Role of PCNA and TLS polymerases in D-loop extension during homologous recombination in humans
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23731732
PubMed Central
PMC3744802
DOI
10.1016/j.dnarep.2013.05.001
PII: S1568-7864(13)00122-5
Knihovny.cz E-zdroje
- Klíčová slova
- D-loop, DNA repair synthesis, Homologous recombination, Reconstitution, TLS polymerases,
- MeSH
- DNA-dependentní DNA-polymerasy chemie fyziologie MeSH
- DNA-polymerasa III chemie fyziologie MeSH
- DNA-polymerasa iota MeSH
- HeLa buňky MeSH
- homologní rekombinace * MeSH
- jednovláknová DNA biosyntéza MeSH
- lidé MeSH
- osmolární koncentrace MeSH
- poškození DNA MeSH
- proliferační antigen buněčného jádra chemie fyziologie MeSH
- protein FUS vázající RNA chemie fyziologie MeSH
- rekombinasa Rad51 chemie MeSH
- replikace DNA MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA-dependentní DNA-polymerasy MeSH
- DNA-polymerasa III MeSH
- DNA-polymerasa iota MeSH
- jednovláknová DNA MeSH
- POLI protein, human MeSH Prohlížeč
- POLK protein, human MeSH Prohlížeč
- proliferační antigen buněčného jádra MeSH
- protein FUS vázající RNA MeSH
- Rad30 protein MeSH Prohlížeč
- RAD51 protein, human MeSH Prohlížeč
- rekombinasa Rad51 MeSH
Homologous recombination (HR) is essential for maintaining genomic integrity, which is challenged by a wide variety of potentially lethal DNA lesions. Regardless of the damage type, recombination is known to proceed by RAD51-mediated D-loop formation, followed by DNA repair synthesis. Nevertheless, the participating polymerases and extension mechanism are not well characterized. Here, we present a reconstitution of this step using purified human proteins. In addition to Pol δ, TLS polymerases, including Pol η and Pol κ, also can extend D-loops. In vivo characterization reveals that Pol η and Pol κ are involved in redundant pathways for HR. In addition, the presence of PCNA on the D-loop regulates the length of the extension tracks by recruiting various polymerases and might present a regulatory point for the various recombination outcomes.
Zobrazit více v PubMed
Krejci L., Altmannova V., Spirek M., Zhao X. Homologous recombination and its regulation. Nucleic Acids Res. 2012;40:5795–5818. PubMed PMC
Chapman J.R., Taylor M.G., Boulton S.J. Playing the end game: DNA double-strand break repair pathway choice. Mol. Cell. 2012;47:497–510. PubMed
Symington L.S., Gautier J. Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 2012;45:247–271. PubMed
Szostak J.W., Orr-Weaver T.L., Rothstein R.J., Stahl F.W. The double-strand-break repair model for recombination. Cell. 1983;33:25–35. PubMed
Sung P., Klein H. Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat. Rev. Mol. Cell Biol. 2006;7:739–750. PubMed
Sharma S., Hicks J.K., Chute C.L., Brennan J.R., Ahn J.-Y., Glover T.W., Canman C.E. REV1 and polymerase ζ facilitate homologous recombination repair. Nucleic Acids Res. 2012;40:682–691. PubMed PMC
Kawamoto T., Araki K., Sonoda E., Yamashita Y.M., Harada K., Kikuchi K., Masutani C., Hanaoka F., Nozaki K., Hashimoto N. Dual roles for DNA polymerase η in homologous DNA recombination and translesion DNA synthesis. Mol. Cell. 2005;20:793–799. PubMed
