Mechanism of BCDX2-mediated RAD51 nucleation on short ssDNA stretches and fork DNA
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
21-22593X
Czech Science Foundation
101158508
European Union's Horizon Research and Innovation Programme
LX22NPO5102
National Institute for Cancer Research
European Union - Next Generation EU
857560
European Union's Horizon 2020 Research and Innovation Programme
PubMed
39268578
PubMed Central
PMC11514458
DOI
10.1093/nar/gkae770
PII: 7755874
Knihovny.cz E-zdroje
- MeSH
- DNA vazebné proteiny * metabolismus genetika MeSH
- jednovláknová DNA * metabolismus genetika MeSH
- lidé MeSH
- multiproteinové komplexy MeSH
- mutace MeSH
- rekombinasa Rad51 * metabolismus genetika MeSH
- replikace DNA * genetika MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA vazebné proteiny * MeSH
- jednovláknová DNA * MeSH
- multiproteinové komplexy MeSH
- RAD51 protein, human MeSH Prohlížeč
- rekombinasa Rad51 * MeSH
Homologous recombination (HR) factors are crucial for DSB repair and processing stalled replication forks. RAD51 paralogs, including RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3, have emerged as essential tumour suppressors, forming two subcomplexes, BCDX2 and CX3. Mutations in these genes are associated with cancer susceptibility and Fanconi anaemia, yet their biochemical activities remain unclear. This study reveals a linear arrangement of BCDX2 subunits compared to the RAD51 ring. BCDX2 shows a strong affinity towards single-stranded DNA (ssDNA) via unique binding mechanism compared to RAD51, and a contribution of DX2 subunits in binding branched DNA substrates. We demonstrate that BCDX2 facilitates RAD51 loading on ssDNA by suppressing the cooperative requirement of RAD51 binding to DNA and stabilizing the filament. Notably, BCDX2 also promotes RAD51 loading on short ssDNA and reversed replication fork substrates. Moreover, while mutants defective in ssDNA binding retain the ability to bind branched DNA substrates, they still facilitate RAD51 loading onto reversed replication forks. Our study provides mechanistic insights into how the BCDX2 complex stimulates the formation of BRCA2-independent RAD51 filaments on short stretches of ssDNA present at ssDNA gaps or stalled replication forks, highlighting its role in genome maintenance and DNA repair.
Department of Infectious Disease Faculty of Medicine Imperial College London London UK
International Clinical Research Center St Anne's University Hospital Brno Czech Republic
Single Molecule Imaging Group MRC London Institute of Medical Sciences London UK
Zobrazit více v PubMed
Tye S., Ronson G.E., Morris J.R.. A fork in the road: where homologous recombination and stalled replication fork protection part ways. Semin. Cell Dev. Biol. 2021; 113:14–26. PubMed PMC
Wang A.T., Kim T., Wagner J.E., Conti B.A., Lach F.P., Huang A.L., Molina H., Sanborn E.M., Zierhut H., Cornes B.K.et al. .. A dominant mutation in Human RAD51 reveals its function in DNA interstrand crosslink repair independent of homologous recombination. Mol. Cell. 2015; 59:478–490. PubMed PMC
