A structure-function analysis of the yeast Elg1 protein reveals the importance of PCNA unloading in genome stability maintenance
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28108661
PubMed Central
PMC5389545
DOI
10.1093/nar/gkw1348
PII: gkw1348
Knihovny.cz E-zdroje
- MeSH
- chromatin metabolismus MeSH
- DNA-helikasy genetika MeSH
- DNA biosyntéza MeSH
- methylmethansulfonát toxicita MeSH
- mutace MeSH
- nestabilita genomu * MeSH
- poškození DNA * MeSH
- proliferační antigen buněčného jádra metabolismus MeSH
- rekombinace genetická MeSH
- Saccharomyces cerevisiae - proteiny chemie genetika metabolismus MeSH
- strukturní homologie proteinů MeSH
- suprese genetická MeSH
- transportní proteiny chemie genetika metabolismus MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chromatin MeSH
- DNA-helikasy MeSH
- DNA MeSH
- Elg1 protein, S cerevisiae MeSH Prohlížeč
- methylmethansulfonát MeSH
- POL30 protein, S cerevisiae MeSH Prohlížeč
- proliferační antigen buněčného jádra MeSH
- RAD5 protein, S cerevisiae MeSH Prohlížeč
- Saccharomyces cerevisiae - proteiny MeSH
- transportní proteiny MeSH
The sliding clamp, PCNA, plays a central role in DNA replication and repair. In the moving replication fork, PCNA is present at the leading strand and at each of the Okazaki fragments that are formed on the lagging strand. PCNA enhances the processivity of the replicative polymerases and provides a landing platform for other proteins and enzymes. The loading of the clamp onto DNA is performed by the Replication Factor C (RFC) complex, whereas its unloading can be carried out by an RFC-like complex containing Elg1. Mutations in ELG1 lead to DNA damage sensitivity and genome instability. To characterize the role of Elg1 in maintaining genomic integrity, we used homology modeling to generate a number of site-specific mutations in ELG1 that exhibit different PCNA unloading capabilities. We show that the sensitivity to DNA damaging agents and hyper-recombination of these alleles correlate with their ability to unload PCNA from the chromatin. Our results indicate that retention of modified and unmodified PCNA on the chromatin causes genomic instability. We also show, using purified proteins, that the Elg1 complex inhibits DNA synthesis by unloading SUMOylated PCNA from the DNA. Additionally, we find that mutations in ELG1 suppress the sensitivity of rad5Δ mutants to DNA damage by allowing trans-lesion synthesis to take place. Taken together, the data indicate that the Elg1-RLC complex plays an important role in the maintenance of genomic stability by unloading PCNA from the chromatin.
Department of Biology Masaryk University CZ 625 00 Brno Czech Republic
Department of Molecular Microbiology and Biotechnology Ramat Aviv 69978 Israel
Institute of Biotechnology Vilnius University Graiciuno 8 Vilnius LT 02241 Lithuania
National Center for Biomolecular Research Masaryk University CZ 625 00 Brno Czech Republic
Zobrazit více v PubMed
Zeman M.K., Cimprich K.A.. Causes and consequences of replication stress. Nat. Cell Biol. 2014; 16:2–9. PubMed PMC
Yeeles J.T., Poli J., Marians K.J., Pasero P.. Rescuing stalled or damaged replication forks. Cold Spring Harbor Perspect. Biol. 2013; 5:a012815. PubMed PMC
Gazy I., Kupiec M.. The importance of being modified: PCNA modification and DNA damage response. Cell Cycle. 2012; 11:2620–2623. PubMed
