• This record comes from PubMed

Circulating Cell-Free DNA-Based Methylation Pattern in Saliva for Early Diagnosis of Head and Neck Cancer

. 2022 Oct 06 ; 14 (19) : . [epub] 20221006

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
UHHK, 00179906 Ministry of Health Czech Republic
SVV 260544 Specific University Research Program, Charles University

Head and neck cancer (HNC) remains one of the leading causes of mortality worldwide due to tumor diagnosis at a late stage, loco-regional aggression, and distant metastases. A standardized diagnostic procedure for HNC is a tissue biopsy that cannot faithfully portray the in-depth tumor dynamics. Therefore, there is an urgent need to develop simple, accurate, and non-invasive methods for cancer detection and follow-up. A saliva-based liquid biopsy allows convenient, non-invasive, and painless collection of high volumes of this biofluid, with the possibility of repetitive sampling, all enabling real-time monitoring of the disease. No approved clinical test for HNC has yet been established. However, epigenetic changes in saliva circulating cell-free DNA (cfDNA) have the potential for a wide range of clinical applications. Therefore, the aim of this review is to present an overview of cfDNA-based methylation patterns in saliva for early detection of HNC, with particular attention to circulating tumor DNA (ctDNA). Due to advancements in isolation and detection technologies, as well as next- and third-generation sequencing, recent data suggest that salivary biomarkers may be successfully applied for early detection of HNC in the future, but large prospective clinical trials are still warranted.

See more in PubMed

International Agency for Research on Cancer Global Cancer Observatory. [(accessed on 24 April 2022)]; Available online: https://gco.iarc.fr/today/home.

Guo K., Xiao W., Chen X., Zhao Z., Lin Y., Chen G. Epidemiological trends of head and neck cancer: A population-based study. BioMed Res. Int. 2021;2021:1738932. doi: 10.1155/2021/1738932. PubMed DOI PMC

Schiff B.A. MSD Manual for the Professional. Available on: Overview of Head and Neck Tumors—Ear, Nose, and Throat Disorders—MSD Manual Professional Edition. [(accessed on 13 April 2022)]. Available online: https://www.msdmanuals.com/professional/ear,-nose,-and-throat-disorders/tumors-of-the-head-and-neck/overview-of-head-and-neck-tumors.

Schutte H.W., Heutink F., Wellenstein D.J., van den Broek G.B., van den Hoogen F.J.A., Marres H.A.M., van Herpen C.M.L., Kaanders J.H.A.M., Merkx T.M.A.W., Takes R.P. Impact of time to diagnosis and treatment in head and neck cancer: A systematic review. Otolaryngol. Head Neck Surg. 2020;162:446–457. doi: 10.1177/0194599820906387. PubMed DOI

Lo Nigro C., Denaro N., Merlotti A., Merlano M. Head and neck cancer: Improving outcomes with a multidisciplinary approach. Cancer Manag. Res. 2017;9:363–371. doi: 10.2147/CMAR.S115761. PubMed DOI PMC

Birknerová N., Kovaříková H., Baranová I., Přikrylová A., Laco J., Vošmiková H., Gajdošová B., Hodek M., Vošmik M., Palička V., et al. DNA hypermethylation of CADM1, PAX5, WT1, RARβ, and PAX6 genes in oropharyngeal cancer associated with human papillomavirus. Epigenetics. 2022 doi: 10.1080/15592294.2021.2018812. PubMed DOI PMC

Kuhlin B., Kramer B., Nefas V., Rotter N., Aderhold C. Indicators for secondary carcinoma in head and neck cancer patients following curative therapy: A retrospective clinical study. Mol. Clin. Oncol. 2020;12:403–410. doi: 10.3892/mco.2020.2004. PubMed DOI PMC

Wang S., Liu Y., Feng Y., Zhang J., Swinnen J., Li Y., Ni Y. A review on curability of cancers: More efforts for novel therapeutic options are needed. Cancers. 2019;11:1782. doi: 10.3390/cancers11111782. PubMed DOI PMC