Ameziane N., May P., Haitjema A., van de Vrugt H.J., van Rossum-Fikkert S.E., Ristic D., Williams G.J., Balk J., Rockx D., Li H.et al. .. A novel Fanconi anaemia subtype associated with a dominant-negative mutation in RAD51. Nat. Commun. 2015; 6:8829. PubMed PMC
Zadorozhny K., Sannino V., Beláň O., Mlčoušková J., Špírek M., Costanzo V., Krejčí L.. Fanconi-anemia-associated mutations destabilize RAD51 Filaments and impair replication fork protection. Cell Rep. 2017; 21:333–340. PubMed
Tebbs R.S., Zhao Y., Tucker J.D., Scheerer J.B., Siciliano M.J., Hwang M., Liu N., Legerski R.J., Thompson L.H.. Correction of chromosomal instability and sensitivity to diverse mutagens by a cloned cDNA of the XRCC3 DNA repair gene. Proc. Natl. Acad. Sci. U.S.A. 1995; 92:6354–6358. PubMed PMC
Albala J.S., Thelen M.P., Prange C., Fan W., Christensen M., Thompson L.H., Lennon G.G.. Identification of a novel human RAD51 homolog, RAD51B. Genomics. 1997; 46:476–479. PubMed
Cartwright R., Tambini C.E., Simpson P.J., Thacker J.. The XRCC2 DNA repair gene from human and mouse encodes a novel member of the recA/RAD51 family. Nucleic Acids Res. 1998; 26:3084–3089. PubMed PMC
Dosanjh M.K., Collins D.W., Fan W., Lennon G.G., Albala J.S., Shen Z., Schild D.. Isolation and characterization of RAD51C, a new human member of the RAD51 family of related genes. Nucleic Acids Res. 1998; 26:1179–1184. PubMed PMC
Pittman D.L., Weinberg L.R., Schimenti J.C.. Identification, characterization, and genetic mapping of Rad51d, a new mouse and human RAD51/RecA-related gene. Genomics. 1998; 49:103–111. PubMed
Takata M., Sasaki M.S., Tachiiri S., Fukushima T., Sonoda E., Schild D., Thompson L.H., Takeda S.. Chromosome instability and defective recombinational repair in knockout mutants of the five Rad51 paralogs. Mol. Cell. Biol. 2001; 21:2858–2866. PubMed PMC
Masson J.Y., Tarsounas M.C., Stasiak A.Z., Stasiak A., Shah R., McIlwraith M.J., Benson F.E., West S.C.. Identification and purification of two distinct complexes containing the five RAD51 paralogs. Genes Dev. 2001; 15:3296–3307. PubMed PMC
Martino J., Brunette G.J., Barroso-González J., Moiseeva T.N., Smith C.M., Bakkenist C.J., O’Sullivan R.J., Bernstein K.A. The human Shu complex functions with PDS5B and SPIDR to promote homologous recombination. Nucleic Acids Res. 2019; 47:10151–10165. PubMed PMC
Jensen R.B., Ozes A., Kim T., Estep A., Kowalczykowski S.C.. BRCA2 is epistatic to the RAD51 paralogs in response to DNA damage. DNA Repair (Amst.). 2013; 12:306–311. PubMed PMC
Roy R., Chun J., Powell S.N.. BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat. Rev. Cancer. 2011; 12:68–78. PubMed PMC
Chun J., Buechelmaier E.S., Powell S.N.. Rad51 paralog complexes BCDX2 and CX3 act at different stages in the BRCA1-BRCA2-dependent homologous recombination pathway. Mol. Cell. Biol. 2013; 33:387–395. PubMed PMC
Garcin E.B., Gon S., Sullivan M.R., Brunette G.J., Cian A.D., Concordet J.-P., Giovannangeli C., Dirks W.G., Eberth S., Bernstein K.A.et al. .. Differential requirements for the RAD51 paralogs in genome repair and maintenance in Human cells. PLoS Genet. 2019; 15:e1008355. PubMed PMC