Ulrich H.D. How to activate a damage-tolerant polymerase: consequences of PCNA modifications by ubiquitin and SUMO. Cell Cycle. 2004; 3:15–18. PubMed
Xu X., Blackwell S., Lin A., Li F., Qin Z., Xiao W.. Error-free DNA-damage tolerance in Saccharomyces cerevisiae. Mut. Res. Rev. Mut. Res. 2015; 764:43–50. PubMed
Minca E.C., Kowalski D.. Multiple Rad5 activities mediate sister chromatid recombination to bypass DNA damage at stalled replication forks. Mol. Cell. 2010; 38:649–661. PubMed PMC
Lytle A.K., Origanti S.S., Qiu Y., VonGermeten J., Myong S., Antony E.. Context-dependent remodeling of Rad51-DNA complexes by Srs2 is mediated by a specific protein-protein interaction. J. Mol. Biol. 2014; 426:1883–1897. PubMed
Papouli E., Chen S., Davies A.A., Huttner D., Krejci L., Sung P., Ulrich H.D.. Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol. Cell. 2005; 19:123–133. PubMed
Krejci L., Van Komen S., Li Y., Villemain J., Reddy M.S., Klein H., Ellenberger T., Sung P.. DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature. 2003; 423:305–309. PubMed
Bowman G.D., O'Donnell M., Kuriyan J.. Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex. Nature. 2004; 429:724–730. PubMed
Park S.Y., Jeong M.S., Han C.W., Yu H.S., Jang S.B.. Structural and functional insight into proliferating cell nuclear antigen. J. Microbiol. Biotechnol. 2015. PubMed
Majka J., Burgers P.M.. The PCNA-RFC families of DNA clamps and clamp loaders. Prog. Nucleic Acids Res. Mol. Biol. 2004; 78:227–260. PubMed
Aroya S.B., Kupiec M.. The Elg1 replication factor C-like complex: a novel guardian of genome stability. DNA Repair (Amst.). 2005; 4:409–417. PubMed
Majka J., Burgers P.M.. Yeast Rad17/Mec3/Ddc1: a sliding clamp for the DNA damage checkpoint. Proc. Natl. Acad. Sci. U.S.A. 2003; 100:2249–2254. PubMed PMC
Hanna J.S., Kroll E.S., Lundblad V., Spencer F.A.. Saccharomyces cerevisiae CTF18 and CTF4 are required for sister chromatid cohesion. Mol. Cell. Biol. 2001; 21:3144–3158. PubMed PMC
Mayer M.L., Gygi S.P., Aebersold R., Hieter P.. Identification of RFC(Ctf18p, Ctf8p, Dcc1p): an alternative RFC complex required for sister chromatid cohesion in S. cerevisiae. Mol. Cell. 2001; 7:959–970. PubMed
Parnas O., Amishay R., Liefshitz B., Zipin-Roitman A., Kupiec M.. Elg1, the major subunit of an alternative RFC complex, interacts with SUMO-processing proteins. Cell Cycle. 2011; 10:2894–2903. PubMed
Kubota T., Nishimura K., Kanemaki M.T., Donaldson A.D.. The Elg1 Replication Factor C-like Complex Functions in PCNA Unloading during DNA Replication. Mol. Cell. 2013; 50:273–280. PubMed
Parnas O., Zipin-Roitman A., Pfander B., Liefshitz B., Mazor Y., Ben-Aroya S., Jentsch S., Kupiec M.. Elg1, an alternative subunit of the RFC clamp loader, preferentially interacts with SUMOylated PCNA. EMBO J. 2010; 29:2611–2622. PubMed PMC
Shiomi Y., Nishitani H.. Alternative replication factor C protein, Elg1, maintains chromosome stability by regulating PCNA levels on chromatin. Genes Cells. 2013; 18:946–959. PubMed
Kubota T., Katou Y., Nakato R., Shirahige K., Donaldson A.D.. Replication-coupled PCNA unloading by the Elg1 complex occurs genome-wide and requires Okazaki fragment ligation. Cell Rep. 2015; 12:774–787. PubMed PMC
