RAD51 NFs. Our findings highlight important a mechanistic divergence among recombinases from different organisms, in line with the diversity of biological mechanisms of HR initiation and quality control. These data reveal unexpected intrinsic dynamic properties of the RAD51 filament during assembly/disassembly, which may be important for the proper control of homologous recombination.

Zobrazit více v PubMed

Krejci L., Altmannova V., Spirek M., Zhao X.. Homologous recombination and its regulation. Nucleic Acids Res. 2012; 40:5795–5818. PubMed PMC

San Filippo J., Chi P., Sehorn M.G., Etchin J., Krejci L., Sung P.. Recombination mediator and Rad51 targeting activities of a human BRCA2 polypeptide. J. Biol. Chem. 2006; 281:11649–11657. PubMed PMC

Taylor M.R., Špírek M., Chaurasiya K.R., Ward J.D., Carzaniga R., Yu X., Egelman E.H., Collinson L.M., Rueda D., Krejci L. et al. . Rad51 paralogs remodel pre-synaptic Rad51 filaments to stimulate homologous recombination. Cell. 2015; 162:271–286. PubMed PMC

Gaines W.A., Godin S.K., Kabbinavar F.F., Rao T., VanDemark A.P., Sung P., Bernstein K.A.. Promotion of presynaptic filament assembly by the ensemble of S. cerevisiae Rad51 paralogues with Rad52. Nat. Commun. 2015; 6:7834. PubMed PMC

Chapman J.R., Taylor M.R., Boulton S.J.. Playing the end game: DNA double-strand break repair pathway choice. Mol. Cell. 2012; 47:497–510. PubMed

Hilario J., Amitani I., Baskin R.J., Kowalczykowski S.C.. Direct imaging of human Rad51 nucleoprotein dynamics on individual DNA molecules. Proc. Natl Acad. Sci. U.S.A. 2009; 106:361–368. PubMed PMC

van der Heijden T., Seidel R., Modesti M., Kanaar R., Wyman C., Dekker C.. Real-time assembly and disassembly of human RAD51 filaments on individual DNA molecules. Nucleic Acids Res. 2007; 35:5646–5657. PubMed PMC

Candelli A., Holthausen J.T., Depken M., Brouwer I., Franker M.A., Marchetti M., Heller I., Bernard S., Garcin E.B., Modesti M. et al. . Visualization and quantification of nascent RAD51 filament formation at single-monomer resolution. Proc. Natl Acad. Sci. U.S.A. 2014; 111:15090–15095. PubMed PMC

Sigurdsson S., Trujillo K., Song B., Stratton S., Sung P.. Basis for avid homologous DNA strand exchange by human Rad51 and RPA. J. Biol. Chem. 2001; 276:8798–8806. PubMed

Van Komen S., Macris M., Sehorn M.G., Sung P.. Purification and assays of Saccharomyces cerevisiae homologous recombination proteins. Methods Enzymol. 2006; 408:445–463. PubMed

Lusetti S.L., Wood E.A., Fleming C.D., Modica M.J., Korth J., Abbott L., Dwyer D.W., Roca A.I., Inman R.B., Cox M.M.. C-terminal deletions of the Escherichia coli RecA protein. Characterization of in vivo and in vitro effects. J. Biol. Chem. 2003; 278:16372–16380. PubMed

Rohou A., Grigorieff N.. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 2015; 192:216–221. PubMed PMC

Tang G., Peng L., Baldwin P.R., Mann D.S., Jiang W., Rees I., Ludtke S.J.. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 2007; 157:38–46. PubMed

Scheres S.H. A Bayesian view on cryo-EM structure determination. J. Mol. Biol. 2012; 415:406–418. PubMed PMC

Egelman E.H. A robust algorithm for the reconstruction of helical filaments using single-particle methods. Ultramicroscopy. 2000; 85:225–234. PubMed

Yu X., Jacobs S.A., West S.C., Ogawa T., Egelman E.H.. Domain structure and dynamics in the helical filaments formed by RecA and Rad51 on DNA. Proc. Natl. Acad. Sci. U.S.A. 2001; 98:8419–8424. PubMed PMC

Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E.. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 2004; 25:1605–1612. PubMed

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B. et al. . Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012; 9:676–682. PubMed PMC

Ogawa T., Yu X., Shinohara A., Egelman E.H.. Similarity of the yeast RAD51 filament to the bacterial RecA filament. Science. 1993; 259:1896–1899. PubMed

Short J.M., Liu Y., Chen S., Soni N., Madhusudhan M.S., Shivji M.K., Venkitaraman A.R.. High-resolution structure of the presynaptic RAD51 filament on single-stranded DNA by electron cryo-microscopy. Nucleic Acids Res. 2016; 44:9017–9030. PubMed PMC

Xu J., Zhao L., Xu Y., Zhao W., Sung P., Wang H.W.. Cryo-EM structures of human RAD51 recombinase filaments during catalysis of DNA-strand exchange. Nat. Struct. Mol. Biol. 2017; 24:40–46. PubMed PMC

