Morphology of the immune cells in the wall of the human uterine tube and their possible impact on reproduction-uterine tube as a possible immune privileged organ
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
38516130
PubMed Central
PMC10955054
DOI
10.3389/fcell.2024.1325565
PII: 1325565
Knihovny.cz E-zdroje
- Klíčová slova
- B lymphocyte, T lymphocyte, dendritic cell, fertility, macrophage, mast cell, natural killer cell, uterine tube,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The uterine tube, as well as other parts of the upper female reproductive system, is immunologically unique in its requirements for tolerance to allogenic sperm and semi-allogenic embryos, yet responds to an array of sexually transmitted pathogens. To understand this dichotomy, there is a need to understand the functional morphology of immune cells in the wall of the uterine tube. Thus, we reviewed scientific literature regarding immune cells and the human uterine tube by using the scientific databases. The human uterine tube has a diverse population of immunocompetent cells representing both the innate and adaptive immune systems. We describe in detail the possible roles of cells of the mononuclear phagocyte system (macrophages and dendritic cells), T and B lymphocytes, natural killer cells, neutrophils and mast cells in association with the reproductive functions of uterine tubes. We are also discussing about the possible "immune privilege" of the uterine tube, as another mechanism to tolerate sperm and embryo without eliciting an inflammatory immune response. In uterine tube is not present an anatomical blood-tissue barrier between antigens and circulation. However, the immune cells of the uterine tube probably represent a type of "immunological barrier," which probably includes the uterine tube among the immunologically privileged organs. Understanding how immune cells in the female reproductive tract play roles in reproduction is essential to understand not only the mechanisms of gamete transport and fertilization as well as embryo transport through the uterine tube, but also in improving results from assisted reproduction.
Zobrazit více v PubMed
Alghamdi A. S., Foster D. N. (2005). Seminal DNase frees spermatozoa entangled in neutrophil extracellular traps. Biol. Reprod. 73 (6), 1174–1181. 10.1095/biolreprod.105.045666 PubMed DOI
Almiñana C., Heath P. R., Wilkinson S., Sanchez-Osorio J., Cuello C., Parrilla I., et al. (2012). Early developing pig embryos mediate their own environment in the maternal tract. PloS one 7 (3), e33625. 10.1371/journal.pone.0033625 PubMed DOI PMC
Ardighieri L., Lonardi S., Moratto D., Facchetti F., Shih I. M., Vermi W., et al. (2014). Characterization of the immune cell repertoire in the normal fallopian tube. Int. J. Gynecol. Pathol. 33, 581–591. 10.1097/PGP.0000000000000095 PubMed DOI PMC
Cajas Y. N., Cañón-Beltrán K., de la Blanca M. G. M., Sánchez J. M., Fernandez-Fuertes B., González E. M., et al. (2021). Role of reproductive fluids and extracellular vesicles in embryo–maternal interaction during early pregnancy in cattle. Reprod. Fertil. Dev. 34 (2), 117–138. 10.1071/RD21275 PubMed DOI
Caven L. T., Carabeo R. A. (2023). The role of infected epithelial cells in Chlamydia-associated fibrosis. Front. Cell. Infect. Microbiol. 13, 1208302. 10.3389/fcimb.2023.1208302 PubMed DOI PMC
Chambers M., Rees A., Cronin J. G., Nair M., Jones N., Thornton C. A. (2021). Macrophage plasticity in reproduction and environmental influences on their function. Front. Immunol. 11, 607328. 10.3389/fimmu.2020.607328 PubMed DOI PMC
Chua S. J., Akande V. A., Mol B. W. (2017). Surgery for tubal infertility. Cochrane Database Syst. Rev. 1 (1), CD006415. 10.1002/14651858.CD006415.pub3 PubMed DOI PMC
Csöbönyeiová M., Klein M., Juríková M., Feitscherová C., Gálfiová P., Varga I. (2022a). Immunohistochemical and scanning electron microscopic confirmation of the lymphatic lacunae in the uterine tube mucosal folds. What are the clinical implications? Phys. Res. 71 (1), S115–S123. 10.33549/physiolres.935029 PubMed DOI PMC
Csöbönyeiová M., Varga I., Lapides L., Pavlíková L., Feitscherová C., Klein M. (2022b). From a passive conduit to highly dynamic organ. What are the roles of uterine tube epithelium in reproduction? Physiol. Res. 71, S11–S20. 10.33549/physiolres.934954 PubMed DOI PMC
Da Silva N., Smith T. B. (2015). Exploring the role of mononuclear phagocytes in the epididymis. Asian J. Androl. 17 (4), 591–596. 10.4103/1008-682X.153540 PubMed DOI PMC
Du Y., Yan B. (2023). Ocular immune privilege and retinal pigment epithelial cells. J. Leukoc. Biol. 113 (3), 288–304. 10.1093/jleuko/qiac016 PubMed DOI
Dunbar B., Patel M., Fahey J., Wira C. (2012). Endocrine control of mucosal immunity in the female reproductive tract: impact of environmental disruptors. Mol. Cell. Endocrinol. 354 (1-2), 85–93. 10.1016/j.mce.2012.01.002 PubMed DOI PMC
FICAT (2008). Terminologia Histologica: international terms for human cytology and histology. First edition. Philadelphia: Wolters Kluwer.
