Morphology of the immune cells in the wall of the human uterine tube and their possible impact on reproduction-uterine tube as a possible immune privileged organ

. 2024 ; 12 () : 1325565. [epub] 20240307

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38516130

The uterine tube, as well as other parts of the upper female reproductive system, is immunologically unique in its requirements for tolerance to allogenic sperm and semi-allogenic embryos, yet responds to an array of sexually transmitted pathogens. To understand this dichotomy, there is a need to understand the functional morphology of immune cells in the wall of the uterine tube. Thus, we reviewed scientific literature regarding immune cells and the human uterine tube by using the scientific databases. The human uterine tube has a diverse population of immunocompetent cells representing both the innate and adaptive immune systems. We describe in detail the possible roles of cells of the mononuclear phagocyte system (macrophages and dendritic cells), T and B lymphocytes, natural killer cells, neutrophils and mast cells in association with the reproductive functions of uterine tubes. We are also discussing about the possible "immune privilege" of the uterine tube, as another mechanism to tolerate sperm and embryo without eliciting an inflammatory immune response. In uterine tube is not present an anatomical blood-tissue barrier between antigens and circulation. However, the immune cells of the uterine tube probably represent a type of "immunological barrier," which probably includes the uterine tube among the immunologically privileged organs. Understanding how immune cells in the female reproductive tract play roles in reproduction is essential to understand not only the mechanisms of gamete transport and fertilization as well as embryo transport through the uterine tube, but also in improving results from assisted reproduction.

Zobrazit více v PubMed

Alghamdi A. S., Foster D. N. (2005). Seminal DNase frees spermatozoa entangled in neutrophil extracellular traps. Biol. Reprod. 73 (6), 1174–1181. 10.1095/biolreprod.105.045666 PubMed DOI

Almiñana C., Heath P. R., Wilkinson S., Sanchez-Osorio J., Cuello C., Parrilla I., et al. (2012). Early developing pig embryos mediate their own environment in the maternal tract. PloS one 7 (3), e33625. 10.1371/journal.pone.0033625 PubMed DOI PMC

Ardighieri L., Lonardi S., Moratto D., Facchetti F., Shih I. M., Vermi W., et al. (2014). Characterization of the immune cell repertoire in the normal fallopian tube. Int. J. Gynecol. Pathol. 33, 581–591. 10.1097/PGP.0000000000000095 PubMed DOI PMC

Cajas Y. N., Cañón-Beltrán K., de la Blanca M. G. M., Sánchez J. M., Fernandez-Fuertes B., González E. M., et al. (2021). Role of reproductive fluids and extracellular vesicles in embryo–maternal interaction during early pregnancy in cattle. Reprod. Fertil. Dev. 34 (2), 117–138. 10.1071/RD21275 PubMed DOI

Caven L. T., Carabeo R. A. (2023). The role of infected epithelial cells in Chlamydia-associated fibrosis. Front. Cell. Infect. Microbiol. 13, 1208302. 10.3389/fcimb.2023.1208302 PubMed DOI PMC

Chambers M., Rees A., Cronin J. G., Nair M., Jones N., Thornton C. A. (2021). Macrophage plasticity in reproduction and environmental influences on their function. Front. Immunol. 11, 607328. 10.3389/fimmu.2020.607328 PubMed DOI PMC

Chua S. J., Akande V. A., Mol B. W. (2017). Surgery for tubal infertility. Cochrane Database Syst. Rev. 1 (1), CD006415. 10.1002/14651858.CD006415.pub3 PubMed DOI PMC

Csöbönyeiová M., Klein M., Juríková M., Feitscherová C., Gálfiová P., Varga I. (2022a). Immunohistochemical and scanning electron microscopic confirmation of the lymphatic lacunae in the uterine tube mucosal folds. What are the clinical implications? Phys. Res. 71 (1), S115–S123. 10.33549/physiolres.935029 PubMed DOI PMC

Csöbönyeiová M., Varga I., Lapides L., Pavlíková L., Feitscherová C., Klein M. (2022b). From a passive conduit to highly dynamic organ. What are the roles of uterine tube epithelium in reproduction? Physiol. Res. 71, S11–S20. 10.33549/physiolres.934954 PubMed DOI PMC

