• This record comes from PubMed

Immunohistochemical and Scanning Electron Microscopic Confirmation of the Lymphatic Lacunae in the Uterine Tube Mucosal Folds. What Are the Clinical Implications?

. 2022 Dec 27 ; 71 (Suppl 1) : S115-S123.

Language English Country Czech Republic Media print

Document type Journal Article

Uterine tubes (UTs) are essential during physiological reproduction. The most intriguing part of its wall is the mucosa. Apart from the epithelial cells vital for its normal function, the connective tissue lamina propria contains wide spaces whose function, morphology and structure are yet to be elucidated. The present study used bioptic samples from 25 premenopausal (mean age 48,33 years, ?=3,56) and 25 postmenopausal women (mean age 57,8 years, ?=7,79). In both study groups, samples were obtained from two anatomically distinct parts of the UT - ampulla and infundibulum with fimbriae. The specimens were processed for scanning electron microscopy (SEM) and immunohistochemical detection of podoplanin (clone D2-40) and VEGFR-3 - two markers of lymphatic endothelial cells. The results showed that specimens from premenopausal and postmenopausal women contain wide lymphatic spaces, also known as lymphatic lacunae. The most probable function of the lacunae in the fimbriae is oocyte pick-up upon ovulation thanks to their ability to get engorged with lymph, thus serving as an erectile-like tissue. The ampullary lacunae are probably responsible for tubal fluid maintenance and recirculation. These results indicate that they are vital for normal reproduction because tubal fluid dynamics are as important as fluid composition. Further research on this topic is highly warranted because more detailed insights into UT function have a great potential to refine the methods of reproductive medicine, e.g. in vitro fertilization (IVF), which are still far from optimal regarding fertility outcomes.

See more in PubMed

Eddy CA, Pauerstein CJ. Anatomy and physiology of the fallopian tube. Clin Obstet Gynecol. 1980;23:1177–1193. doi: 10.1097/00003081-198012000-00023. PubMed DOI

Tiourin E, Velasco VS, Rosales MA, Sullivan PS, Janzen DM, Memarzadeh S. Tubal Ligation Induces Quiescence in the Epithelia of the Fallopian Tube Fimbria. Reprod Sci. 2015;22:1262–1271. doi: 10.1177/1933719115574345. PubMed DOI PMC

Gartner LP. Color Atlas and Text of Histology. Wolters Kluwer; 2018.

Mills SE, editor. Histology for Pathologists. Fifth Edition. Wolters Kluwer Health; 2020.

Young B, O’Dowd G, Woodford P. Wheater’s Functional Histology: A Text and Colour Atlas. Sixth Edition. Elsevier Churchill Livingstone; 2014.

Varga I, Miko M, Kachlík D, Žišková M, Danihel Ľ, Jr, Babál P. How many cell types form the epithelial lining of the human uterine tubes? Revision of the histological nomenclature of the human tubal epithelium. Ann Anat. 2019;224:73–80. doi: 10.1016/j.aanat.2019.03.012. PubMed DOI

Mastroianni L., Jr The fallopian tube and reproductive health. J Pediatr Adolesc Gynecol. 1999;12:121–126. doi: 10.1016/S1038-3188(99)00003-0. PubMed DOI

Ascher E, Madelenat P, Rose D. [Tubal physiology: structures and functions] J Gynecol Obstet Biol Reprod (Paris) 1986;15:717–729. PubMed

Kajanová M, LDSP, Miko M, Urban L, Bokor T, Varga I. [The structural basis for transport through the Fallopian tube] Ceska Gynekol. 2012;77:566–571. PubMed

Kroemer P. Die Lymphorgane der weiblichen Genitalien und ihre Verän-derungen bei malignen Erkrankungen des Uterus Habilitationsschrift. Arch Gynäk. 1904;73:1–102. doi: 10.1007/BF01670168. DOI

Varga I, Kachlík D, Žišková M, Miko M. Lymphatic lacunae of the mucosal folds of human uterine tubes – A rediscovery of forgotten structures and their possible role in reproduction. Ann Anat. 2018;219:121–128. doi: 10.1016/j.aanat.2018.06.005. PubMed DOI

Ozdowski L, Gupta V. Physiology, Lymphatic System. StatPearls: StatPearls Publishing, StatPearls Publishing LLC; 2022. PubMed

Jansen RP. Cyclic changes in the human fallopian tube isthmus and their functional importance. Am J Obstet Gynecol. 1980;136:292–308. doi: 10.1016/0002-9378(80)90853-4. PubMed DOI