Chi P., Van Komen S., Sehorn M.G., Sigurdsson S., Sung P.. Roles of ATP binding and ATP hydrolysis in human Rad51 recombinase function. DNA Repair (Amst.). 2006; 5:381–391. PubMed

Schay G., Borka B., Kernya L., Bulyáki É., Kardos J., Fekete M., Fidy J.. Without Binding ATP, Human Rad51 Does Not Form Helical Filaments on ssDNA. J. Phys. Chem. B. 2016; 120:2165–2178. PubMed

Yu X., Egelman E.H.. Helical filaments of human Dmc1 protein on single-stranded DNA: a cautionary tale. J. Mol. Biol. 2010; 401:544–551. PubMed PMC

Hwang H., Myong S.. Protein induced fluorescence enhancement (PIFE) for probing protein-nucleic acid interactions. Chem. Soc. Rev. 2014; 43:1221–1229. PubMed PMC

Antony E., Tomko E.J., Xiao Q., Krejci L., Lohman T.M., Ellenberger T.. Srs2 disassembles Rad51 filaments by a protein-protein interaction triggering ATP turnover and dissociation of Rad51 from DNA. Mol. Cell. 2009; 35:105–115. PubMed PMC

Tombline G., Heinen C.D., Shim K.S., Fishel R.. Biochemical characterization of the human RAD51 protein. III. Modulation of DNA binding by adenosine nucleotides. J. Biol. Chem. 2002; 277:14434–14442. PubMed

Bugreev D.V., Mazin A.V.. Ca2+ activates human homologous recombination protein Rad51 by modulating its ATPase activity. Proc. Natl. Acad. Sci. U.S.A. 2004; 101:9988–9993. PubMed PMC

Forget A.L., Loftus M.S., McGrew D.A., Bennett B.T., Knight K.L.. The human Rad51 K133A mutant is functional for DNA double-strand break repair in human cells. Biochemistry. 2007; 46:3566–3575. PubMed PMC

Krejci L., Van Komen S., Li Y., Villemain J., Reddy M.S., Klein H., Ellenberger T., Sung P.. DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature. 2003; 423:305–309. PubMed

Veaute X., Jeusset J., Soustelle C., Kowalczykowski S.C., Le Cam E., Fabre F.. The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature. 2003; 423:309–312. PubMed

Schlacher K., Christ N., Siaud N., Egashira A., Wu H., Jasin M.. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell. 2011; 145:529–542. PubMed PMC

Galletto R., Amitani I., Baskin R.J., Kowalczykowski S.C.. Direct observation of individual RecA filaments assembling on single DNA molecules. Nature. 2006; 443:875–878. PubMed

Shahid T., Soroka J., Kong E.H., Malivert L., McIlwraith M.J., Pape T., West S.C., Zhang X.. Structure and mechanism of action of the BRCA2 breast cancer tumor suppressor. Nat. Struct. Mol. Biol. 2014; 21:962–968. PubMed PMC

Bell J.C., Plank J.L., Dombrowski C.C., Kowalczykowski S.C.. Direct imaging of RecA nucleation and growth on single molecules of SSB-coated ssDNA. Nature. 2012; 491:274–278. PubMed PMC

Defais M., Phez E., Johnson N.P.. Kinetic mechanism for the formation of the presynaptic complex of the bacterial recombinase RecA. J. Biol. Chem. 2003; 278:3545–3551. PubMed

Paulus B.F., Bryant F.R.. Time-dependent inhibition of recA protein-catalyzed ATP hydrolysis by ATPgammaS: evidence for a rate-determining isomerization of the recA-ssDNA complex. Biochemistry. 1997; 36:7832–7838. PubMed

Subramanyam S., Ismail M., Bhattacharya I., Spies M.. Tyrosine phosphorylation stimulates activity of human RAD51 recombinase through altered nucleoprotein filament dynamics. Proc. Natl. Acad. Sci. U.S.A. 2016; 113:E6045–E6054. PubMed PMC

Ristic D., Modesti M., van der Heijden T., van Noort J., Dekker C., Kanaar R., Wyman C.. Human Rad51 filaments on double- and single-stranded DNA: correlating regular and irregular forms with recombination function. Nucleic Acids Res. 2005; 33:3292–3302. PubMed PMC

Kim T.M., Ko J.H., Hu L., Kim S.A., Bishop A.J., Vijg J., Montagna C., Hasty P.. RAD51 mutants cause replication defects and chromosomal instability. Mol. Cell. Biol. 2012; 32:3663–3680. PubMed PMC

Greene E.C. DNA sequence alignment during homologous recombination. J. Biol. Chem. 2016; 291:11572–11580. PubMed PMC

Qi Z., Redding S., Lee J.Y., Gibb B., Kwon Y., Niu H., Gaines W.A., Sung P., Greene E.C.. DNA sequence alignment by microhomology sampling during homologous recombination. Cell. 2015; 160:856–869. PubMed PMC

Kowalczykowski S.C., Krupp R.A.. Effects of Escherichia coli SSB protein on the single-stranded DNA-dependent ATPase activity of Escherichia coli RecA protein. Evidence that SSB protein facilitates the binding of RecA protein to regions of secondary structure within single-stranded DNA. J. Mol. Biol. 1987; 193:97–113. PubMed