Da Silva N., Smith T. B. (2015). Exploring the role of mononuclear phagocytes in the epididymis. Asian J. Androl. 17 (4), 591–596. 10.4103/1008-682X.153540 PubMed DOI PMC

Du Y., Yan B. (2023). Ocular immune privilege and retinal pigment epithelial cells. J. Leukoc. Biol. 113 (3), 288–304. 10.1093/jleuko/qiac016 PubMed DOI

Dunbar B., Patel M., Fahey J., Wira C. (2012). Endocrine control of mucosal immunity in the female reproductive tract: impact of environmental disruptors. Mol. Cell. Endocrinol. 354 (1-2), 85–93. 10.1016/j.mce.2012.01.002 PubMed DOI PMC

FICAT (2008). Terminologia Histologica: international terms for human cytology and histology. First edition. Philadelphia: Wolters Kluwer.

Gaytán M., Morales C., Bellido C., Sánchez-Criado J. E., Gaytán F. (2007). Macrophages in human fallopian tube and ovarian epithelial inclusion cysts. J. Reprod. Immunol. 73, 66–73. 10.1016/j.jri.2006.06.002 PubMed DOI

Gong J., Zeng Q., Yu D., Duan Y. G. (2020). T lymphocytes and testicular immunity: a new insight into immune regulation in testes. Int. J. Mol. Sc. 22 (1), 57. 10.3390/ijms22010057 PubMed DOI PMC

González-Hernández S., Mukouyama Y. S. (2023). Lymphatic vasculature in the central nervous system. Front. Cell Dev. Biol. 11, 1150775. 10.3389/fcell.2023.1150775 PubMed DOI PMC

Gregory M., Cyr D. G. (2014). The blood-epididymis barrier and inflammation. Spermatogenesis 4 (2), e979619. 10.4161/21565562.2014.979619 PubMed DOI PMC

Hagiwara H., Ohwada N., Aoki T., Fujimoto T. (1998). Langerhans cells in the human oviduct mucosa. Ital. J. Anat. Embryol. 103, 253–258. PubMed

Hamranová N., Hocinec N., Záhumenský J., Csöbönyeiová M., Klein M., Feitscherová C., et al. (2023). Traditional and contemporary views on the functional morphology of the fallopian tubes and their importance for gynecological practice. Ceska Gynekol. 88, 33–43. 10.48095/cccg202333 PubMed DOI

Haney A. F., Misukonis M. A., Weinberg J. B. (1983). Macrophages and infertility: oviductal macrophages as potential mediators of infertility. Fertil. Steril. 39 (3), 310–315. 10.1016/s0015-0282(16)46877-9 PubMed DOI

Harris E. A., Stephens K. K., Winuthayanon W. (2020). Extracellular vesicles and the oviduct function. Int. J. Mol. Sci. 21 (21), 8280. 10.3390/ijms21218280 PubMed DOI PMC

Harvie M. C., Carey A. J., Armitage C. W., O'Meara C. P., Peet J., Phillips Z. N., et al. (2019). Chlamydia-infected macrophages are resistant to azithromycin treatment and are associated with chronic oviduct inflammation and hydrosalpinx development. Immunol. Cell Biol. 97, 865–876. 10.1111/imcb.12285 PubMed DOI

Hernandez J. L., Park J., Yao S., Blakney A. K., Nguyen H. V., Katz B. H., et al. (2021). Effect of tissue microenvironment on fibrous capsule formation to biomaterial-coated implants. Biomaterials 273, 120806. 10.1016/j.biomaterials.2021.120806 PubMed DOI PMC

Hoenderboom B. M., van Benthem B. H. B., van Bergen J. E. A. M., Dukers-Muijrers N. H. T. M., Götz H. M., Hoebe C. J. P. A., et al. (2019). Relation between Chlamydia trachomatis infection and pelvic inflammatory disease, ectopic pregnancy and tubal factor infertility in a Dutch cohort of women previously tested for chlamydia in a chlamydia screening trial. Sex. Transm. Infect. 95, 300–306. 10.1136/sextrans-2018-053778 PubMed DOI PMC