Fernández-Lázaro D., García Hernández J.L., García A.C., Córdova Martínez A., Mielgo-Ayuso J., Cruz-Hernández J.J. Liquid biopsy as novel tool in precision medicine: Origins, properties, identification and clinical perspective of cancer’s biomarkers. Diagnostics. 2020;10:215. doi: 10.3390/diagnostics10040215. PubMed DOI PMC

Mazouji O., Ouhajjou A., Incitti R., Mansour H. Updates on clinical use of liquid biopsy in colorectal cancer screening, diagnosis, follow-up, and treatment guidance. Front. Cell Dev. Biol. 2021;9:660924. doi: 10.3389/fcell.2021.660924. PubMed DOI PMC

Chiappin S., Antonelli G., Gatti R., De Palo E.F. Saliva specimen: A new laboratory tool for diagnostic and basic investigation. Clin. Chim. Acta. 2007;383:30–40. doi: 10.1016/j.cca.2007.04.011. PubMed DOI

Vila T., Rizk A.M., Sultan A.S., Jabra-Rizk M.A. The power of saliva: Antimicrobial and beyond. PLoS Pathog. 2019;15:e1008058. doi: 10.1371/journal.ppat.1008058. PubMed DOI PMC

Kaczor-Urbanowicz K.E., Martin Carreras-Presas C., Aro K., Tu M., Garcia-Godoy F., Wong D.T. Saliva diagnostics—Current views and directions. Exp. Biol. Med. 2017;242:459–472. doi: 10.1177/1535370216681550. PubMed DOI PMC

Patel A., Patel S., Patel P., Tanavde V. Saliva based liquid biopsies in head and neck cancer: How far are we from the clinic? Front. Oncol. 2022;12:828434. doi: 10.3389/fonc.2022.828434. PubMed DOI PMC

Michela B. Liquid biopsy: A family of possible diagnostic tools. Diagnostics. 2021;11:1391. doi: 10.3390/diagnostics11081391. PubMed DOI PMC

Martignano F. Cell-free DNA: An overview of sample types and isolation procedures. In: Casadio V., Salvi S., editors. Cell-free DNA as Diagnostic Markers. Volume 1909. Springer New York; New York, NY, USA: 2019. pp. 13–27. Methods in Molecular Biology. PubMed

Mandel P., Metais P. Nuclear acids in human blood plasma. C R Seances Soc. Biol. Fil. 1948;142:241–243. PubMed

Rostami A., Lambie M., Yu C.W., Stambolic V., Waldron J.N., Bratman S.V. Senescence, necrosis, and apoptosis govern circulating cell-free DNA release kinetics. Cell Rep. 2020;31:107830. doi: 10.1016/j.celrep.2020.107830. PubMed DOI

Snyder M.W., Kircher M., Hill A.J., Daza R.M., Shendure J. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell. 2016;164:57–68. doi: 10.1016/j.cell.2015.11.050. PubMed DOI PMC

Thierry A.R., El Messaoudi S., Gahan P.B., Anker P., Stroun M. Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev. 2016;35:347–376. doi: 10.1007/s10555-016-9629-x. PubMed DOI PMC

Aucamp J., Bronkhorst A.J., Badenhorst C.P.S., Pretorius P.J. The diverse origins of circulating cell-free DNA in the human body: A critical re-evaluation of the literature. Biol. Rev. 2018;93:1649–1683. doi: 10.1111/brv.12413. PubMed DOI

Heitzer E., Auinger L., Speicher M.R. Cell-free DNA and apoptosis: How dead cells inform about the living. Trends Mol. Med. 2020;26:519–528. doi: 10.1016/j.molmed.2020.01.012. PubMed DOI

Luo H., Wei W., Ye Z., Zheng J., Xu R. Liquid biopsy of methylation biomarkers in cell-free DNA. Trends Mol. Med. 2021;27:482–500. doi: 10.1016/j.molmed.2020.12.011. PubMed DOI

Pös Z., Pös O., Styk J., Mocova A., Strieskova L., Budis J., Kadasi L., Radvanszky J., Szemes T. Technical and methodological aspects of cell-free nucleic acids analyzes. Int. J. Mol. Sci. 2020;21:8634. doi: 10.3390/ijms21228634. PubMed DOI PMC