Akbari M.R., Tonin P., Foulkes W.D., Ghadirian P., Tischkowitz M., Narod S.A.. RAD51C germline mutations in breast and ovarian cancer patients. Breast Cancer Res. 2010; 12:404. PubMed PMC
Loveday C., Turnbull C., Ramsay E., Hughes D., Ruark E., Frankum J.R., Bowden G., Kalmyrzaev B., Warren-Perry M., Snape K.et al. .. Germline mutations in RAD51D confer susceptibility to ovarian cancer. Nat. Genet. 2011; 43:879–882. PubMed PMC
Loveday C., Turnbull C., Ruark E., Xicola R.M.M., Ramsay E., Hughes D., Warren-Perry M., Snape K.Eccles D.et al. .. Germline RAD51C mutations confer susceptibility to ovarian cancer. Nat. Genet. 2012; 44:475–476.Breast Cancer Susceptibility Collaboration (UK). PubMed
Orr N., Lemnrau A., Cooke R., Fletcher O., Tomczyk K., Jones M., Johnson N., Lord C.J., Mitsopoulos C., Zvelebil M.et al. .. Genome-wide association study identifies a common variant in RAD51B associated with male breast cancer risk. Nat. Genet. 2012; 44:1182–1184. PubMed PMC
Park D.J., Lesueur F., Nguyen-Dumont T., Pertesi M., Odefrey F., Hammet F., Neuhausen S.L., John E.M., Andrulis I.L., Terry M.B.et al. .. Rare mutations in XRCC2 increase the risk of breast cancer. Am. J. Hum. Genet. 2012; 90:734–739. PubMed PMC
Vaz F., Hanenberg H., Schuster B., Barker K., Wiek C., Erven V., Neveling K., Endt D., Kesterton I., Autore F.et al. .. Mutation of the RAD51C gene in a Fanconi anemia-like disorder. Nat. Genet. 2010; 42:406–409. PubMed
Taylor M.R.G., Špírek M., Chaurasiya K.R., Ward J.D., Carzaniga R., Yu X., Egelman E.H., Collinson L.M., Rueda D., Krejci L.et al. .. Rad51 Paralogs remodel pre-synaptic Rad51 Filaments to stimulate homologous recombination. Cell. 2015; 162:271–286. PubMed PMC
Taylor M.R.G., Špírek M., Jian Ma C., Carzaniga R., Takaki T., Collinson L.M., Greene E.C., Krejci L., Boulton S.J. A polar and nucleotide-dependent mechanism of action for RAD51 paralogs in RAD51 filament remodeling. Mol. Cell. 2016; 64:926–939. PubMed PMC
Roy U., Kwon Y., Marie L., Symington L., Sung P., Lisby M., Greene E.C.. The Rad51 paralog complex Rad55-Rad57 acts as a molecular chaperone during homologous recombination. Mol. Cell. 2021; 81:1043–1057. PubMed PMC
Belan O., Barroso C., Kaczmarczyk A., Anand R., Federico S., O’Reilly N., Newton M.D., Maeots E., Enchev R.I., Martinez-Perez E.et al. .. Single-molecule analysis reveals cooperative stimulation of Rad51 filament nucleation and growth by mediator proteins. Mol. Cell. 2021; 81:1058–1073. PubMed PMC
Liu J., Renault L., Veaute X., Fabre F., Stahlberg H., Heyer W.-D.. Rad51 paralogues Rad55–Rad57 balance the antirecombinase Srs2 in Rad51 filament formation. Nature. 2011; 479:245–248. PubMed PMC
Berti M., Teloni F., Mijic S., Ursich S., Fuchs J., Palumbieri M.D., Krietsch J., Schmid J.A., Garcin E.B., Gon S.et al. .. Sequential role of RAD51 paralog complexes in replication fork remodeling and restart. Nat. Commun. 2020; 11:3531. PubMed PMC
Zellweger R., Dalcher D., Mutreja K., Berti M., Schmid J.A., Herrador R., Vindigni A., Lopes M.. Rad51-mediated replication fork reversal is a global response to genotoxic treatments in human cells. J. Cell Biol. 2015; 208:563–579. PubMed PMC