Hong S., Van Kaer L. (1999). Immune privilege: keeping an eye on natural killer T cells. J. Exp. Med. 190 (9), 1197–1200. 10.1084/jem.190.9.1197 PubMed DOI PMC

Hume D. A. (2006). The mononuclear phagocyte system. Curr. Opin. Immunol. 18, 49–53. 10.1016/j.coi.2005.11.008 PubMed DOI

Hume D. A., Irvine K. M., Pridans C. (2019). The mononuclear phagocyte system: the relationship between monocytes and macrophages. Trends Immunol. 40, 98–112. 10.1016/j.it.2018.11.007 PubMed DOI

Hunt J. L., Lynn A. A. (2002). Histologic features of surgically removed fallopian tubes. Arch. Pathol. Lab. Med. 126, 951–955. 10.1043/0003-9985(2002)126<0951:HFOSRT>2.0.CO;2 PubMed DOI

Jenabi E., Ayubi E., Khazaei S., Soltanian A. R., Salehi A. M. (2023). The environmental risk factors associated with ectopic pregnancy: an umbrella review. J. Gynecol. Obstet. Hum. Reprod. 52, 102532. 10.1016/j.jogoh.2022.102532 PubMed DOI

Kaur G., Wright K., Verma S., Haynes A., Dufour J. M. (2021). The good, the bad and the ugly of testicular immune regulation: a delicate balance between immune function and immune privilege. Adv. Exp. Med. Biol. 1288, 21–47. 10.1007/978-3-030-77779-1_2 PubMed DOI

Kvedaraite E., Ginhoux F. (2022). Human dendritic cells in cancer. Sci. Immunol. 7, eabm9409. 10.1126/sciimmunol.abm9409 PubMed DOI

Lapides L., Varga I., Csöbönyeiová M., Klein M., Pavlíková L., Visnyaiová K., et al. (2023). The neglected uterine NK cells/hamperl cells/endometrial stromal granular cell, or K cells: a narrative review from history through histology and to medical education. Int. J. Mol. Sci. 24, 12693. 10.3390/ijms241612693 PubMed DOI PMC

Laskarin G., Redzovic A., Vukelic P., Veljkovic D., Gulic T., Haller H., et al. (2010). Phenotype of NK cells and cytotoxic/apoptotic mediators expression in ectopic pregnancy. Am. J. Reprod. Immunol. 64, 347–358. 10.1111/j.1600-0897.2010.00844.x PubMed DOI

Lee S. K., Kim C. J., Kim D. J., Kang J. H. (2015). Immune cells in the female reproductive tract. Immune Netw. 15, 16–26. 10.4110/in.2015.15.1.16 PubMed DOI PMC

Leese H. J., Tay J. I., Reischl J., Downing S. J. (2001). Formation of Fallopian tubal fluid: role of a neglected epithelium. Reprod. Camb. Engl. 121 (3), 339–346. 10.1530/rep.0.1210339 PubMed DOI

Liptáková A., Čurová K., Záhumenský J., Visnyaiová K., Varga I. (2022). Microbiota of female genital tract – functional overview of microbial flora from vagina to uterine tubes and placenta. Physiol. Res. 71, S21–S33. 10.33549/physiolres.934960 PubMed DOI PMC

Liu L., Li C., Sun X., Liu J., Zheng H., Yang B., et al. (2022). Chlamydia infection, PID, and infertility: further evidence from a case-control study in China. BMC Womens Health 22, 294. 10.1186/s12905-022-01874-z PubMed DOI PMC

Lu C., Wu Z., Gao H., Li H., Deng R., Luo N., et al. (2023). Sperm induce macrophage extracellular trap formation via phagocytosis-dependent mechanism. Biol. Reprod. 109, 319–329. 10.1093/biolre/ioad068 PubMed DOI

Luaces J. P., Toro-Urrego N., Otero-Losada M., Capani F. (2023). What do we know about blood-testis barrier? current understanding of its structure and physiology. Front. Cell Dev. Biol. 11, 1114769. 10.3389/fcell.2023.1114769 PubMed DOI PMC