Johnson C., Gali V.K., Takahashi T.S., Kubota T.. PCNA retention on DNA into G2/M phase causes genome instability in cells lacking Elg1. Cell Rep. 2016; 16:684–695. PubMed PMC
Lee K.Y., Fu H., Aladjem M.I., Myung K.. ATAD5 regulates the lifespan of DNA replication factories by modulating PCNA level on the chromatin. J. Cell Biol. 2013; 200:31–44. PubMed PMC
Bell D.W., Sikdar N., Lee K.Y., Price J.C., Chatterjee R., Park H.D., Fox J., Ishiai M., Rudd M.L., Pollock L.M. et al. . Predisposition to cancer caused by genetic and functional defects of mammalian Atad5. PLoS Genet. 2011; 7:e1002245. PubMed PMC
Lee K.Y., Yang K., Cohn M.A., Sikdar N., D'Andrea A.D., Myung K.. Human ELG1 regulates the level of ubiquitinated proliferating cell nuclear antigen (PCNA) through Its interactions with PCNA and USP1. J. Biol. Chem. 2010; 285:10362–10369. PubMed PMC
Kee Y., D'Andrea A.D.. Expanded roles of the Fanconi anemia pathway in preserving genomic stability. Genes Dev. 2010; 24:1680–1694. PubMed PMC
Singh S., Shemesh K., Liefshitz B., Kupiec M.. Genetic and physical interactions between the yeast ELG1 gene and orthologs of the Fanconi anemia pathway. Cell Cycle. 2013; 12. PubMed PMC
Soding J. Protein homology detection by HMM-HMM comparison. Bioinformatics. 2005; 21:951–960. PubMed
Webb B., Sali A.. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinformatics. 2014; 47, 5 6 1-32. PubMed
Liefshitz B., Parket A., Maya R., Kupiec M.. The role of DNA repair genes in recombination between repeated sequences in yeast. Genetics. 1995; 140:1199–1211. PubMed PMC
Ben-Aroya S., Koren A., Liefshitz B., Steinlauf R., Kupiec M.. ELG1, a yeast gene required for genome stability, forms a complex related to replication factor C. Proc. Natl. Acad. Sci. U.S.A. 2003; 100:9906–9911. PubMed PMC
Bylund G.O., Majka J., Burgers P.M.. Overproduction and purification of RFC-related clamp loaders and PCNA-related clamps from Saccharomyces cerevisiae. Methods Enzymol. 2006; 409:1–11. PubMed
Sebesta M., Burkovics P., Haracska L., Krejci L.. Reconstitution of DNA repair synthesis in vitro and the role of polymerase and helicase activities. DNA Repair (Amst.). 2011; 10:567–576. PubMed PMC
Finkelstein J., Antony E., Hingorani M.M., O'Donnell M.. Overproduction and analysis of eukaryotic multiprotein complexes in Escherichia coli using a dual-vector strategy. Anal. Biochem. 2003; 319:78–87. PubMed
Krejci L., Macris M., Li Y., Van Komen S., Villemain J., Ellenberger T., Klein H., Sung P.. Role of ATP hydrolysis in the antirecombinase function of Saccharomyces cerevisiae Srs2 protein. J. Biol. Chem. 2004; 279:23193–23199. PubMed
Scher J., Wankiewicz E., Brown G.M., Fujieda H.. AII amacrine cells express the MT1 melatonin receptor in human and macaque retina. Exp. Eye Res. 2003; 77:375–382. PubMed
Langston L.D., O'Donnell M.. DNA polymerase delta is highly processive with proliferating cell nuclear antigen and undergoes collision release upon completing DNA. J. Biol. Chem. 2008; 283:29522–29531. PubMed PMC
Duderstadt K.E., Berger J.M.. AAA+ ATPases in the initiation of DNA replication. Crit. Rev. Biochem. Mol. Biol. 2008; 43:163–187. PubMed
Davidson M.B., Brown G.W.. The N- and C-termini of Elg1 contribute to the maintenance of genome stability. DNA Repair (Amst.). 2008; 7:1221–1232. PubMed