Bettegowda C., Sausen M., Leary R.J., Kinde I., Wang Y., Agrawal N., Bartlett B.R., Wang H., Luber B., Alani R.M., et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 2014;6:224ra24. doi: 10.1126/scitranslmed.3007094. PubMed DOI PMC

Diehl F., Schmidt K., Choti M.A., Romans K., Goodman S., Li M., Thornton K., Agrawal N., Sokoll L., Szabo S.A., et al. Circulating mutant DNA to assess tumor dynamics. Nat. Med. 2008;14:985–990. doi: 10.1038/nm.1789. PubMed DOI PMC

Mulki S., Shetty P., Pai P. Oral rinse-based cytology and conventional exfoliative cytology: A comparative study. J. Cancer Res. Ther. 2015;11:129. doi: 10.4103/0973-1482.137910. PubMed DOI

Pereira T., Kesarkar K., Tamgadge A., Bhalerao S., Shetty S. Comparative analysis of oral rinse-based cytology and conventional exfoliative cytology: A pilot study. J. Cancer Res. Ther. 2018;14:921. doi: 10.4103/0973-1482.179095. PubMed DOI

Wang Z., Li F., Rufo J., Chen C., Yang S., Li L., Zhang J., Cheng J., Kim Y., Wu M., et al. Acoustofluidic salivary exosome isolation. J. Mol. Diagn. 2020;22:50–59. doi: 10.1016/j.jmoldx.2019.08.004. PubMed DOI PMC

Tivey A., Church M., Rothwell D., Dive C., Cook N. Circulating tumour DNA—Looking beyond the blood. Nat. Rev. Clin. Oncol. 2022;19:600–612. doi: 10.1038/s41571-022-00660-y. PubMed DOI PMC

Lim Y., Punyadeera C. A pilot study to investigate the feasibility of transporting saliva samples at room temperature with MAWI cell stabilization buffer. Cogent Biol. 2018;4:1470895. doi: 10.1080/23312025.2018.1470895. DOI

Green S.F. The cost of poor blood specimen quality and errors in preanalytical processes. Clin. Biochem. 2013;46:1175–1179. doi: 10.1016/j.clinbiochem.2013.06.001. PubMed DOI

Aro K., Wei F., Wong D.T., Tu M. Saliva liquid biopsy for point-of-care applications. Front. Public Health. 2017;5:77. doi: 10.3389/fpubh.2017.00077. PubMed DOI PMC

Rosas S.L., Koch W., da Costa Carvalho M.G., Wu L., Califano J., Westra W., Jen J., Sidransky D. Promoter hypermethylation patterns of P16, O6-methylguanine-DNA-methyltransferase, and death-associated protein kinase in tumors and saliva of head and neck cancer patients. Cancer Res. 2001;61:939–942. PubMed

Righini C.A., de Fraipont F., Timsit J.-F., Faure C., Brambilla E., Reyt E., Favrot M.-C. Tumor-specific methylation in saliva: A promising biomarker for early detection of head and neck cancer recurrence. Clin. Cancer Res. 2007;13:1179–1185. doi: 10.1158/1078-0432.CCR-06-2027. PubMed DOI

Franzmann E.J., Reategui E.P., Pedroso F., Pernas F.G., Karakullukcu B.M., Carraway K.L., Hamilton K., Singal R., Goodwin W.J. Soluble CD44 is a potential marker for the early detection of head and neck cancer. Cancer Epidemiol. Biomark. Prev. 2007;16:1348–1355. doi: 10.1158/1055-9965.EPI-06-0011. PubMed DOI

Viet C.T., Jordan R.C.K., Schmidt B.L. DNA Promoter hypermethylation in saliva for the early diagnosis of oral cancer. J. Calif. Dent. Assoc. 2007;35:844–849. PubMed

Viet C.T., Schmidt B.L. Methylation array analysis of preoperative and postoperative saliva DNA in oral cancer patients. Cancer Epidemiol. Biomark. Prev. 2008;17:3603–3611. doi: 10.1158/1055-9965.EPI-08-0507. PubMed DOI

Carvalho A.L., Jeronimo C., Kim M.M., Henrique R., Zhang Z., Hoque M.O., Chang S., Brait M., Nayak C.S., Jiang W.-W., et al. Evaluation of promoter hypermethylation detection in body fluids as a screening/diagnosis tool for head and neck squamous cell carcinoma. Clin. Cancer Res. 2008;14:97–107. doi: 10.1158/1078-0432.CCR-07-0722. PubMed DOI

Pattani K.M., Zhang Z., Demokan S., Glazer C., Loyo M., Goodman S., Sidransky D., Bermudez F., Jean-Charles G., McCaffrey T., et al. Endothelin Receptor Type B gene promoter hypermethylation in salivary rinses is independently associated with risk of oral cavity cancer and premalignancy. Cancer Prev. Res. 2010;3:1093–1103. doi: 10.1158/1940-6207.CAPR-10-0115. PubMed DOI PMC

Demokan S., Chang X., Chuang A., Mydlarz W.K., Kaur J., Huang P., Khan Z., Khan T., Ostrow K.L., Brait M., et al. KIF1A and EDNRB are differentially methylated in primary HNSCC and salivary rinses. Int. J. Cancer. 2010;127:2351–2359. doi: 10.1002/ijc.25248. PubMed DOI PMC

Guerrero-Preston R., Soudry E., Acero J., Orera M., Moreno-López L., Macía-Colón G., Jaffe A., Berdasco M., Ili-Gangas C., Brebi-Mieville P., et al. NID2 and HOXA9 promoter hypermethylation as biomarkers for prevention and early detection in oral cavity squamous cell carcinoma tissues and saliva. Cancer Prev. Res. 2011;4:1061–1072. doi: 10.1158/1940-6207.CAPR-11-0006. PubMed DOI PMC

Nagata S., Hamada T., Yamada N., Yokoyama S., Kitamoto S., Kanmura Y., Nomura M., Kamikawa Y., Yonezawa S., Sugihara K. Aberrant DNA methylation of tumor-related genes in oral rinse: A noninvasive method for detection of oral squamous cell carcinoma. Cancer. 2012;118:4298–4308. doi: 10.1002/cncr.27417. PubMed DOI

Liu Y., Zhou Z.-T., He Q.-B., Jiang W.-W. DAPK promoter hypermethylation in tissues and body fluids of oral precancer patients. Med. Oncol. 2012;29:729–733. doi: 10.1007/s12032-011-9953-5. PubMed DOI

Kusumoto T., Hamada T., Yamada N., Nagata S., Kanmura Y., Houjou I., Kamikawa Y., Yonezawa S., Sugihara K. Comprehensive epigenetic analysis using oral rinse samples: A pilot study. J. Oral Maxillofac. Surg. 2012;70:1486–1494. doi: 10.1016/j.joms.2011.04.021. PubMed DOI

Ovchinnikov D.A., Cooper M.A., Pandit P., Coman W.B., Cooper-White J.J., Keith P., Wolvetang E.J., Slowey P.D., Punyadeera C. Tumor-suppressor gene promoter hypermethylation in saliva of head and neck cancer patients. Transl. Oncol. 2012;5:321–326. doi: 10.1593/tlo.12232. PubMed DOI PMC

Rettori M.M., de Carvalho A.C., Bomfim Longo A.L., de Oliveira C.Z., Kowalski L.P., Carvalho A.L., Vettore A.L. Prognostic significance of TIMP3 hypermethylation in post-treatment salivary rinse from head and neck squamous cell carcinoma patients. Carcinogenesis. 2013;34:20–27. doi: 10.1093/carcin/bgs311. PubMed DOI

Puttipanyalears C., Subbalekha K., Mutirangura A., Kitkumthorn N. Alu hypomethylation in smoke-exposed epithelia and oral squamous carcinoma. Asian Pac. J. Cancer Prev. 2013;14:5495–5501. doi: 10.7314/APJCP.2013.14.9.5495. PubMed DOI

Schussel J., Zhou X.C., Zhang Z., Pattani K., Bermudez F., Jean-Charles G., McCaffrey T., Padhya T., Phelan J., Spivakovsky S., et al. EDNRB and DCC salivary rinse hypermethylation has a similar performance as expert clinical examination in discrimination of oral cancer/dysplasia versus benign lesions. Clin. Cancer Res. 2013;19:3268–3275. doi: 10.1158/1078-0432.CCR-12-3496. PubMed DOI PMC

Ovchinnikov D.A., Wan Y., Coman W.B., Pandit P., Cooper-White J.J., Herman J.G., Punyadeera C. DNA methylation at the novel CpG sites in the promoter of MED15/PCQAP gene as a biomarker for head and neck cancers. Biomark. Insights. 2014;9:53–60. doi: 10.4137/BMI.S16199. PubMed DOI PMC

Gaykalova D.A., Vatapalli R., Wei Y., Tsai H.-L., Wang H., Zhang C., Hennessey P.T., Guo T., Tan M., Li R., et al. Outlier analysis defines zinc finger gene family DNA methylation in tumors and saliva of head and neck cancer patients. PLoS ONE. 2015;10:e0142148. doi: 10.1371/journal.pone.0142148. PubMed DOI PMC

Lim Y., Wan Y., Vagenas D., Ovchinnikov D.A., Perry C.F.L., Davis M.J., Punyadeera C. Salivary DNA methylation panel to diagnose HPV-positive and HPV-negative head and neck cancers. BMC Cancer. 2016;16:749. doi: 10.1186/s12885-016-2785-0. PubMed DOI PMC

Ferlazzo N., Currò M., Zinellu A., Caccamo D., Isola G., Ventura V., Carru C., Matarese G., Ientile R. Influence of MTHFR genetic background on P16 and MGMT methylation in oral squamous cell cancer. Int. J. Mol. Sci. 2017;18:724. doi: 10.3390/ijms18040724. PubMed DOI PMC

Cheng S.-J., Chang C.-F., Ko H.-H., Lee J.-J., Chen H.-M., Wang H.-J., Lin H.-S., Chiang C.-P. Hypermethylated ZNF582 and PAX1 genes in mouth rinse samples as biomarkers for oral dysplasia and oral cancer detection. Head Neck. 2018;40:355–368. doi: 10.1002/hed.24958. PubMed DOI

Puttipanyalears C., Arayataweegool A., Chalertpet K., Rattanachayoto P., Mahattanasakul P., Tangjaturonsasme N., Kerekhanjanarong V., Mutirangura A., Kitkumthorn N. TRH site-specific methylation in oral and oropharyngeal squamous cell carcinoma. BMC Cancer. 2018;18:786. doi: 10.1186/s12885-018-4706-x. PubMed DOI PMC

Liyanage C., Wathupola A., Muraleetharan S., Perera K., Punyadeera C., Udagama P. Promoter hypermethylation of tumor-suppressor genes P16INK4a, RASSF1A, TIMP3, and PCQAP/MED15 in salivary DNA as a quadruple biomarker panel for early detection of oral and oropharyngeal cancers. Biomolecules. 2019;9:148. doi: 10.3390/biom9040148. PubMed DOI PMC

Srisuttee R., Arayataweegool A., Mahattanasakul P., Tangjaturonrasme N., Kerekhanjanarong V., Keelawat S., Mutirangura A., Kitkumthorn N. Evaluation of NID2 promoter methylation for screening of oral squamous cell carcinoma. BMC Cancer. 2020;20:218. doi: 10.1186/s12885-020-6692-z. PubMed DOI PMC

Shen S., Saito Y., Ren S., Liu C., Guo T., Qualliotine J., Khan Z., Sadat S., Califano J.A. Targeting viral DNA and promoter hypermethylation in salivary rinses for recurrent HPV-positive oropharyngeal cancer. Otolaryngol. Head Neck Surg. 2020;162:512–519. doi: 10.1177/0194599820903031. PubMed DOI PMC

Rapado-González Ó., Martínez-Reglero C., Salgado-Barreira Á., Muinelo-Romay L., Muinelo-Lorenzo J., López-López R., Díaz-Lagares Á., Suárez-Cunqueiro M.M. Salivary DNA methylation as an epigenetic biomarker for head and neck cancer. part I: A diagnostic accuracy meta-analysis. J. Pers. Med. 2021;11:568. doi: 10.3390/jpm11060568. PubMed DOI PMC

Henson B.S., Wong D.T. Collection, storage, and processing of saliva samples for downstream molecular applications. In: Seymour G.J., Cullinan M.P., Heng N.C.K., editors. Oral Biology. Volume 666. Humana Press; Totowa, NJ, USA: 2010. pp. 21–30. Methods in Molecular Biology. PubMed

Chiang S.H., Thomas G.A., Liao W., Grogan T., Buck R.L., Fuentes L., Yakob M., Laughlin M.J., Schafer C., Nazmul-Hossain A., et al. RNAPro•SAL: A device for rapid and standardized collection of saliva RNA and proteins. Biotechniques. 2015;58:69–76. doi: 10.2144/000114254. PubMed DOI PMC

Abbosh C., Birkbak N.J., Wilson G.A., Jamal-Hanjani M., Constantin T., Salari R., Le Quesne J., Moore D.A., Veeriah S., Rosenthal R., et al. Phylogenetic CtDNA analysis depicts early-stage lung cancer evolution. Nature. 2017;545:446–451. doi: 10.1038/nature22364. PubMed DOI PMC

Zhou C., Ye M., Ni S., Li Q., Ye D., Li J., Shen Z., Deng H. DNA methylation biomarkers for head and neck squamous cell carcinoma. Epigenetics. 2018;13:398–409. doi: 10.1080/15592294.2018.1465790. PubMed DOI PMC

Xu T., Gao H. Hydroxymethylation and tumors: Can 5-hydroxymethylation be used as a marker for tumor diagnosis and treatment? Hum. Genom. 2020;14:15. doi: 10.1186/s40246-020-00265-5. PubMed DOI PMC

Liu S., de Medeiros M.C., Fernandez E.M., Zarins K.R., Cavalcante R.G., Qin T., Wolf G.T., Figueroa M.E., D’Silva N.J., Rozek L.S., et al. 5-hydroxymethylation highlights the heterogeneity in keratinization and cell junctions in head and neck cancers. Clin. Epigenetics. 2020;12:175. doi: 10.1186/s13148-020-00965-8. PubMed DOI PMC

Pfeifer G.P., Xiong W., Hahn M.A., Jin S.-G. The role of 5-hydroxymethylcytosine in human cancer. Cell Tissue Res. 2014;356:631–641. doi: 10.1007/s00441-014-1896-7. PubMed DOI PMC

Li W., Zhang X., Lu X., You L., Song Y., Luo Z., Zhang J., Nie J., Zheng W., Xu D., et al. 5-hydroxymethylcytosine signatures in circulating cell-free DNA as diagnostic biomarkers for human cancers. Cell Res. 2017;27:1243–1257. doi: 10.1038/cr.2017.121. PubMed DOI PMC

Köhler F., Rodríguez-Paredes M. DNA methylation in epidermal differentiation, aging, and cancer. J. Investig. Dermatol. 2020;140:38–47. doi: 10.1016/j.jid.2019.05.011. PubMed DOI

Dor Y., Cedar H. Principles of DNA methylation and their implications for biology and medicine. Lancet. 2018;392:777–786. doi: 10.1016/S0140-6736(18)31268-6. PubMed DOI

Nishiyama A., Nakanishi M. Navigating the DNA methylation landscape of cancer. Trends Genet. 2021;37:1012–1027. doi: 10.1016/j.tig.2021.05.002. PubMed DOI

Chen X., Gole J., Gore A., He Q., Lu M., Min J., Yuan Z., Yang X., Jiang Y., Zhang T., et al. Non-invasive early detection of cancer four years before conventional diagnosis using a blood test. Nat. Commun. 2020;11:3475. doi: 10.1038/s41467-020-17316-z. PubMed DOI PMC

Wang Y., Springer S., Mulvey C.L., Silliman N., Schaefer J., Sausen M., James N., Rettig E.M., Guo T., Pickering C.R., et al. Detection of somatic mutations and HPV in the saliva and plasma of patients with head and neck squamous cell carcinomas. Sci. Transl. Med. 2015;7:293ra104. doi: 10.1126/scitranslmed.aaa8507. PubMed DOI PMC

Davenport A.P., Maguire J.J. Endothelin. In: Moncada S., Higgs A., editors. The Vascular Endothelium I. Volume 176/I. Springer Berlin Heidelberg; Berlin/Heidelberg, Germany: 2006. pp. 295–329. Handbook of Experimental Pharmacology.