Marey M. A., Aboul Ezz M., Akthar I., Yousef M. S., Imakawa K., Shimada M., et al. (2020). Sensing sperm via maternal immune system: a potential mechanism for controlling microenvironment for fertility in the cow. J. animal Sci. 98 (1), S88–S95. 10.1093/jas/skaa147 PubMed DOI PMC

Marey M. A., Liu J., Kowsar R., Haneda S., Matsui M., Sasaki M., et al. (2013). Bovine oviduct epithelial cells downregulate phagocytosis of sperm by neutrophils: prostaglandin E2 as a major physiological regulator. Reprod. Camb. Engl. 147 (2), 211–219. 10.1530/REP-13-0375 PubMed DOI

Marey M. A., Yousef M. S., Kowsar R., Hambruch N., Shimizu T., Pfarrer C., et al. (2016). Local immune system in oviduct physiology and pathophysiology: attack or tolerance? Domest. Anim. Endocrinol. 56, S204–S211. 10.1016/j.domaniend.2016.02.005 PubMed DOI

Mayavannan A., Shantz E., Haidl I. D., Wang J., Marshall J. S. (2023). Mast cells selectively produce inflammatory mediators and impact the early response to Chlamydia reproductive tract infection. Front. Immunol. 14, 1166068. 10.3389/fimmu.2023.1166068 PubMed DOI PMC

Ménézo Y., Guérin P., Elder K. (2015). The oviduct: a neglected organ due for re-assessment in IVF. Reprod. Biomed. Online. 30 (3), 233–240. 10.1016/j.rbmo.2014.11.011 PubMed DOI

Miah M., Goh I., Haniffa M. (2021). Prenatal development and function of human mononuclear phagocytes. Front. Cell Dev. Biol. 9, 649937. 10.3389/fcell.2021.649937 PubMed DOI PMC

Milligan G. N., Bourne N., Dudley K. L. (2001). Role of polymorphonuclear leukocytes in resolution of HSV-2 infection of the mouse vagina. J. Reprod. Immunol. 49, 49–65. 10.1016/s0165-0378(00)00080-2 PubMed DOI

Mills S. E. (2020). Histology for pathologist. Fifth edition. Philadelphia: Wolters Kluwer.

Mital P., Hinton B. T., Dufour J. M. (2011). The blood-testis and blood-epididymis barriers are more than just their tight junctions. Biol. Reprod. 84 (5), 851–858. 10.1095/biolreprod.110.087452 PubMed DOI PMC

Mousavi S. O., Mohammadi R., Amjadi F., Zandieh Z., Aghajanpour S., Aflatoonian K., et al. (2021). Immunological response of fallopian tube epithelial cells to spermatozoa through modulating cytokines and chemokines. J. Reprod. Immunol. 146, 103327. 10.1016/j.jri.2021.103327 PubMed DOI

Navarrete Gómez P., Espinoza Ruiz J., Parodi Rivera J., Alvarez J. G., Sánchez Gutiérrez R. (2009). Protective effect of fallopian tubal fluid against activated leucocyte-induced sperm DNA fragmentation: preliminary results. Andrologia 41 (3), 196–198. 10.1111/j.1439-0272.2009.00922.x PubMed DOI

Ohteki T., Kawamura S., Onai N. (2021). Commitment to dendritic cells and monocytes. Int. Immunol. 33, 815–819. 10.1093/intimm/dxab031 PubMed DOI

Pandya I. J., Cohen J. (1985). The leukocytic reaction of the human uterine cervix to spermatozoa. Fertil. Steril. 43, 417–421. 10.1016/s0015-0282(16)48442-6 PubMed DOI

Pant S., Bhati T., Dimri A., Arora R., Siraj F., Raisuddin S., et al. (2023). Chlamydia trachomatis infection regulates the expression of tetraspanins, activin-A, and inhibin-A in tubal ectopic pregnancy. Pathog. Dis. 81, ftad018. 10.1093/femspd/ftad018 PubMed DOI

Pérez-Cerezales S., Ramos-Ibeas P., Acuña O. S., Avilés M., Coy P., Rizos D., et al. (2018). The oviduct: from sperm selection to the epigenetic landscape of the embryo. Biol. Reprod. 98 (3), 262–276. 10.1093/biolre/iox173 PubMed DOI

Rabi S., Jacob T. M., Lionel J., Indrasingh I. (2014). Different subsets of Langerhans cells in human uterine tubes and uterus. J. Obstet. Gynaecol. Res. 40, 1833–1839. 10.1111/jog.12446 PubMed DOI

Ramraj S. K., Smith K. M., Janakiram N. B., Toal C., Raman A., Benbrook D. M. (2018). Correlation of clinical data with fallopian tube specimen immune cells and tissue culture capacity. Tissue Cell 52, 57–64. 10.1016/j.tice.2018.04.001 PubMed DOI PMC

Rigby C. H., Aljassim F., Powell S. G., Wyatt J. N. R., Hill C. J., Hapangama D. K. (2022). The immune cell profile of human fallopian tubes in health and benign pathology: a systematic review. J. Reprod. Immunol. 152, 103646. 10.1016/j.jri.2022.103646 PubMed DOI

Rizos D., Maillo V., Lonergan P. (2016). Role of the oviduct and oviduct-derived products in ruminant embryo development. Anim. Reprod. 13 (3), 160–167. 10.21451/1984-3143-ar863 DOI

Rodriguez–Garcia M., Patel M. V., Shen Z., Wira C. R. (2021). The impact of aging on innate and adaptive immunity in the human female genital tract. Aging Cell 20, e13361. 10.1111/acel.13361 PubMed DOI PMC

Rustenhoven J., Kipnis J. (2022). Brain borders at the central stage of neuroimmunology. Nature 612 (7940), 417–429. 10.1038/s41586-022-05474-7 PubMed DOI PMC

Safwat M. D., Habib F. A., Oweiss N. Y. (2008). Distribution of macrophages in the human fallopian tubes: an immunohistochemical and electron microscopic study. Folia Morphol. (Warsz.) 67, 43–52. PubMed

Saint-Dizier M., Schoen J., Chen S., Banliat C., Mermillod P. (2019). Composing the early embryonic microenvironment: physiology and regulation of oviductal secretions. Int. J. Mol. Sci. 21 (1), 223. 10.3390/ijms21010223 PubMed DOI PMC

Sandvei R., Wollen A. L., Flood P. R., Anker C. (1986). Mast cells in the tubal wall in women using an intrauterine contraceptive device. Br. J. Obstet. Gynaecol. 93, 758–764. 10.1111/j.1471-0528.1986.tb08064.x PubMed DOI

Shaw J. L., Fitch P., Cartwright J., Entrican G., Schwarze J., Critchley H. O. D., et al. (2011). Lymphoid and myeloid cell populations in the non-pregnant human fallopian tube and in ectopic pregnancy. J. Reprod. Immunol. 89, 84–91. 10.1016/j.jri.2011.01.014 PubMed DOI PMC

Siu M. K., Cheng C. Y. (2012). The blood-follicle barrier (BFB) in disease and in ovarian function. Adv. Exp. Med. Biol. 763, 186–192. 10.1007/978-1-4614-4711-5_9 PubMed DOI PMC

Smith J. M., Wira C. R., Fanger M. W., Shen L. (2006). Human fallopian tube neutrophils – a distinct phenotype from blood neutrophils. Am. J. Reprod. Immunol. 56, 218–229. 10.1111/j.1600-0897.2006.00410.x PubMed DOI

Sreejit G., Fleetwood A. J., Murphy A. J., Nagareddy P. R. (2020). Origins and diversity of macrophages in health and disease. Clin. Transl. Immunol. 9, e1222. 10.1002/cti2.1222 PubMed DOI PMC

Szukiewicz D., Wojdasiewicz P., Watroba M., Szewczyk G. (2022). Mast cell activation syndrome in COVID-19 and female reproductive function: theoretical background vs accumulating clinical evidence. J. Immunol. Res. 2022, 9534163. 10.1155/2022/9534163 PubMed DOI PMC