Neelsen K.J., Lopes M.. Replication fork reversal in eukaryotes: from dead end to dynamic response. Nat. Rev. Mol. Cell Biol. 2015; 16:207–220. PubMed
Greenhough L.A., Liang C.-C., Belan O., Kunzelmann S., Maslen S., Rodrigo-Brenni M.C., Anand R., Skehel M., Boulton S.J., West S.C.. Structure and function of the RAD51B-RAD51C-RAD51D-XRCC2 tumour suppressor. Nature. 2023; 619:650–657. PubMed PMC
Rawal Y., Jia L., Meir A., Zhou S., Kaur H., Ruben E.A., Kwon Y., Bernstein K.A., Jasin M., Taylor A.B.et al. .. Structural insights into BCDX2 complex function in homologous recombination. Nature. 2023; 619:640–649. PubMed PMC
Špírek M., Mlcoušková J., Belán O., Gyimesi M., Harami G.M., Molnár E., Novacek J., Kovács M., Krejci L.. Human RAD51 rapidly forms intrinsically dynamic nucleoprotein filaments modulated by nucleotide binding state. Nucleic Acids Res. 2018; 46:3967–3980. PubMed PMC
Zhao W., Vaithiyalingam S., San Filippo J., Maranon D.G., Jimenez-Sainz J., Fontenay G.V., Kwon Y., Leung S.G., Lu L., Jensen R.B.et al. .. Promotion of BRCA2-dependent homologous recombination by DSS1 via RPA targeting and DNA mimicry. Mol. Cell. 2015; 59:176–187. PubMed PMC
Špírek M., Taylor M.R.G., Belan O., Boulton S.J., Krejci L.. Nucleotide proofreading functions by nematode RAD51 paralogs facilitate optimal RAD51 filament function. Nat. Commun. 2021; 12:5545. PubMed PMC
Hardin J.W., Warnasooriya C., Kondo Y., Nagai K., Rueda D.. Assembly and dynamics of the U4/U6 di-snRNP by single-molecule FRET. Nucleic Acids Res. 2015; 43:10963–10974. PubMed PMC
Halder S., Ranjha L., Taglialatela A., Ciccia A., Cejka P.. Strand annealing and motor driven activities of SMARCAL1 and ZRANB3 are stimulated by RAD51 and the paralog complex. Nucleic Acids Res. 2022; 50:8008–8022. PubMed PMC
Davies A.A., Masson J.Y., McIlwraith M.J., Stasiak A.Z., Stasiak A., Venkitaraman A.R., West S.C.. Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Mol. Cell. 2001; 7:273–282. PubMed
Carreira A., Hilario J., Amitani I., Baskin R.J., Shivji M.K.K., Venkitaraman A.R., Kowalczykowski S.C.. The BRC repeats of BRCA2 modulate the DNA-binding selectivity of RAD51. Cell. 2009; 136:1032–1043. PubMed PMC
Liu J., Doty T., Gibson B., Heyer W.-D.. Human BRCA2 protein promotes RAD51 filament formation on RPA-covered single-stranded DNA. Nat. Struct. Mol. Biol. 2010; 17:1260–1262. PubMed PMC
Carreira A., Kowalczykowski S.C.. Two classes of BRC repeats in BRCA2 promote RAD51 nucleoprotein filament function by distinct mechanisms. Proc. Natl. Acad. Sci. U.S.A. 2011; 108:10448–10453. PubMed PMC
Siaud N., Barbera M.A., Egashira A., Lam I., Christ N., Schlacher K., Xia B., Jasin M.. Plasticity of BRCA2 function in homologous recombination: genetic interactions of the PALB2 and DNA binding domains. PLoS Genet. 2011; 7:e1002409. PubMed PMC
Nalepa G., Clapp D.W.. Fanconi anaemia and cancer: an intricate relationship. Nat. Rev. Cancer. 2018; 18:168–185. PubMed
Brouwer I., Moschetti T., Candelli A., Garcin E.B., Modesti M., Pellegrini L., Wuite G.J., Peterman E.J.. Two distinct conformational states define the interaction of human RAD51-ATP with single-stranded DNA. EMBO J. 2018; 37:e98162. PubMed PMC