McIlwraith M.J., Vaisman A., Liu Y., Fanning E., Wodgate R., West S.C. Human DNA polymerase η promotes DNA synthesis from strand invasion intermediates of homologous recombination. Mol. Cell. 2005;20:783–792. PubMed
McIlwraith M.J., West S.C. DNA repair synthesis facilitates RAD52-mediated second-end capture during DSB repair. Mol. Cell. 2008;29:510–516. PubMed
Prakash S., Johnson R.E., Prakash L. Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu. Rev. Biochem. 2005;74:317–353. PubMed
Moldovan G.-L., Pfander B., Jentsch S. PCNA, the maestro of the replication fork. Cell. 2007;129:665–679. PubMed
Lehmann A.R. Ubiquitin-family modifications in the replication of DNA damage. FEBS Lett. 2011;585:2772–2779. PubMed
Watanabe K., Tateishi S., Kawasuji M., Tsurimoto T., Inoue H., Yamaizumi M. Rad18 guides Pol η to replication stalling sites through physical interaction and PCNA monoubiquitination. EMBO J. 2004;23:3886–3896. PubMed PMC
Gali H., Juhasz S., Morocz M., Hajdú I., Fatyol K., Szukacsov V., Burkovics P., Haracska L. Role of SUMO modification of human PCNA at stalled replication fork. Nucleic Acids Res. 2012;40:6049–6059. PubMed PMC
Moldovan G.-L., Dejsuphong D., Petalcorin M.I.R., Hofmann K., Takeda S., Boulton S.J., D’Andrea A.D. Inhibition of homologous recombination by the PCNA-interacting protein PARI. Mol. Cell. 2012;45:75–86. PubMed PMC
Hicks W.M., Kim M., Haber J.E. Increased mutagenesis and unique mutation signature associated with mitotic gene conversion. Science. 2010;329:82–85. PubMed PMC
Maloisel L., Fabre F., Gangloff S. DNA polymerase δ is preferentially recruited during homologous recombination to promote heteroduplex DNA extension. Mol. Cell. Biol. 2008;28:1373–1382. PubMed PMC
Ruiz J.F., Gómez-González B., Aguilera A. Chromosomal translocations caused by either Pol32-dependent or Pol32-independent triparental break-induced replication. Mol. Cell. Biol. 2009;29:5441–5454. PubMed PMC
Li X., Stith C.M., Burgers P.M., Heyer W.-D. PCNA is required for initiation of recombination-associated DNA synthesis by DNA polymerase delta. Mol. Cell. 2009;36:704–713. PubMed PMC
Sebesta M., Burkovics P., Haracska L., Krejci L. Reconstitution of DNA repair synthesis in vitro and the role of polymerase and helicase activities. DNA Repair (Amst.) 2011;10:567–576. PubMed PMC
Raynard S., Sung P. Assay for human Rad51-mediated DNA displacement loop formation. Cold Spring Harb. Protoc. 2009;4:1–4. PubMed PMC
Petukhova G.V., Pezza R.J., Vanevski F., Ploquin M., Masson J.-Y., Camerini-Otero R.D. The Hop2 and Mnd1 proteins act in concert with Rad51 and Dmc1 in meiotic recombination. Nat. Struct. Mol. Biol. 2005;12:449–453. PubMed
Niedernhofer L.J., Odijk H., Budzowska M., van Drunen E., Maas A., Theil A.F., de Wit J., Jaspers N.G.J., Beverloo H.B., Hoeijmakers J.H.J. The structure-specific endonuclease Ercc1-Xpf is required to resolve DNA interstrand cross-link-induced double-strand breaks. Mol. Cell. Biol. 2004;24:5776–5787. PubMed PMC
Xie A., Hartlerode A., Stucki M., Odate S., Puget N., Kwok A., Nagaraju G., Yan C., Alt F.W., Chen J. Distinct roles of chromatin-associated proteins MDC1 and 53BP1 in mammalian double-strand break repair. Mol. Cell. 2007;28:1045–1057. PubMed PMC
Baumann C., Boehden G.S., Bürkle A., Wiesmüller L. Poly(ADP-RIBOSE) polymerase-1 (Parp-1) antagonizes topoisomerase I-dependent recombination stimulation by P53. Nucleic Acids Res. 2006;34:1036–1049. PubMed PMC
Wiese C., Dray E., Groesser T., San Filippo J., Shi I., Collins D.W., Tsai M.-S., Williams G.J., Rydberg B., Sung P. Promotion of homologous recombination and genomic stability by RAD51AP1 via RAD51 recombinase enhancement. Mol. Cell. 2012;28:482–490. PubMed PMC
Acharya N., Yoon J.-H., Gali H., Unk I., Haracska L., Johnson R.E., Hurwitz J., Prakash L., Prakash S. Roles of PCNA-binding and ubiquitin-binding domains in human DNA polymerase η in translesion DNA synthesis. Proc. Natl. Acad. Sci. 2008;105:17724–17729. PubMed PMC
Wang X., Ira G., Tercero J.A., Holmes A.M., Diffley J.F.X., Haber J.E. Role of DNA replication proteins in double-strand break-induced recombination in Saccharomyces cerevisiae. Mol. Cell. Biol. 2004;24:6891–6899. PubMed PMC
Neuwirth E.A.H., Honma M., Grosovsky A.J. Interchromosomal crossover in human cells is associated with long gene conversion tracts. Mol. Cell. Biol. 2007;27:5261–5274. PubMed PMC
Rukść A., Bell-Rogers P.L., Smith J.D.L., Baker M.D. Analysis of spontaneous gene conversion tracts within and between mammalian chromosomes. J. Mol. Biol. 2008;377:337–351. PubMed
Holbeck S.L., Strathern J.N. A role for REV3 in mutagenesis during double-strand break repair in Saccharomyces cerevisiae. Genetics. 1997;147:1017–1024. PubMed PMC
Okada T., Sonoda E., Yamashita Y.M., Koyoshi S., Tateishi S., Yamaizumi M., Takata M. Involvement of vertebrate Polκ in Rad18-independent postreplication repair of UV damage. J. Biol. Chem. 2002;277:48690–48695. PubMed
Ogi T., Shinkai Y., Tanaka K., Ohmori H. Polκ protects mammalian cells against the lethal and mutagenic effects of benzo[a]pyrene. Proc. Natl. Acad. Sci. 2002;99:15548–15553. PubMed PMC
Burkovics P., Sebesta M., Sisakova A., Plault N., Szukacsov V., Robert T., Pinter L., Marini V., Kolesar P., Haracska L. Srs2 mediates PCNA-SUMO dependent inhibition of DNA repair synthesis. EMBO J. 2013;32:742–755. PubMed PMC
Centore R., Yazinski S., Tse A., Zou L. Spartan/C1orf124, a reader of PCNA ubiquitylation and a regulator of UV-induced DNA damage response. Mol. Cell. 2012;46:625–635. PubMed PMC
Juhasz S., Balogh D., Hajdú I., Burkovics P., Villamil M.A., Zhuang Z., Haracska L. Characterization of human Spartan/C1orf124, an ubiquitin-PCNA interacting regulator of DNA damage tolerance. Nucleic Acids Res. 2012;40:10795–10808. PubMed PMC
Ciccia A., Nimonkar A., Hu Y., Hajdú I., Achar Y., Izhar L., Petit S., Adamson B., Yoon J., Kowalczykowski S.C. Polyubiquitinated PCNA recruits the ZRANB3 translocase to maintain genomic integrity after replication stress. Mol. Cell. 2012;47:396–409. PubMed PMC
Weston R., Peeters H., Ahel D. ZRANB3 is a structure-specific ATP-dependent endonuclease involved in replication stress response. Genes Dev. 2012;26:1558–1572. PubMed PMC
Yuan J., Ghosal G., Chen J. The HARP-like domain-containing protein AH2/ZRANB3 binds to PCNA and participates in cellular response to replication stress. Mol. Cell. 2012;47:410–421. PubMed PMC
Strand invasion by HLTF as a mechanism for template switch in fork rescue