Reactive Oxygen Species Imaging in U937 Cells
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33178031
PubMed Central
PMC7593787
DOI
10.3389/fphys.2020.552569
Knihovny.cz E-zdroje
- Klíčová slova
- U937 cells, confocal microscopy, hydroxyl radical, immune cells, monocytes, oxidative stress,
- Publikační typ
- časopisecké články MeSH
The U937 cell culture is a pro-monocytic, human histiocytic lymphoma cell line. These monocytes can differentiate into either macrophages or dendritic cells (antigen-presenting cells) depending on the initiators. The U937 cells activated in the presence of phorbol 12-myristate 13-acetate (PMA) change their morphology into macrophage-like cells creating pseudopodia and adhering generously. Macrophages are known to produce reactive oxygen species (ROS) mostly during phagocytosis of foreign particles, an important non-specific immune response. Recently, we have focused on the role of hydroxyl radical (HO∙) and provide evidence on its importance for differentiation in U937 cells. Based on electron paramagnetic resonance (EPR) spectroscopy combined with confocal laser scanning microscopy (CLSM), formation of HO∙ was confirmed within the cells undergoing differentiation and/or apoptosis during the PMA treatment. This study aims to increase our knowledge of ROS metabolism in model cell lines used in human research.
Department of Botany Faculty of Science Palacký University Olomouc Czechia
Department of Immunology Faculty of Medicine and Dentistry Palacký University Olomouc Czechia
Graduate Department of Electronics Tohoku Institute of Technology Sendai Japan
Zobrazit více v PubMed
Auchere F., Rusnak F. (2002). What is the ultimate fate of superoxide anion in vivo? J. Biol. Inorg. Chem. 7 664–667. 10.1007/s00775-002-0362-2 PubMed DOI
Carlisi D., D’Anneo A., Martinez R., Emanuele S., Buttitta G., Di Fiore R., et al. (2014). The oxygen radicals involved in the toxicity induced by parthenolide in MDA-MB-231 cells. Oncol. Rep. 32 167–172. 10.3892/or.2014.3212 PubMed DOI
Cassetta L., Kitamura T. (2018). Targeting tumor-associated macrophages as a potential strategy to enhance the response to immune checkpoint inhibitors. Front. Cell Dev. Biol. 6:38. 10.3389/fcell.2018.00038 PubMed DOI PMC
Chanput W., Mes J. J., Wichers H. J. (2014). THP-1 cell line: an in vitro cell model for immune modulation approach. Int. Immunopharmacol. 23 37–45. 10.1016/j.intimp.2014.08.002 PubMed DOI
Chun E. M., Park Y. J., Kang H. S., Cho H. M., Jun D. Y., Kim Y. H. (2001). Expression of the apolipoprotein C-II gene during myelomonocytic differentiation of human leukemic cells. J. Leukoc. Biol. 69 645–650. PubMed
Dunand C., Crevecoeur M., Penel C. (2007). Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: possible interaction with peroxidases. New Phytol. 174 332–341. 10.1111/j.1469-8137.2007.01995.x PubMed DOI
Halliwell B., Gutteridge J. (2007). Free Radicals in Biology and Medicine, 4th Edn Oxford: Oxford University Press.
Hollebeeck S., Raas T., Piront N., Schneider Y. J., Toussaint O., Larondelle Y., et al. (2011). Dimethyl sulfoxide (DMSO) attenuates the inflammatory response in the in vitro intestinal Caco-2 cell model. Toxicol. Lett. 206 268–275. 10.1016/j.toxlet.2011.08.010 PubMed DOI
Hsiao C. H. C., Ueno N., Shao J. Q., Schroeder K. R., Moore K. C., Donelson J. E., et al. (2011). The effects of macrophage source on the mechanism of phagocytosis and intracellular survival of Leishmania. Microbes Infect. 13 1033–1044. 10.1016/j.micinf.2011.05.014 PubMed DOI PMC
Italiani P., Boraschi D. (2014). From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Front. Immunol. 5:514. 10.3389/fimmu.2014.00514 PubMed DOI PMC
Karina Chimal-Ramirez G., Adriana Espinoza-Sanchez N., Chavez-Sanchez L., Arriaga-Pizano L., Fuentes-Panana E. M. (2016). Monocyte differentiation towards protumor activity does not correlate with M1 or M2 phenotypes. J. Immunol. Res. 10.1155/2016/6031486 PubMed DOI PMC
Kigerl K. A., Gensel J. C., Ankeny D. P., Alexander J. K., Donnelly D. J., Popovich P. G. (2009). Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J. Neurosci. 29 13435–13444. 10.1523/jneurosci.3257-09.2009 PubMed DOI PMC
Kikuchi H., Prasad A., Matsuoka R., Aoyagi S., Matsue T., Kasai S. (2016). Scanning electrochemical microscopy imaging during respiratory burst in human cell. Front. Physiol. 7:25. 10.3389/fphys.2016.00025 PubMed DOI PMC
Lee H., Park J. B. (2017). Evaluation of the effects of dimethylsulphoxide on morphology, cellular viability, mRNA, and protein expression of stem cells culture in growth media. Biomed. Rep. 7 291–296. 10.3892/br.2017.961 PubMed DOI PMC
Lei K. P., Sun M. T., Du L. B., Zhang X. J., Yu H., Wang S. H., et al. (2017). Sensitive determination of endogenous hydroxyl radical in live cell by a BODIPY based fluorescent probe. Talanta 170 314–321. 10.1016/j.talanta.2017.04.004 PubMed DOI
Liu K., Liu P. C., Liu R., Wu X. (2015). Dual AO/EB staining to detect apoptosis in osteosarcoma cells compared with flow cytometry. Med. Sci. Monit. Basic Res. 21 15–20. 10.12659/msmbr.893327 PubMed DOI PMC
Liu S. Q., Hou X. Y., Chen L. N., Hu H., Sun Q., Zhao F., et al. (2018). Enhancing amplification of late-outgrowth endothelial cells by bilobalide. J. Cell. Mol. Med. 22 3340–3352. 10.1111/jcmm.13609 PubMed DOI PMC
Lund M. E., To J., O’Brien B. A., Donnelly S. (2016). The choice of phorbol 12-myristate 13-acetate differentiation protocol influences the response of THP-1 macrophages to a pro-inflammatory stimulus. J. Immunol. Methods 430 64–70. 10.1016/j.jim.2016.01.012 PubMed DOI
Maess M. B., Wittig B., Cignarella A., Lorkowski S. (2014). Reduced PMA enhances the responsiveness of transfected THP-1 macrophages to polarizing stimuli. J. Immunol. Methods 402 76–81. 10.1016/j.jim.2013.11.006 PubMed DOI
Mendoza-Coronel E., Castanon-Arreola M. (2016). Comparative evaluation of in vitro human macrophage models for mycobacterial infection study. Pathog. Dis. 74:ftw052. 10.1093/femspd/ftw052 PubMed DOI
Nemati S., Sardroud H. A., Khoshfetrat A. B., Khaksar M., Ahmadi M., Amini H., et al. (2019). The effect of alginate-gelatin encapsulation on the maturation of human myelomonocytic cell line U937. J. Tissue Eng. Regen. Med. 13 25–35. 10.1002/term.2765 PubMed DOI
Pagliara P., Lanubile R., Dwikat M., Abbro L., Dini L. (2005). Differentiation of monocytic U937 cells under static magnetic field exposure. Eur. J. Histochem. 49 75–86. 10.4081/930 PubMed DOI
Pospíšil P., Prasad A., Rác M. (2019). Mechanism of the formation of electronically excited species by oxidative metabolic processes: role of reactive oxygen species. Biomolecules 9:258. 10.3390/biom9070258 PubMed DOI PMC
Pou S., Ramos C. L., Gladwell T., Renks E., Centra M., Young D., et al. (1994). A kinetic approach to the selection of a sensitive spin trapping system for the detection of hydroxyl radical. Anal. Biochem. 217 76–83. 10.1006/abio.1994.1085 PubMed DOI
Prasad A., Kikuchi H., Inoue K. Y., Suzuki M., Sugiura Y., Sugai T., et al. (2016). Simultaneous real-time monitoring of oxygen consumption and hydrogen peroxide production in cells using our newly developed chip-type biosensor device. Front. Physiol. 7:109. 10.3389/fphys.2016.00109 PubMed DOI PMC
Prasad A., Kumar A., Suzuki M., Kikuchi H., Sugai T., Kobayashi M., et al. (2015). Detection of hydrogen peroxide in photosystem II (PSII) using catalytic amperometric biosensor. Front. Plant Sci. 6:862. 10.3389/fpls.2015.00862 PubMed DOI PMC
Rác M., Křupka M., Binder S., Sedlářová M., Matuskova Z., Raska M., et al. (2015). Oxidative damage of U937 human leukemic cells caused by hydroxyl radical results in singlet oxygen formation. PLoS One 10:e0116958. 10.1371/journal.pone.0116958 PubMed DOI PMC
Rosenberg M., Azevedo N. F., Ivask A. (2019). Propidium iodide staining underestimates viability of adherent bacterial cells. Sci. Rep. 9:6483. 10.1038/s41598-019-42906-3 PubMed DOI PMC
Rota C., Fann Y. C., Mason R. P. (1999). Phenoxyl free radical formation during the oxidation of the fluorescent dye 2 ‘,7 ’-dichlorofluorescein by horseradish peroxidase – Possible consequences for oxidative stress measurements. J. Biol. Chem. 274 28161–28168. 10.1074/jbc.274.40.28161 PubMed DOI
Sundstrom C., Nilsson K. (1976). Establishment and characterization of a human histiocytic lymphoma cell line (u-937). Int. J. Cancer 17 565–577. 10.1002/ijc.2910170504 PubMed DOI
Tedesco S., De Majo F., Kim J., Trenti A., Trevisi L., Fadini G. P., et al. (2018). Convenience versus biological significance: are PMA-differentiated THP-1 cells a reliable substitute for blood-derived macrophages when studying in vitro polarization? Front. Pharmacol. 9:71. 10.3389/fphar.2018.00071 PubMed DOI PMC
Tenuzzo B., Dwikat M., Dini L. (2008). Static magnetic field selects undifferentiated myelomonocytes from low-glutamine concentration stimulated U937 cells. Tissue Cell 40 177–184. 10.1016/j.tice.2007.11.005 PubMed DOI
Wang X. H., Fang H. Q., Huang Z. L., Shang W., Hou T. T., Cheng A. W., et al. (2013). Imaging ROS signaling in cells and animals. J. Mol. Med. 91 917–927. 10.1007/s00109-013-1067-4 PubMed DOI PMC
Whyte J., Roberts A. D. G., Morley K. A., Sharp R. J., Marsh P. D. (2000). Phagocytosis of mycobacteria by U937 cells: a rapid method for monitoring uptake and separating phagocytosed and free bacteria by magnetic beads. Lett. Appl. Microbiol. 30 90–94. 10.1046/j.1472-765x.2000.00701.x PubMed DOI
Yamamoto T., Sakaguchi N., Hachiya M., Nakayama F., Yamakawa M., Akashi M. (2009). Role of catalase in monocytic differentiation of U937 cells by TPA: hydrogen peroxide as a second messenger. Leukemia 23 761–769. 10.1038/leu.2008.353 PubMed DOI
Yang L. F., Dai F., Tang L., Le Y. L., Yao W. J. (2017). Macrophage differentiation induced by PMA is mediated by activation of RhoA/ROCK signaling. J. Toxicol. Sci. 42 763–771. PubMed
Zamani F., Zare Shahneh F., Aghebati-Maleki L., Baradaran B. (2013). Induction of CD14 expression and differentiation to monocytes or mature macrophages in promyelocytic cell lines: new approach. Adv. Pharm. Bull. 3 329–332. 10.5681/apb.2013.053 PubMed DOI PMC
Zeng L. Y., Xia T., Hu W., Chen S. Y., Chi S. Y., Lei Y. D., et al. (2018). Visualizing the regulation of Hydroxyl radical level by superoxide dismutase via a specific molecular probe. Anal. Chem. 90 1317–1324. 10.1021/acs.analchem.7b04191 PubMed DOI
Free Radical-Mediated Protein Radical Formation in Differentiating Monocytes