Gaytán M., Morales C., Bellido C., Sánchez-Criado J. E., Gaytán F. (2007). Macrophages in human fallopian tube and ovarian epithelial inclusion cysts. J. Reprod. Immunol. 73, 66–73. 10.1016/j.jri.2006.06.002 PubMed DOI
Gong J., Zeng Q., Yu D., Duan Y. G. (2020). T lymphocytes and testicular immunity: a new insight into immune regulation in testes. Int. J. Mol. Sc. 22 (1), 57. 10.3390/ijms22010057 PubMed DOI PMC
González-Hernández S., Mukouyama Y. S. (2023). Lymphatic vasculature in the central nervous system. Front. Cell Dev. Biol. 11, 1150775. 10.3389/fcell.2023.1150775 PubMed DOI PMC
Gregory M., Cyr D. G. (2014). The blood-epididymis barrier and inflammation. Spermatogenesis 4 (2), e979619. 10.4161/21565562.2014.979619 PubMed DOI PMC
Hagiwara H., Ohwada N., Aoki T., Fujimoto T. (1998). Langerhans cells in the human oviduct mucosa. Ital. J. Anat. Embryol. 103, 253–258. PubMed
Hamranová N., Hocinec N., Záhumenský J., Csöbönyeiová M., Klein M., Feitscherová C., et al. (2023). Traditional and contemporary views on the functional morphology of the fallopian tubes and their importance for gynecological practice. Ceska Gynekol. 88, 33–43. 10.48095/cccg202333 PubMed DOI
Haney A. F., Misukonis M. A., Weinberg J. B. (1983). Macrophages and infertility: oviductal macrophages as potential mediators of infertility. Fertil. Steril. 39 (3), 310–315. 10.1016/s0015-0282(16)46877-9 PubMed DOI
Harris E. A., Stephens K. K., Winuthayanon W. (2020). Extracellular vesicles and the oviduct function. Int. J. Mol. Sci. 21 (21), 8280. 10.3390/ijms21218280 PubMed DOI PMC
Harvie M. C., Carey A. J., Armitage C. W., O'Meara C. P., Peet J., Phillips Z. N., et al. (2019). Chlamydia-infected macrophages are resistant to azithromycin treatment and are associated with chronic oviduct inflammation and hydrosalpinx development. Immunol. Cell Biol. 97, 865–876. 10.1111/imcb.12285 PubMed DOI
Hernandez J. L., Park J., Yao S., Blakney A. K., Nguyen H. V., Katz B. H., et al. (2021). Effect of tissue microenvironment on fibrous capsule formation to biomaterial-coated implants. Biomaterials 273, 120806. 10.1016/j.biomaterials.2021.120806 PubMed DOI PMC
Hoenderboom B. M., van Benthem B. H. B., van Bergen J. E. A. M., Dukers-Muijrers N. H. T. M., Götz H. M., Hoebe C. J. P. A., et al. (2019). Relation between Chlamydia trachomatis infection and pelvic inflammatory disease, ectopic pregnancy and tubal factor infertility in a Dutch cohort of women previously tested for chlamydia in a chlamydia screening trial. Sex. Transm. Infect. 95, 300–306. 10.1136/sextrans-2018-053778 PubMed DOI PMC
Hong S., Van Kaer L. (1999). Immune privilege: keeping an eye on natural killer T cells. J. Exp. Med. 190 (9), 1197–1200. 10.1084/jem.190.9.1197 PubMed DOI PMC
Hume D. A. (2006). The mononuclear phagocyte system. Curr. Opin. Immunol. 18, 49–53. 10.1016/j.coi.2005.11.008 PubMed DOI
Hume D. A., Irvine K. M., Pridans C. (2019). The mononuclear phagocyte system: the relationship between monocytes and macrophages. Trends Immunol. 40, 98–112. 10.1016/j.it.2018.11.007 PubMed DOI
Hunt J. L., Lynn A. A. (2002). Histologic features of surgically removed fallopian tubes. Arch. Pathol. Lab. Med. 126, 951–955. 10.1043/0003-9985(2002)126<0951:HFOSRT>2.0.CO;2 PubMed DOI
Jenabi E., Ayubi E., Khazaei S., Soltanian A. R., Salehi A. M. (2023). The environmental risk factors associated with ectopic pregnancy: an umbrella review. J. Gynecol. Obstet. Hum. Reprod. 52, 102532. 10.1016/j.jogoh.2022.102532 PubMed DOI
Kaur G., Wright K., Verma S., Haynes A., Dufour J. M. (2021). The good, the bad and the ugly of testicular immune regulation: a delicate balance between immune function and immune privilege. Adv. Exp. Med. Biol. 1288, 21–47. 10.1007/978-3-030-77779-1_2 PubMed DOI
Kvedaraite E., Ginhoux F. (2022). Human dendritic cells in cancer. Sci. Immunol. 7, eabm9409. 10.1126/sciimmunol.abm9409 PubMed DOI
Lapides L., Varga I., Csöbönyeiová M., Klein M., Pavlíková L., Visnyaiová K., et al. (2023). The neglected uterine NK cells/hamperl cells/endometrial stromal granular cell, or K cells: a narrative review from history through histology and to medical education. Int. J. Mol. Sci. 24, 12693. 10.3390/ijms241612693 PubMed DOI PMC
Laskarin G., Redzovic A., Vukelic P., Veljkovic D., Gulic T., Haller H., et al. (2010). Phenotype of NK cells and cytotoxic/apoptotic mediators expression in ectopic pregnancy. Am. J. Reprod. Immunol. 64, 347–358. 10.1111/j.1600-0897.2010.00844.x PubMed DOI
Lee S. K., Kim C. J., Kim D. J., Kang J. H. (2015). Immune cells in the female reproductive tract. Immune Netw. 15, 16–26. 10.4110/in.2015.15.1.16 PubMed DOI PMC
Leese H. J., Tay J. I., Reischl J., Downing S. J. (2001). Formation of Fallopian tubal fluid: role of a neglected epithelium. Reprod. Camb. Engl. 121 (3), 339–346. 10.1530/rep.0.1210339 PubMed DOI
Liptáková A., Čurová K., Záhumenský J., Visnyaiová K., Varga I. (2022). Microbiota of female genital tract – functional overview of microbial flora from vagina to uterine tubes and placenta. Physiol. Res. 71, S21–S33. 10.33549/physiolres.934960 PubMed DOI PMC
Liu L., Li C., Sun X., Liu J., Zheng H., Yang B., et al. (2022). Chlamydia infection, PID, and infertility: further evidence from a case-control study in China. BMC Womens Health 22, 294. 10.1186/s12905-022-01874-z PubMed DOI PMC
Lu C., Wu Z., Gao H., Li H., Deng R., Luo N., et al. (2023). Sperm induce macrophage extracellular trap formation via phagocytosis-dependent mechanism. Biol. Reprod. 109, 319–329. 10.1093/biolre/ioad068 PubMed DOI
Luaces J. P., Toro-Urrego N., Otero-Losada M., Capani F. (2023). What do we know about blood-testis barrier? current understanding of its structure and physiology. Front. Cell Dev. Biol. 11, 1114769. 10.3389/fcell.2023.1114769 PubMed DOI PMC
Marey M. A., Aboul Ezz M., Akthar I., Yousef M. S., Imakawa K., Shimada M., et al. (2020). Sensing sperm via maternal immune system: a potential mechanism for controlling microenvironment for fertility in the cow. J. animal Sci. 98 (1), S88–S95. 10.1093/jas/skaa147 PubMed DOI PMC
Marey M. A., Liu J., Kowsar R., Haneda S., Matsui M., Sasaki M., et al. (2013). Bovine oviduct epithelial cells downregulate phagocytosis of sperm by neutrophils: prostaglandin E2 as a major physiological regulator. Reprod. Camb. Engl. 147 (2), 211–219. 10.1530/REP-13-0375 PubMed DOI
Marey M. A., Yousef M. S., Kowsar R., Hambruch N., Shimizu T., Pfarrer C., et al. (2016). Local immune system in oviduct physiology and pathophysiology: attack or tolerance? Domest. Anim. Endocrinol. 56, S204–S211. 10.1016/j.domaniend.2016.02.005 PubMed DOI
Mayavannan A., Shantz E., Haidl I. D., Wang J., Marshall J. S. (2023). Mast cells selectively produce inflammatory mediators and impact the early response to Chlamydia reproductive tract infection. Front. Immunol. 14, 1166068. 10.3389/fimmu.2023.1166068 PubMed DOI PMC
Ménézo Y., Guérin P., Elder K. (2015). The oviduct: a neglected organ due for re-assessment in IVF. Reprod. Biomed. Online. 30 (3), 233–240. 10.1016/j.rbmo.2014.11.011 PubMed DOI
Miah M., Goh I., Haniffa M. (2021). Prenatal development and function of human mononuclear phagocytes. Front. Cell Dev. Biol. 9, 649937. 10.3389/fcell.2021.649937 PubMed DOI PMC
Milligan G. N., Bourne N., Dudley K. L. (2001). Role of polymorphonuclear leukocytes in resolution of HSV-2 infection of the mouse vagina. J. Reprod. Immunol. 49, 49–65. 10.1016/s0165-0378(00)00080-2 PubMed DOI
Mills S. E. (2020). Histology for pathologist. Fifth edition. Philadelphia: Wolters Kluwer.
Mital P., Hinton B. T., Dufour J. M. (2011). The blood-testis and blood-epididymis barriers are more than just their tight junctions. Biol. Reprod. 84 (5), 851–858. 10.1095/biolreprod.110.087452 PubMed DOI PMC
Mousavi S. O., Mohammadi R., Amjadi F., Zandieh Z., Aghajanpour S., Aflatoonian K., et al. (2021). Immunological response of fallopian tube epithelial cells to spermatozoa through modulating cytokines and chemokines. J. Reprod. Immunol. 146, 103327. 10.1016/j.jri.2021.103327 PubMed DOI
Navarrete Gómez P., Espinoza Ruiz J., Parodi Rivera J., Alvarez J. G., Sánchez Gutiérrez R. (2009). Protective effect of fallopian tubal fluid against activated leucocyte-induced sperm DNA fragmentation: preliminary results. Andrologia 41 (3), 196–198. 10.1111/j.1439-0272.2009.00922.x PubMed DOI
Ohteki T., Kawamura S., Onai N. (2021). Commitment to dendritic cells and monocytes. Int. Immunol. 33, 815–819. 10.1093/intimm/dxab031 PubMed DOI
Pandya I. J., Cohen J. (1985). The leukocytic reaction of the human uterine cervix to spermatozoa. Fertil. Steril. 43, 417–421. 10.1016/s0015-0282(16)48442-6 PubMed DOI
Pant S., Bhati T., Dimri A., Arora R., Siraj F., Raisuddin S., et al. (2023). Chlamydia trachomatis infection regulates the expression of tetraspanins, activin-A, and inhibin-A in tubal ectopic pregnancy. Pathog. Dis. 81, ftad018. 10.1093/femspd/ftad018 PubMed DOI
Pérez-Cerezales S., Ramos-Ibeas P., Acuña O. S., Avilés M., Coy P., Rizos D., et al. (2018). The oviduct: from sperm selection to the epigenetic landscape of the embryo. Biol. Reprod. 98 (3), 262–276. 10.1093/biolre/iox173 PubMed DOI
Rabi S., Jacob T. M., Lionel J., Indrasingh I. (2014). Different subsets of Langerhans cells in human uterine tubes and uterus. J. Obstet. Gynaecol. Res. 40, 1833–1839. 10.1111/jog.12446 PubMed DOI
Ramraj S. K., Smith K. M., Janakiram N. B., Toal C., Raman A., Benbrook D. M. (2018). Correlation of clinical data with fallopian tube specimen immune cells and tissue culture capacity. Tissue Cell 52, 57–64. 10.1016/j.tice.2018.04.001 PubMed DOI PMC
Rigby C. H., Aljassim F., Powell S. G., Wyatt J. N. R., Hill C. J., Hapangama D. K. (2022). The immune cell profile of human fallopian tubes in health and benign pathology: a systematic review. J. Reprod. Immunol. 152, 103646. 10.1016/j.jri.2022.103646 PubMed DOI
Rizos D., Maillo V., Lonergan P. (2016). Role of the oviduct and oviduct-derived products in ruminant embryo development. Anim. Reprod. 13 (3), 160–167. 10.21451/1984-3143-ar863 DOI
Rodriguez–Garcia M., Patel M. V., Shen Z., Wira C. R. (2021). The impact of aging on innate and adaptive immunity in the human female genital tract. Aging Cell 20, e13361. 10.1111/acel.13361 PubMed DOI PMC
Rustenhoven J., Kipnis J. (2022). Brain borders at the central stage of neuroimmunology. Nature 612 (7940), 417–429. 10.1038/s41586-022-05474-7 PubMed DOI PMC
Safwat M. D., Habib F. A., Oweiss N. Y. (2008). Distribution of macrophages in the human fallopian tubes: an immunohistochemical and electron microscopic study. Folia Morphol. (Warsz.) 67, 43–52. PubMed
Saint-Dizier M., Schoen J., Chen S., Banliat C., Mermillod P. (2019). Composing the early embryonic microenvironment: physiology and regulation of oviductal secretions. Int. J. Mol. Sci. 21 (1), 223. 10.3390/ijms21010223 PubMed DOI PMC
Sandvei R., Wollen A. L., Flood P. R., Anker C. (1986). Mast cells in the tubal wall in women using an intrauterine contraceptive device. Br. J. Obstet. Gynaecol. 93, 758–764. 10.1111/j.1471-0528.1986.tb08064.x PubMed DOI
Shaw J. L., Fitch P., Cartwright J., Entrican G., Schwarze J., Critchley H. O. D., et al. (2011). Lymphoid and myeloid cell populations in the non-pregnant human fallopian tube and in ectopic pregnancy. J. Reprod. Immunol. 89, 84–91. 10.1016/j.jri.2011.01.014 PubMed DOI PMC
Siu M. K., Cheng C. Y. (2012). The blood-follicle barrier (BFB) in disease and in ovarian function. Adv. Exp. Med. Biol. 763, 186–192. 10.1007/978-1-4614-4711-5_9 PubMed DOI PMC
Smith J. M., Wira C. R., Fanger M. W., Shen L. (2006). Human fallopian tube neutrophils – a distinct phenotype from blood neutrophils. Am. J. Reprod. Immunol. 56, 218–229. 10.1111/j.1600-0897.2006.00410.x PubMed DOI
Sreejit G., Fleetwood A. J., Murphy A. J., Nagareddy P. R. (2020). Origins and diversity of macrophages in health and disease. Clin. Transl. Immunol. 9, e1222. 10.1002/cti2.1222 PubMed DOI PMC
Szukiewicz D., Wojdasiewicz P., Watroba M., Szewczyk G. (2022). Mast cell activation syndrome in COVID-19 and female reproductive function: theoretical background vs accumulating clinical evidence. J. Immunol. Res. 2022, 9534163. 10.1155/2022/9534163 PubMed DOI PMC
Talukder A. K., Marey M. A., Shirasuna K., Kusama K., Shimada M., Imakawa K., et al. (2020). Roadmap to pregnancy in the first 7 days post-insemination in the cow: immune crosstalk in the corpus luteum, oviduct, and uterus. Theriogenology 150, 313–320. 10.1016/j.theriogenology.2020.01.071 PubMed DOI
Talukder A. K., Rashid M. B., Yousef M. S., Kusama K., Shimizu T., Shimada M., et al. (2018). Oviduct epithelium induces interferon-tau in bovine Day-4 embryos, which generates an anti-inflammatory response in immune cells. Sci. Rep. 8 (1), 7850. 10.1038/s41598-018-26224-8 PubMed DOI PMC
Talukder A. K., Yousef M. S., Rashid M. B., Awai K., Acosta T. J., Shimizu T., et al. (2017). Bovine embryo induces an anti-inflammatory response in uterine epithelial cells and immune cells in vitro: possible involvement of interferon tau as an intermediator. J. Reprod. Dev. 63 (4), 425–434. 10.1262/jrd.2017-056 PubMed DOI PMC
Tran T. A. N., Holloway R. W. (2021). Intratubal pseudopapillary histiocytic hyperplasia: a new histologic variant in the spectrum of histiocytic lesions involving the fallopian tube. Int. J. Gynecol. Pathol. 40, 369–375. 10.1097/PGP.0000000000000740 PubMed DOI
Ulrich N. D., Shen Y. C., Ma Q., Yang K., Hannum D. F., Jones A., et al. (2022). Cellular heterogeneity of human fallopian tubes in normal and hydrosalpinx disease states identified using scRNA-seq. Dev. Cell. 57 (7), 914–929.e7. 10.1016/j.devcel.2022.02.017 PubMed DOI PMC
Ulziibat S., Ejima K., Shibata Y., Hishikawa Y., Kitajima M., Fujishita A., et al. (2006). Identification of estrogen receptor beta-positive intraepithelial lymphocytes and their possible roles in normal and tubal pregnancy oviducts. Hum. Reprod. 21, 2281–2289. 10.1093/humrep/del176 PubMed DOI
van Furth R., Cohn Z. A., Hirsch J. G., Humphrey J. H., Spector W. G., Langevoort H. L. (1972). The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull. World Health Organ. 46, 845–852. PubMed PMC
Varga I., Csöbönyeiová M., Visnyaiová K., Záhumenský J., Pavlíková L., Feitscherová C., et al. (2022). Functional morphology of the human uterine tubes in the 21st century: anatomical novelties and their possible clinical applications. Physiol. Res. 71, S151–S159. 10.33549/physiolres.935036 PubMed DOI PMC
Varga I., Kachlík D., Žišková M., Miko M. (2018). Lymphatic lacunae of the mucosal folds of human uterine tubes - a rediscovery of forgotten structures and their possible role in reproduction. Ann. Anat. 219, 121–128. 10.1016/j.aanat.2018.06.005 PubMed DOI
Varga I., Miko M., Kachlík D., Žišková M., Danihel Ľ., Babál P. (2019). How many cell types form the epithelial lining of the human uterine tubes? Revision of the histological nomenclature of the human tubal epithelium. Ann. Anat. 224, 73–80. 10.1016/j.aanat.2019.03.012 PubMed DOI
Varol C., Mildner A., Jung S. (2015). Macrophages: development and tissue specialization. Annu. Rev. Immunol. 33, 643–675. 10.1146/annurev-immunol-032414-112220 PubMed DOI
Wang X., Lee C. L., Li R. H. W., Vijayan M., Duan Y. G., Yeung W. S. B., et al. (2019). Alteration of the immune cell profiles in the pathophysiology of tubal ectopic pregnancy. Am. J. Reprod. Immunol. 81, e13093. 10.1111/aji.13093 PubMed DOI
Wang X., Lee C. L., Vijayan M., Yeung W. S. B., Ng E. H. Y., Wang X., et al. (2020). Adrenomedullin insufficiency alters macrophage activities in fallopian tube: a pathophysiologic explanation of tubal ectopic pregnancy. Mucosal Immunol. 13, 743–752. 10.1038/s41385-020-0278-6 PubMed DOI
Wang X., Wang T., Lam E., Alvarez D., Sun Y. (2023). Ocular vascular diseases: from retinal immune privilege to inflammation. Int. J. Mol. Sci. 24 (15), 12090. 10.3390/ijms241512090 PubMed DOI PMC
Weidinger S., Mayerhofer A., Frungieri M. B., Meineke V., Ring J., Kohn F. M. (2003). Mast cell-sperm interaction: evidence for tryptase and proteinase-activated receptors in the regulation of sperm motility. Hum. Reprod. 18, 2519–2524. 10.1093/humrep/deg476 PubMed DOI
Wira C. R., Fahey J. V. (2008). A new strategy to understand how HIV infects women: identification of a window of vulnerability during the menstrual cycle. AIDS Lond. Engl. 22 (15), 1909–1917. 10.1097/QAD.0b013e3283060ea4 PubMed DOI PMC
Wira C. R., Ghosh M., Smith J. M., Shen L., Connor R. I., Sundstrom P., et al. (2011). Epithelial cell secretions from the human female reproductive tract inhibit sexually transmitted pathogens and Candida albicans but not Lactobacillus . Mucosal Immunol. 4, 335–342. 10.1038/mi.2010.72 PubMed DOI PMC
Wira C. R., Rodriguez-Garcia M., Patel M. V., Biswas N., Fahey J. V. (2015). “Chapter 110 - endocrine regulation of the mucosal immune system in the female reproductive tract,” in Mucosal immunology. Fourth Edition (Berlin, Germany: Springer; ), Vol. 2, 2141–2156.
Wollen A. L., Sandvei R., Mørk S., Marandon J. L., Matre R. (1994). In situ characterization of leukocytes in the fallopian tube in women with or without an intrauterine contraceptive device. Acta Obstet. Gynecol. Scand. 73, 103–112. 10.3109/00016349409013411 PubMed DOI
Yousef M. S., Abd–Elhafeez H. H., Talukder A. K., Miyamoto A. (2019). Ovulatory follicular fluid induces sperm phagocytosis by neutrophils, but oviductal fluid around oestrus suppresses its inflammatory effect in the buffalo oviduct in vitro . Mol. Reprod. Dev. 86, 835–846. 10.1002/mrd.23164 PubMed DOI
Yousef M. S., Marey M. A., Hambruch N., Hayakawa H., Shimizu T., Hussien H. A., et al. (2016). Sperm binding to oviduct epithelial cells enhances TGFB1 and IL10 expressions in epithelial cells as well as neutrophils in vitro: prostaglandin E2 as a main regulator of anti-inflammatory response in the bovine oviduct. PloS one 11 (9), e0162309. 10.1371/journal.pone.0162309 PubMed DOI PMC
Zhang J., Dunk C., Croy A. B., Lye S. J. (2016). To serve and to protect: the role of decidual innate immune cells on human pregnancy. Cell Tissue Res. 363 (1), 249–265. 10.1007/s00441-015-2315-4 PubMed DOI
Zhang Z., Zhang C., Zhang S. (2022). Irisin activates M1 macrophage and suppresses Th2-type immune response in rats with pelvic inflammatory disease. Evid. Based Complement. Altern. Med. 2022, 5215915. 10.1155/2022/5215915 PubMed DOI PMC
Zhao Y., Vanderkooi S., Kan F. W. K. (2022). The role of oviduct-specific glycoprotein (OVGP1) in modulating biological functions of gametes and embryos. Histochem. Cell Biol. 157 (3), 371–388. 10.1007/s00418-021-02065-x PubMed DOI PMC
Zierau O., Zenclussen A. C., Jensen F. (2012). Role of female sex hormones, estradiol and progesterone, in mast cell behavior. Front. Immunol. 3, 169. 10.3389/fimmu.2012.00169 PubMed DOI PMC