Tombline G., Fishel R.. Biochemical characterization of the human RAD51 protein. I. ATP hydrolysis. J. Biol. Chem. 2002; 277:14417–14425. PubMed

Flott S., Kwon Y., Pigli Y.Z., Rice P.A., Sung P., Jackson S.P.. Regulation of Rad51 function by phosphorylation. EMBO Rep. 2011; 12:833–839. PubMed PMC

Petalcorin M.I., Galkin V.E., Yu X., Egelman E.H., Boulton S.J.. Stabilization of RAD-51-DNA filaments via an interaction domain in Caenorhabditis elegans BRCA2. Proc. Natl Acad. Sci. U.S.A. 2007; 104:8299–8304. PubMed PMC

Carreira A., Hilario J., Amitani I., Baskin R.J., Shivji M.K., Venkitaraman A.R., Kowalczykowski S.C.. The BRC repeats of BRCA2 modulate the DNA-binding selectivity of RAD51. Cell. 2009; 136:1032–1043. PubMed PMC

Jensen R.B., Carreira A., Kowalczykowski S.C.. Purified human BRCA2 stimulates RAD51-mediated recombination. Nature. 2010; 467:678–683. PubMed PMC

Shinohara A., Ogawa T.. Stimulation by Rad52 of yeast Rad51-mediated recombination. Nature. 1998; 391:404–407. PubMed

Chi P., San Filippo J., Sehorn M.G., Petukhova G.V., Sung P.. Bipartite stimulatory action of the Hop2-Mnd1 complex on the Rad51 recombinase. Genes Dev. 2007; 21:1747–1757. PubMed PMC

Sasanuma H., Tawaramoto M.S., Lao J.P., Hosaka H., Sanda E., Suzuki M., Yamashita E., Hunter N., Shinohara M., Nakagawa A. et al. . A new protein complex promoting the assembly of Rad51 filaments. Nat Commun. 2013; 4:1676. PubMed PMC

Kelso A.A., Goodson S.D., Watts L.E., Ledford L.L., Waldvogel S.M., Diehl J.N., Shah S.B., Say A.F., White J.D., Sehorn M.G.. The β-isoform of BCCIP promotes ADP release from the RAD51 presynaptic filament and enhances homologous DNA pairing. Nucleic Acids Res. 2017; 45:711–725. PubMed PMC

Sung P. Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein. Science. 1994; 265:1241–1243. PubMed

Moldovan G.L., Dejsuphong D., Petalcorin M.I., Hofmann K., Takeda S., Boulton S.J., D'Andrea A.D.. Inhibition of homologous recombination by the PCNA-interacting protein PARI. Mol. Cell. 2012; 45:75–86. PubMed PMC

Simandlova J., Zagelbaum J., Payne M.J., Chu W.K., Shevelev I., Hanada K., Chatterjee S., Reid D.A., Liu Y., Janscak P. et al. . FBH1 helicase disrupts RAD51 filaments in vitro and modulates homologous recombination in mammalian cells. J. Biol. Chem. 2013; 288:34168–34180. PubMed PMC

Hu Y., Raynard S., Sehorn M.G., Lu X., Bussen W., Zheng L., Stark J.M., Barnes E.L., Chi P., Janscak P. et al. . RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. Genes Dev. 2007; 21:3073–3084. PubMed PMC

Bugreev D.V., Yu X., Egelman E.H., Mazin A.V.. Novel pro- and anti-recombination activities of the Bloom's syndrome helicase. Genes Dev. 2007; 21:3085–3094. PubMed PMC

Wang A.T., Kim T., Wagner J.E., Conti B.A., Lach F.P., Huang A.L., Molina H., Sanborn E.M., Zierhut H., Cornes B.K. et al. . A dominant mutation in human RAD51 reveals its function in DNA interstrand crosslink repair independent of homologous recombination. Mol. Cell. 2015; 59:478–490. PubMed PMC

Ameziane N., May P., Haitjema A., van de Vrugt H.J., van Rossum-Fikkert S.E., Ristic D., Williams G.J., Balk J., Rockx D., Li H. et al. . A novel Fanconi anaemia subtype associated with a dominant-negative mutation in RAD51. Nat Commun. 2015; 6:8829. PubMed PMC

Zadorozhny K., Sannino V., Beláň O., Mlčoušková J., Špírek M., Costanzo V., Krejčí L.. Fanconi-anemia-associated mutations destabilize RAD51 filaments and impair replication fork protection. Cell Rep. 2017; 21:333–340. PubMed

Marsden C.G., Jensen R.B., Zagelbaum J., Rothenberg E., Morrical S.W., Wallace S.S., Sweasy J.B.. The tumor-associated variant RAD51 G151D induces a hyper-recombination phenotype. PLos Genet. 2016; 12:e1006208. PubMed PMC

Godin S.K., Sullivan M.R., Bernstein K.A.. Novel insights into RAD51 activity and regulation during homologous recombination and DNA replication. Biochem. Cell. Biol. 2016; 94:407–418. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace