From a Passive Conduit to Highly Dynamic Organ. What are the Roles of Uterine Tube Epithelium in Reproduction?
Language English Country Czech Republic Media print
Document type Review, Journal Article
PubMed
36592437
PubMed Central
PMC9853994
DOI
10.33549/physiolres.934954
PII: 934954
Knihovny.cz E-resources
- MeSH
- Epithelium MeSH
- Fertilization physiology MeSH
- Humans MeSH
- Oocytes MeSH
- Reproduction * MeSH
- Mammals MeSH
- Spermatozoa physiology MeSH
- Fallopian Tubes * physiology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
It is well known that the mammalian uterine tube (UT) plays a crucial role in female fertility, where the most important events leading to successful fertilization and pre-implantation embryo development occur. The known functions of these small intra-abdominal organs are: an uptake and transport of oocytes; storage, transportation, and capacitation of spermatozoa, and finally fertilization and transport of the fertilized ovum and early embryo through the isthmus towards the uterotubal junction. The success of all these events depends on the interaction between the uterine tube epithelium (UTE) and gametes/embryo. Besides that, contemporary research revealed that the tubal epithelium provides essential nutritional support and the most suitable environment for early embryo development. Moreover, recent discoveries in molecular biology help understand the role of the epithelium at the cellular and molecular levels, highlighting the factors involved in regulating the UT signaling, that affects different steps in the fertilization process. According to the latest research, the extracellular vesicles, as a major component of tubal secretion, mediate the interaction between gametes/embryo and epithelium. This review aims to provide up-to-date knowledge on various aspects concerning tubal epithelium activity and its cross-talk with spermatozoa, oocytes and preimplantation embryo and how these interactions affect fertilization and early embryo development.
See more in PubMed
Mastroianni L., Jr The Fallopian tube and reproductive health. J Pediatr Adolesc Gynecol. 1999;12:121–126. doi: 10.1016/S1038-3188(99)00003-0. PubMed DOI
Ezzati M, Djahanbakhch O, Arian S, Carr BR. Tubal transport of gametes and embryos: a review of physiology and pathophysiology. J Assist Reprod Genet. 2014;31:1337–1347. doi: 10.1007/s10815-014-0309-x. PubMed DOI PMC
Mahdavinezhad F, Kazemi P, Fathalizadeh P, Sarmadi F, Sotoodeh L, Hashemi E, Hajarian H, Dashtizad M. In vitro versus in vivo: development-, apoptosis-, and implantation- related gene expression in mouse blastocyst. Iran J Biotechnol. 2019;17:e2157. doi: 10.21859/ijb.2157. PubMed DOI PMC
Federative International Committee on Anatomical T. Terminologia histologica: international terms for human cytology and histology. Lippincott Williams & Wilkins; 2008.
van Gijn J, Gijselhart JP. Falloppius and his uterine tubes. Ned Tijdschr Geneeskd. 2011;155:A3639. PubMed
Mortazavi MM, Adeeb N, Latif B, Watanabe K, Deep A, Griessenauer CJ, Tubbs RS, Fukushima T. Gabriele Fallopio (1523–1562) and his contributions to the development of medicine and anatomy. Childs Nerv Syst. 2013;29:877–880. doi: 10.1007/s00381-012-1921-7. PubMed DOI
Lyons RA, Saridogan E, Djahanbakhch O. The reproductive significance of human Fallopian tube cilia. Hum Reprod Update. 2006;12:363–372. doi: 10.1093/humupd/dml012. PubMed DOI
Coan M, Rampioni Vinciguerra GL, Cesaratto L, Gardenal E, Bianchet R, Dassi E, Vecchione A, Baldassarre G, Spizzo R, Nicoloso MS. Exploring the role of Fallopian ciliated cells in the pathogenesis of high-grade serous ovarian cancer. Int J Mol Sci. 2018;19:2512. doi: 10.3390/ijms19092512. PubMed DOI PMC
Hagiwara H, Shibasaki S, Ohwada N. Ciliogenesis in the human oviduct epithelium during the normal menstrual cycle. J Electron Microsc (Tokyo) 1992;41:321–329. PubMed
Zhu M, Iwano T, Takeda S. Estrogen and EGFR pathways regulate notch signaling in opposing directions for multi-ciliogenesis in the Fallopian tube. Cells. 2019;8:933. doi: 10.3390/cells8080933. PubMed DOI PMC
Ghosh A, Syed SM, Tanwar PS. In vivo genetic cell lineage tracing reveals that oviductal secretory cells self-renew and give rise to ciliated cells. Development. 2017;144:3031–3041. doi: 10.1242/jcs.210344. PubMed DOI
Dinh HQ, Lin X, Abbasi F, Nameki R, Haro M, Olingy CE, Chang H, Hernandez L, Gayther SA, Wright KN, Aspuria PJ, Karlan BY, Corona RI, Li A, Rimel BJ, Siedhoff MT, Medeiros F, Lawrenson K. Single-cell transcriptomics identifies gene expression networks driving differentiation and tumorigenesis in the human Fallopian tube. Cell Rep. 2021;35:108978. doi: 10.1016/j.celrep.2021.108978. PubMed DOI PMC
Saridogan E, Djahanbakhch O, Puddefoot JR, Demetroulis C, Collingwood K, Mehta JG, Vinson GP. Angiotensin II receptors and angiotensin II stimulation of ciliary activity in human Fallopian tube. J Clin Endocrinol Metab. 1996;81:2719–2725. doi: 10.1210/jc.81.7.2719. PubMed DOI
Hermoso M, Barrera N, Morales B, Pérez S, Villalón M. Platelet activating factor increases ciliary activity in the hamster oviduct through epithelial production of prostaglandin E2. Pflugers Arch. 2001;442:336–345. doi: 10.1007/s004240100550. PubMed DOI
Li HW, Liao SB, Chiu PC, Tam WW, Ho JC, Ng EH, Ho PC, Yeung WS, Tang F, OWS Expression of adrenomedullin in human oviduct, its regulation by the hormonal cycle and contact with spermatozoa, and its effect on ciliary beat frequency of the oviductal epithelium. J Clin Endocrinol Metab. 2010;95:E18–25. doi: 10.1210/jc.2010-0273. PubMed DOI
Mahmood T, Saridogan E, Smutna S, Habib AM, Djahanbakhch O. The effect of ovarian steroids on epithelial ciliary beat frequency in the human Fallopian tube. Hum Reprod. 1998;13:2991–2994. doi: 10.1093/humrep/13.11.2991. PubMed DOI
Nakahari T, Nishimura A, Shimamoto C, Sakai A, Kuwabara H, Nakano T, Tanaka S, Kohda Y, Matsumura H, Mori H. The regulation of ciliary beat frequency by ovarian steroids in the guinea pig Fallopian tube: interactions between oestradiol and progesterone. Biomed Res. 2011;32:321–328. doi: 10.2220/biomedres.32.321. PubMed DOI
Li J, Chen X, Zhou J. Ultrastructural study on the epithelium of ligated Fallopian tubes in women of reproductive age. Ann Anat. 1996;178:317–320. doi: 10.1016/S0940-9602(96)80082-3. PubMed DOI
Perets R, Wyant GA, Muto KW, Bijron JG, Poole BB, Chin KT, Chen JY, Ohman AW, Stepule CD, Kwak S, Karst AM, Hirsch MS, Setlur SR, Crum CP, Dinulescu DM, Drapkin R. Transformation of the Fallopian tube secretory epithelium leads to high-grade serous ovarian cancer in Brca;Tp53;Pten models. Cancer Cell. 2013;24:751–765. doi: 10.1016/j.ccr.2013.10.013. PubMed DOI PMC
Bergsten TM, Burdette JE, Dean M. Fallopian tube initiation of high grade serous ovarian cancer and ovarian metastasis: Mechanisms and therapeutic implications. Cancer Lett. 2020;476:152–160. doi: 10.1016/j.canlet.2020.02.017. PubMed DOI PMC
Frommel E. Verh dtsch gpak Ges. Vol. 28. Munchen: Arch Gynaek; 1886. Beitrag zur Histologie der Eileiter; p. 458.
Paik DY, Janzen DM, Schafenacker AM, Velasco VS, Shung MS, Cheng D, Huang J, Witte ON, Memarzadeh S. Stem-like epithelial cells are concentrated in the distal end of the Fallopian tube: a site for injury and serous cancer initiation. Stem Cells. 2012;30:2487–2497. doi: 10.1002/stem.1207. PubMed DOI PMC
Crow J, Amso NN, Lewin J, Shaw RW. Morphology and ultrastructure of Fallopian tube epithelium at different stages of the menstrual cycle and menopause. Hum Reprod. 1994;9:2224–2233. doi: 10.1093/oxfordjournals.humrep.a138428. PubMed DOI
Varga I, Miko M, Kachlík D, Žišková M, Danihel Ľ, Jr, Babál P. How many cell types form the epithelial lining of the human uterine tubes? Revision of the histological nomenclature of the human tubal epithelium. Ann Anat. 2019;224:73–80. doi: 10.1016/j.aanat.2019.03.012. PubMed DOI
Austin CR. Observations on the penetration of the sperm in the mammalian egg. Aust J Sci Res B. 1951;4:581–596. doi: 10.1071/BI9510581. PubMed DOI
Chang MC. Fertilizing capacity of spermatozoa deposited into the Fallopian tubes. Nature. 1951;168:697–698. doi: 10.1038/168697b0. PubMed DOI
Austin CR. The capacitation of the mammalian sperm. Nature. 1952;170:326. doi: 10.1038/170326a0. PubMed DOI
Puga Molina LC, Luque GM, Balestrini PA, Marín-Briggiler CI, Romarowski A, Buffone MG. molecular basis of human sperm capacitation. Front Cell Dev Biol. 2018;6:72. doi: 10.3389/fcell.2018.00072. PubMed DOI PMC
Stival C, Puga Molina Ldel C, Paudel B, Buffone MG, Visconti PE, Krapf D. Sperm capacitation and acrosome reaction in mammalian sperm. Adv Anat Embryol Cell Biol. 2016;220:93–106. doi: 10.1007/978-3-319-30567-7_5. PubMed DOI
Kervancioglu ME, Saridogan E, Aitken RJ, Djahanbakhch O. Importance of sperm-to-epithelial cell contact for the capacitation of human spermatozoa in Fallopian tube epithelial cell cocultures. Fertil Steril. 2000;74:780–784. doi: 10.1016/S0015-0282(00)01514-4. PubMed DOI
Massa E, Prez G, Zumoffen C, Morente C, Ghersevich S. S100 A9 is expressed and secreted by the oviduct epithelium, interacts with gametes and affects parameters of human sperm capacitation in vitro. J Cell Biochem. 2019;120:17662–17676. doi: 10.1002/jcb.29033. PubMed DOI
Franchi A, Moreno-Irusta A, Domínguez EM, Adre AJ, Giojalas LC. Extracellular vesicles from oviductal isthmus and ampulla stimulate the induced acrosome reaction and signaling events associated with capacitation in bovine spermatozoa. J Cell Biochem. 2020;121:2877–2888. doi: 10.1002/jcb.29522. PubMed DOI
Harris EA, Stephens KK, Winuthayanon W. Extracellular vesicles and the oviduct function. Int J Mol Sci. 2020;21:8280. doi: 10.20944/preprints202010.0638.v1. PubMed DOI PMC
Liu J, Marey MA, Kowsar R, Hambruch N, Shimizu T, Haneda S, Matsui M, Sasaki M, Hayakawa H, Pfarrer C, Miyamoto A. An acute-phase protein as a regulator of sperm survival in the bovine oviduct: alpha 1-acid-glycoprotein impairs neutrophil phagocytosis of sperm in vitro. J Reprod Dev. 2014;60:342–348. doi: 10.1262/jrd.2014-049. PubMed DOI PMC
Marey MA, Liu J, Kowsar R, Haneda S, Matsui M, Sasaki M, Shimizu T, Hayakawa H, Wijayagunawardane MPB, Hussein FM, Miyamoto A. Bovine oviduct epithelial cells downregulate phagocytosis of sperm by neutrophils: prostaglandin E2 as a major physiological regulator. Reproduction. 2014;147:211–219. doi: 10.1530/REP-13-0375. PubMed DOI
Zandieh Z, Ashrafi M, Jameie B, Amanpour S, Mosaffa N, Salman Yazdi R, Pacey A, Aflatoonian R. Evaluation of immunological interaction between spermatozoa and Fallopian tube epithelial cells. Andrologia. 2015;47:1120–1130. doi: 10.1111/and.12391. PubMed DOI
Mousavi SO, Mohammadi R, Amjadi F, Zandieh Z, Aghajanpour S, Aflatoonian K, Sabbaghian M, Eslami M, Madani T, Aflatoonian R. Immunological response of Fallopian tube epithelial cells to spermatozoa through modulating cytokines and chemokines. J Reprod Immunol. 2021;146:103327. doi: 10.1016/j.jri.2021.103327. PubMed DOI
Varga I, Kachlík D, Žišková M, Miko M. Lymphatic lacunae of the mucosal folds of human uterine tubes - A rediscovery of forgotten structures and their possible role in reproduction. Ann Anat. 2018;219:121–128. doi: 10.1016/j.aanat.2018.06.005. PubMed DOI
Talbot P, Shur BD, Myles DG. Cell adhesion and fertilization: steps in oocyte transport, sperm-zona pellucida interactions, and sperm-egg fusion. Biol Reprod. 2003;68:1–9. doi: 10.1095/biolreprod.102.007856. PubMed DOI
Yuan S, Wang Z, Peng H, Ward SM, Hennig GW, Zheng H, Yan W. Oviductal motile cilia are essential for oocyte pickup but dispensable for sperm and embryo transport. Proc Natl Acad Sci USA. 2021;118:e2102940118. doi: 10.1073/pnas.2102940118. PubMed DOI PMC
Lam X, Gieseke C, Knoll M, Talbot P. Assay and importance of adhesive interaction between hamster (Mesocricetus auratus) oocyte-cumulus complexes and the oviductal epithelium. Biol Reprod. 2000;62:579–588. doi: 10.1095/biolreprod62.3.579. PubMed DOI
Suarez SS, Wolfner MF. Cilia take the egg on a magic carpet ride. Proc Natl Acad Sci USA. 2021;118:e2108887118. doi: 10.1073/pnas.2108887118. PubMed DOI PMC
Zhao Y, Vanderkooi S, Kan FWK. The role of oviduct-specific glycoprotein (OVGP1) in modulating biological functions of gametes and embryos. Histochem Cell Biol. 2022;157:371–388. doi: 10.1007/s00418-021-02065-x. PubMed DOI PMC
McCauley TC, Buhi WC, Wu GM, Mao J, Caamano JN, Didion BA, Day BN. Oviduct-specific glycoprotein modulates sperm-zona binding and improves efficiency of porcine fertilization in vitro. Biol Reprod. 2003;69:828–834. doi: 10.1095/biolreprod.103.016444. PubMed DOI
Kouba AJ, Abeydeera LR, Alvarez IM, Day BN, Buhi WC. Effects of the porcine oviduct-specific glycoprotein on fertilization, polyspermy, and embryonic development in vitro. Biol Reprod. 2000;63:242–250. doi: 10.1095/biolreprod63.1.242. PubMed DOI
Zhao Y, Yang X, Jia Z, Reid RL, Leclerc P, Kan FW. Recombinant human oviductin regulates protein tyrosine phosphorylation and acrosome reaction. Reproduction. 2016;152:561–573. doi: 10.1530/REP-16-0177. PubMed DOI
Monaco E, Gasparrini B, Boccia L, De Rosa A, Attanasio L, Zicarelli L, Killian G. Effect of osteopontin (OPN) on in vitro embryo development in cattle. Theriogenology. 2009;71:450–457. doi: 10.1016/j.theriogenology.2008.08.012. PubMed DOI
Ambruosi B, Accogli G, Douet C, Canepa S, Pascal G, Monget P, Moros Nicolás C, Holmskov U, Mollenhauer J, Robbe-Masselot C, Vidal O, Desantis S, Goudet G. Deleted in malignant brain tumor 1 is secreted in the oviduct and involved in the mechanism of fertilization in equine and porcine species. Reproduction. 2013;146:119–133. doi: 10.1530/REP-13-0007. PubMed DOI
Almiñana C, Bauersachs S. Extracellular vesicles in the oviduct: progress, challenges and implications for the reproductive success. Bioengineering (Basel) 2019;6:32. doi: 10.3390/bioengineering6020032. PubMed DOI PMC
Lange-Consiglio A, Perrini C, Albini G, Modina S, Lodde V, Orsini E, Esposti P, Cremonesi F. Oviductal microvesicles and their effect on in vitro maturation of canine oocytes. Reproduction. 2017;154:167–180. doi: 10.1530/REP-17-0117. PubMed DOI
Lee SH, Oh HJ, Kim MJ, Lee BC. Canine oviductal exosomes improve oocyte development via EGFR/MAPK signaling pathway. Reproduction. 2020;160:613–625. doi: 10.1530/REP-19-0600. PubMed DOI
Hess AP, Talbi S, Hamilton AE, Baston-Buest DM, Nyegaard M, Irwin JC, Barragan F, Kruessel JS, Germeyer A, Giudice LC. The human oviduct transcriptome reveals an anti-inflammatory, anti-angiogenic, secretory and matrix-stable environment during embryo transit. Reprod Biomed Online. 2013;27:423–435. doi: 10.1016/j.rbmo.2013.06.013. PubMed DOI PMC
Emiliani S, Delbaere A, Devreker F, Englert Y. Embryo-maternal interactive factors regulating the implantation process: implications in assisted reproductive. Reprod Biomed Online. 2005;10:527–540. doi: 10.1016/S1472-6483(10)60831-0. PubMed DOI
Idelevich A, Vilella F. Mother and embryo cross-communication. Genes (Basel) 2020;11:376. doi: 10.3390/genes11040376. PubMed DOI PMC
Kölle S, Hughes B, Steele H. Early embryo-maternal communication in the oviduct: a review. Mol Reprod Dev. 2020;87:650–662. doi: 10.1002/mrd.23352. PubMed DOI
Leese HJ, Tay JI, Reischl J, Downing SJ. Formation of Fallopian tubal fluid: role of a neglected epithelium. Reproduction. 2001;121:339–346. doi: 10.1530/rep.0.1210339. PubMed DOI
Smits K, Nelis H, Van Steendam K, Govaere J, Roels K, Ververs C, Leemans B, Wydooghe E, Deforce D, Van Soom A. Proteome of equine oviducal fluid: effects of ovulation and pregnancy. Reprod Fertil Dev. 2017;29:1085–1095. doi: 10.1071/RD15481. PubMed DOI
Kölle S, Dubielzig S, Reese S, Wehrend A, König P, Kummer W. Ciliary transport, gamete interaction, and effects of the early embryo in the oviduct: ex vivo analyses using a new digital videomicroscopic system in the cow. Biol Reprod. 2009;81:267–274. doi: 10.1095/biolreprod.108.073874. PubMed DOI
Saint-Dizier M, Schoen J, Chen S, Banliat C, Mermillod P. Composing the early embryonic microenvironment: physiology and regulation of oviductal secretions. Int J Mol Sci. 2019:21. doi: 10.3390/ijms21010223. PubMed DOI PMC
Talukder AK, Rashid MB, Yousef MS, Kusama K, Shimizu T, Shimada M, Suarez SS, Imakawa K, Miyamoto A. Oviduct epithelium induces interferon-tau in bovine Day-4 embryos, which generates an anti-inflammatory response in immune cells. Sci Rep. 2018;8:7850. doi: 10.1038/s41598-018-26224-8. PubMed DOI PMC