Folpe AL, Veikkola T, Valtola R, Weiss SW. Vascular endothelial growth factor receptor-3 (VEGFR-3): a marker of vascular tumors with presumed lymphatic differentiation, including Kaposi’s sarcoma, kaposiform and Dabska-type hemangioendotheliomas, and a subset of angiosarcomas. Mod Pathol. 2000;13:180–185. doi: 10.1038/modpathol.3880033. PubMed DOI

Kahn HJ, Bailey D, Marks A. Monoclonal antibody D2-40, a new marker of lymphatic endothelium, reacts with Kaposi’s sarcoma and a subset of angiosarcomas. Mod Pathol. 2002;15:434–440. doi: 10.1038/modpathol.3880543. PubMed DOI

Kachlik D, Musil V, Baca V. Terminologia Anatomica after 17 years: inconsistencies, mistakes and new proposals. Ann Anat. 2015;201:8–16. doi: 10.1016/j.aanat.2015.04.006. PubMed DOI

Kierszenbaum AL, Tres LL. Histology and Cell Biology: An Introduction to Pathology E-Book. Elsevier Health Sciences; 2019.

Eroschenko VP, di Fiore MSH. DiFiore’s Atlas of Histology with Functional Correlations. Wolters Kluwer Health/Lippincott Williams & Wilkins; 2013.

Mescher A. Junqueira’s Basic Histology: Text and Atlas. 14th Edition. McGraw-Hill Education; 2015.

Labidi-Galy SI, Papp E, Hallberg D, Niknafs N, Adleff V, Noe M, Bhattacharya R, Novak M, Jones S, Phallen J, Hruban CA, Hirsch MS, Lin DI, Schwartz L, Maire CL, Tille JC, Bowden M, Ayhan A, Wood LD, Scharpf RB, Kurman R, Wang TL, Shih IM, Karchin R, Drapkin R, Velculescu VE. High grade serous ovarian carcinomas originate in the fallopian tube. Nat Commun. 2017;8:1093. doi: 10.1038/s41467-017-00962-1. PubMed DOI PMC

Saint-Dizier M, Schoen J, Chen S, Banliat C, Mermillod P. Composing the early embryonic microenvironment: physiology and regulation of oviductal secretions. Int J Mol Sci. 2019;21:223. doi: 10.3390/ijms21010223. PubMed DOI PMC

Ferraz M, Rho HS, Hemerich D, Henning HHW, van Tol HTA, Hölker M, Besenfelder U, Mokry M, Vos P, Stout TAE, Le Gac S, Gadella BM. An oviduct-on-a-chip provides an enhanced in vitro environment for zygote genome reprogramming. Nat Commun. 2018;9:4934. doi: 10.1038/s41467-018-07119-8. PubMed DOI PMC

Wang M, Zhu T, Liu C, Jin L, Fei P, Zhang B. Oviduct-mimicking microfluidic chips decreased the ROS concentration in the in vitro fertilized embryos of CD-1 mice. Biomed Pharmacother. 2022;154:113567. doi: 10.1016/j.biopha.2022.113567. PubMed DOI

Otsuki Y, Maeda Y, Magari S, Sugimoto O. Lymphatics and lymphoid tissue of the fallopian tube: immunoelectronmicroscopic study. Anat Rec. 1989;225:288–296. doi: 10.1002/ar.1092250405. PubMed DOI

LeBlanc MM, Johnson RD, Calderwood Mays MB, Valderrama C. Lymphatic clearance of India ink in reproductively normal mares and mares susceptible to endometritis. Biol Reprod. 1995;52:501–506. doi: 10.1093/biolreprod/52.monograph_series1.501. DOI

Red-Horse K. Lymphatic vessel dynamics in the uterine wall. Placenta. 2008;29(Suppl A):S55–59. doi: 10.1016/j.placenta.2007.11.011. PubMed DOI PMC

Nicolescu MI, Rusu MC, Voinea LM, Vrapciu AD, Bâră RI. Lymphatic lacunae of the human eye conjunctiva embedded within a stroma containing CD34(+) telocytes. J Cell Mol Med. 2020;24:8871–8875. doi: 10.1111/jcmm.15354. PubMed DOI PMC

Zurzu M, Nicolescu MI, Mogoantă L, Pantea S, Rusu MC. Telocytes and lymphatics of the human colon. Life (Basel) 2021;11(10):1001. doi: 10.3390/life11101001. PubMed DOI PMC

Li J, Zhao Z, Zhou J, Yu S. A study of the three-dimensional organization of the human diaphragmatic lymphatic lacunae and lymphatic drainage units. Ann Anat. 1996;178:537–544. doi: 10.1016/S0940-9602(96)80113-0. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...