Talukder A. K., Marey M. A., Shirasuna K., Kusama K., Shimada M., Imakawa K., et al. (2020). Roadmap to pregnancy in the first 7 days post-insemination in the cow: immune crosstalk in the corpus luteum, oviduct, and uterus. Theriogenology 150, 313–320. 10.1016/j.theriogenology.2020.01.071 PubMed DOI

Talukder A. K., Rashid M. B., Yousef M. S., Kusama K., Shimizu T., Shimada M., et al. (2018). Oviduct epithelium induces interferon-tau in bovine Day-4 embryos, which generates an anti-inflammatory response in immune cells. Sci. Rep. 8 (1), 7850. 10.1038/s41598-018-26224-8 PubMed DOI PMC

Talukder A. K., Yousef M. S., Rashid M. B., Awai K., Acosta T. J., Shimizu T., et al. (2017). Bovine embryo induces an anti-inflammatory response in uterine epithelial cells and immune cells in vitro: possible involvement of interferon tau as an intermediator. J. Reprod. Dev. 63 (4), 425–434. 10.1262/jrd.2017-056 PubMed DOI PMC

Tran T. A. N., Holloway R. W. (2021). Intratubal pseudopapillary histiocytic hyperplasia: a new histologic variant in the spectrum of histiocytic lesions involving the fallopian tube. Int. J. Gynecol. Pathol. 40, 369–375. 10.1097/PGP.0000000000000740 PubMed DOI

Ulrich N. D., Shen Y. C., Ma Q., Yang K., Hannum D. F., Jones A., et al. (2022). Cellular heterogeneity of human fallopian tubes in normal and hydrosalpinx disease states identified using scRNA-seq. Dev. Cell. 57 (7), 914–929.e7. 10.1016/j.devcel.2022.02.017 PubMed DOI PMC

Ulziibat S., Ejima K., Shibata Y., Hishikawa Y., Kitajima M., Fujishita A., et al. (2006). Identification of estrogen receptor beta-positive intraepithelial lymphocytes and their possible roles in normal and tubal pregnancy oviducts. Hum. Reprod. 21, 2281–2289. 10.1093/humrep/del176 PubMed DOI

van Furth R., Cohn Z. A., Hirsch J. G., Humphrey J. H., Spector W. G., Langevoort H. L. (1972). The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull. World Health Organ. 46, 845–852. PubMed PMC

Varga I., Csöbönyeiová M., Visnyaiová K., Záhumenský J., Pavlíková L., Feitscherová C., et al. (2022). Functional morphology of the human uterine tubes in the 21st century: anatomical novelties and their possible clinical applications. Physiol. Res. 71, S151–S159. 10.33549/physiolres.935036 PubMed DOI PMC

Varga I., Kachlík D., Žišková M., Miko M. (2018). Lymphatic lacunae of the mucosal folds of human uterine tubes - a rediscovery of forgotten structures and their possible role in reproduction. Ann. Anat. 219, 121–128. 10.1016/j.aanat.2018.06.005 PubMed DOI

Varga I., Miko M., Kachlík D., Žišková M., Danihel Ľ., Babál P. (2019). How many cell types form the epithelial lining of the human uterine tubes? Revision of the histological nomenclature of the human tubal epithelium. Ann. Anat. 224, 73–80. 10.1016/j.aanat.2019.03.012 PubMed DOI

Varol C., Mildner A., Jung S. (2015). Macrophages: development and tissue specialization. Annu. Rev. Immunol. 33, 643–675. 10.1146/annurev-immunol-032414-112220 PubMed DOI

Wang X., Lee C. L., Li R. H. W., Vijayan M., Duan Y. G., Yeung W. S. B., et al. (2019). Alteration of the immune cell profiles in the pathophysiology of tubal ectopic pregnancy. Am. J. Reprod. Immunol. 81, e13093. 10.1111/aji.13093 PubMed DOI