Shin D.S., Pellegrini L., Daniels D.S., Yelent B., Craig L., Bates D., Yu D.S., Shivji M.K., Hitomi C., Arvai A.S.et al. .. Full-length archaeal Rad51 structure and mutants: mechanisms for RAD51 assembly and control by BRCA2. EMBO J. 2003; 22:4566–4576. PubMed PMC
Subramanyam S., Ismail M., Bhattacharya I., Spies M.. Tyrosine phosphorylation stimulates activity of human RAD51 recombinase through altered nucleoprotein filament dynamics. Proc. Natl. Acad. Sci. U.S.A. 2016; 113:E6045–E6054. PubMed PMC
Shioi T., Hatazawa S., Oya E., Hosoya N., Kobayashi W., Ogasawara M., Kobayashi T., Takizawa Y., Kurumizaka H.. Cryo-EM structures of RAD51 assembled on nucleosomes containing a DSB site. Nature. 2024; 628:212–220. PubMed PMC
Xia F., Taghian D.G., DeFrank J.S., Zeng Z.C., Willers H., Iliakis G., Powell S.N.. Deficiency of human BRCA2 leads to impaired homologous recombination but maintains normal nonhomologous end joining. Proc. Natl. Acad. Sci. U.S.A. 2001; 98:8644–8649. PubMed PMC
Kolinjivadi A.M., Sannino V., De Antoni A., Zadorozhny K., Kilkenny M., Técher H., Baldi G., Shen R., Ciccia A., Pellegrini L.et al. .. Smarcal1-Mediated fork reversal triggers Mre11-dependent degradation of nascent DNA in the absence of Brca2 and stable Rad51 nucleofilaments. Mol. Cell. 2017; 67:867–881. PubMed PMC
Mason J.M., Chan Y.-L., Weichselbaum R.W., Bishop D.K.. Non-enzymatic roles of human RAD51 at stalled replication forks. Nat. Commun. 2019; 10:4410. PubMed PMC
Mijic S., Zellweger R., Chappidi N., Berti M., Jacobs K., Mutreja K., Ursich S., Ray Chaudhuri A., Nussenzweig A., Janscak P.et al. .. Replication fork reversal triggers fork degradation in BRCA2-defective cells. Nat. Commun. 2017; 8:859. PubMed PMC
Bétous R., Mason A.C., Rambo R.P., Bansbach C.E., Badu-Nkansah A., Sirbu B.M., Eichman B.F., Cortez D. SMARCAL1 catalyzes fork regression and Holliday junction migration to maintain genome stability during DNA replication. Genes Dev. 2012; 26:151–162. PubMed PMC
Kile A.C., Chavez D.A., Bacal J., Eldirany S., Korzhnev D.M., Bezsonova I., Eichman B.F., Cimprich K.A.. HLTF’s ancient HIRAN domain binds 3’ DNA ends to drive replication fork reversal. Mol. Cell. 2015; 58:1090–1100. PubMed PMC
Lemaçon D., Jackson J., Quinet A., Brickner J.R., Li S., Yazinski S., You Z., Ira G., Zou L., Mosammaparast N.et al. .. MRE11 and EXO1 nucleases degrade reversed forks and elicit MUS81-dependent fork rescue in BRCA2-deficient cells. Nat. Commun. 2017; 8:860. PubMed PMC
Esashi F., Galkin V.E., Yu X., Egelman E.H., West S.C.. Stabilization of RAD51 nucleoprotein filaments by the C-terminal region of BRCA2. Nat. Struct. Mol. Biol. 2007; 14:468–474. PubMed
Schlacher K., Christ N., Siaud N., Egashira A., Wu H., Jasin M.. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell. 2011; 145:529–542. PubMed PMC
Chung W.-H., Zhu Z., Papusha A., Malkova A., Ira G. Defective resection at DNA double-strand breaks leads to de novo telomere formation and enhances gene targeting. PLoS Genet. 2010; 6:e1000948. PubMed PMC
Zhou Y., Caron P., Legube G., Paull T.T.. Quantitation of DNA double-strand break resection intermediates in human cells. Nucleic Acids Res. 2014; 42:e19. PubMed PMC