Venclovas C., Colvin M.E., Thelen M.P.. Molecular modeling-based analysis of interactions in the RFC-dependent clamp-loading process. Protein Sci. 2002; 11:2403–2416. PubMed PMC
Hoege C., Pfander B., Moldovan G.L., Pyrowolakis G., Jentsch S.. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature. 2002; 419:135–141. PubMed
Parker J.L., Bucceri A., Davies A.A., Heidrich K., Windecker H., Ulrich H.D.. SUMO modification of PCNA is controlled by DNA. EMBO J. 2008; 27:2422–2431. PubMed PMC
Burkovics P., Sebesta M., Sisakova A., Plault N., Szukacsov V., Robert T., Pinter L., Marini V., Kolesar P., Haracska L. et al. . Srs2 mediates PCNA-SUMO-dependent inhibition of DNA repair synthesis. EMBO J. 2013; 32:742–755. PubMed PMC
Li X., Stith C.M., Burgers P.M., Heyer W.D.. PCNA is required for initiation of recombination-associated DNA synthesis by DNA polymerase delta. Mol. Cell. 2009; 36:704–713. PubMed PMC
Wilson M.A., Kwon Y., Xu Y., Chung W.H., Chi P., Niu H., Mayle R., Chen X., Malkova A., Sung P. et al. . Pif1 helicase and Poldelta promote recombination-coupled DNA synthesis via bubble migration. Nature. 2013; 502:393–396. PubMed PMC
Armstrong A.A., Mohideen F., Lima C.D.. Recognition of SUMO-modified PCNA requires tandem receptor motifs in Srs2. Nature. 2012; 483:59–63. PubMed PMC
Ikenaga M., Ichikawa-Ryo H., Kondo S.. The major cause of inactivation and mutation by 4-nitroquinoline 1-oixde in Escherichia coli: excisable 4NQO-purine adducts. J. Mol. Biol. 1975; 92:341–356. PubMed
Spence J., Sadis S., Haas A.L., Finley D.. A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol. Cell. Biol. 1995; 15:1265–1273. PubMed PMC
Ulrich H.D., Jentsch S.. Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair. EMBO J. 2000; 19:3388–3397. PubMed PMC
Parker J.L., Ulrich H.D.. A SUMO-interacting motif activates budding yeast ubiquitin ligase Rad18 towards SUMO-modified PCNA. Nucleic Acids Res. 2012; 40:11380–11388. PubMed PMC
Unk I., Hajdu I., Blastyak A., Haracska L.. Role of yeast Rad5 and its human orthologs, HLTF and SHPRH in DNA damage tolerance. DNA Repair (Amst.). 2010; 9:257–267. PubMed
Shkedy D., Singh N., Shemesh K., Amir A., Geiger T., Liefshitz B., Harari Y., Kupiec M.. Regulation of Elg1 activity by phosphorylation. Cell Cycle. 2015; 0. PubMed PMC
Tong K., Skibbens R.V.. Pds5 regulators segregate cohesion and condensation pathways in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 2015; 112:7021–7026. PubMed PMC
Hishida T., Hirade Y., Haruta N., Kubota Y., Iwasaki H.. Srs2 plays a critical role in reversible G2 arrest upon chronic and low doses of UV irradiation via two distinct homologous recombination-dependent mechanisms in postreplication repair-deficient cells. Mol. Cell. Biol. 2010; 30:4840–4850. PubMed PMC
Boehm E.M., Washington M.T.. R.I.P. to the PIP: PCNA-binding motif no longer considered specific: PIP motifs and other related sequences are not distinct entities and can bind multiple proteins involved in genome maintenance. BioEssays. 2016. PubMed PMC
Lee K.Y., Myung K.. PCNA modifications for regulation of post-replication repair pathways. Mol. Cells. 2008; 26:5–11. PubMed PMC
Liefshitz B., Steinlauf R., Friedl A., Eckardt-Schupp F., Kupiec M.. Genetic interactions between mutants of the ‘error-prone’ repair group of Saccharomyces cerevisiae and their effect on recombination and mutagenesis. Mut. Res. 1998; 407:135–145. PubMed