Wang X., Lee C. L., Vijayan M., Yeung W. S. B., Ng E. H. Y., Wang X., et al. (2020). Adrenomedullin insufficiency alters macrophage activities in fallopian tube: a pathophysiologic explanation of tubal ectopic pregnancy. Mucosal Immunol. 13, 743–752. 10.1038/s41385-020-0278-6 PubMed DOI

Wang X., Wang T., Lam E., Alvarez D., Sun Y. (2023). Ocular vascular diseases: from retinal immune privilege to inflammation. Int. J. Mol. Sci. 24 (15), 12090. 10.3390/ijms241512090 PubMed DOI PMC

Weidinger S., Mayerhofer A., Frungieri M. B., Meineke V., Ring J., Kohn F. M. (2003). Mast cell-sperm interaction: evidence for tryptase and proteinase-activated receptors in the regulation of sperm motility. Hum. Reprod. 18, 2519–2524. 10.1093/humrep/deg476 PubMed DOI

Wira C. R., Fahey J. V. (2008). A new strategy to understand how HIV infects women: identification of a window of vulnerability during the menstrual cycle. AIDS Lond. Engl. 22 (15), 1909–1917. 10.1097/QAD.0b013e3283060ea4 PubMed DOI PMC

Wira C. R., Ghosh M., Smith J. M., Shen L., Connor R. I., Sundstrom P., et al. (2011). Epithelial cell secretions from the human female reproductive tract inhibit sexually transmitted pathogens and Candida albicans but not Lactobacillus . Mucosal Immunol. 4, 335–342. 10.1038/mi.2010.72 PubMed DOI PMC

Wira C. R., Rodriguez-Garcia M., Patel M. V., Biswas N., Fahey J. V. (2015). “Chapter 110 - endocrine regulation of the mucosal immune system in the female reproductive tract,” in Mucosal immunology. Fourth Edition (Berlin, Germany: Springer; ), Vol. 2, 2141–2156.

Wollen A. L., Sandvei R., Mørk S., Marandon J. L., Matre R. (1994). In situ characterization of leukocytes in the fallopian tube in women with or without an intrauterine contraceptive device. Acta Obstet. Gynecol. Scand. 73, 103–112. 10.3109/00016349409013411 PubMed DOI

Yousef M. S., Abd–Elhafeez H. H., Talukder A. K., Miyamoto A. (2019). Ovulatory follicular fluid induces sperm phagocytosis by neutrophils, but oviductal fluid around oestrus suppresses its inflammatory effect in the buffalo oviduct in vitro . Mol. Reprod. Dev. 86, 835–846. 10.1002/mrd.23164 PubMed DOI

Yousef M. S., Marey M. A., Hambruch N., Hayakawa H., Shimizu T., Hussien H. A., et al. (2016). Sperm binding to oviduct epithelial cells enhances TGFB1 and IL10 expressions in epithelial cells as well as neutrophils in vitro: prostaglandin E2 as a main regulator of anti-inflammatory response in the bovine oviduct. PloS one 11 (9), e0162309. 10.1371/journal.pone.0162309 PubMed DOI PMC

Zhang J., Dunk C., Croy A. B., Lye S. J. (2016). To serve and to protect: the role of decidual innate immune cells on human pregnancy. Cell Tissue Res. 363 (1), 249–265. 10.1007/s00441-015-2315-4 PubMed DOI

Zhang Z., Zhang C., Zhang S. (2022). Irisin activates M1 macrophage and suppresses Th2-type immune response in rats with pelvic inflammatory disease. Evid. Based Complement. Altern. Med. 2022, 5215915. 10.1155/2022/5215915 PubMed DOI PMC

Zhao Y., Vanderkooi S., Kan F. W. K. (2022). The role of oviduct-specific glycoprotein (OVGP1) in modulating biological functions of gametes and embryos. Histochem. Cell Biol. 157 (3), 371–388. 10.1007/s00418-021-02065-x PubMed DOI PMC

Zierau O., Zenclussen A. C., Jensen F. (2012). Role of female sex hormones, estradiol and progesterone, in mast cell behavior. Front. Immunol. 3, 169. 10.3389/fimmu.2012.00169 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...