Mousavi Ardehaie R., Hashemzadeh S., Behrouz Sharif S., Ghojazadeh M., Teimoori-Toolabi L., Sakhinia E. Aberrant methylated EDNRB can act as a potential diagnostic biomarker in sporadic colorectal cancer while KISS1 is controversial. Bioengineered. 2017;8:555–564. doi: 10.1080/21655979.2017.1283458. PubMed DOI PMC

Dang D., Ye Y., Aouizerat B.E., Patel Y.K., Viet D.T., Chan K.C., Ono K., Doan C., Figueroa J.D., Yu G., et al. Targeting the endothelin axis as a therapeutic strategy for oral cancer metastasis and pain. Sci. Rep. 2020;10:20832. doi: 10.1038/s41598-020-77642-6. PubMed DOI PMC

Meng R.-W., Li Y.-C., Chen X., Huang Y.-X., Shi H., Du D.-D., Niu X., Lu C., Lu M.-X. Aberrant methylation of RASSF1A closely associated with HNSCC, a meta-analysis. Sci. Rep. 2016;6:20756. doi: 10.1038/srep20756. PubMed DOI PMC

Wang H. Cell-free DNA methylation profiling analysis—Technologies and bioinformatics. Cancers. 2019;11:1741. doi: 10.3390/cancers11111741. PubMed DOI PMC

Wen L., Li J., Guo H., Liu X., Zheng S., Zhang D., Zhu W., Qu J., Guo L., Du D., et al. Genome-scale detection of hypermethylated CpG islands in circulating cell-free DNA of hepatocellular carcinoma patients. Cell Res. 2015;25:1250–1264. doi: 10.1038/cr.2015.126. PubMed DOI PMC

Aberg K.A., Chan R.F., Shabalin A.A., Zhao M., Turecki G., Staunstrup N.H., Starnawska A., Mors O., Xie L.Y., van den Oord E.J. A MBD-seq protocol for large-scale methylome-wide studies with (very) low amounts of DNA. Epigenetics. 2017;12:743–750. doi: 10.1080/15592294.2017.1335849. PubMed DOI PMC

Zhao M.-T., Whyte J.J., Hopkins G.M., Kirk M.D., Prather R.S. Methylated DNA immunoprecipitation and high-throughput sequencing (MeDIP-seq) using low amounts of genomic DNA. Cell. Reprogramming Former. Cloning Stem Cells. 2014;16:175–184. doi: 10.1089/cell.2014.0002. PubMed DOI

Shen S.Y., Singhania R., Fehringer G., Chakravarthy A., Roehrl M.H.A., Chadwick D., Zuzarte P.C., Borgida A., Wang T.T., Li T., et al. Sensitive tumour detection and classification using plasma cell-free DNA methylomes. Nature. 2018;563:579–583. doi: 10.1038/s41586-018-0703-0. PubMed DOI

Maunakea A.K., Nagarajan R.P., Bilenky M., Ballinger T.J., D’Souza C., Fouse S.D., Johnson B.E., Hong C., Nielsen C., Zhao Y., et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature. 2010;466:253–257. doi: 10.1038/nature09165. PubMed DOI PMC

Marcozzi A., Jager M., Elferink M., Straver R., van Ginkel J.H., Peltenburg B., Chen L.-T., Renkens I., van Kuik J., Terhaard C., et al. Accurate detection of circulating tumor DNA using nanopore consensus sequencing. NPJ Genom. Med. 2021;6:106. doi: 10.1038/s41525-021-00272-y. PubMed DOI PMC

Genereux D.P., Johnson W.C., Burden A.F., Stoger R., Laird C.D. Errors in the bisulfite conversion of DNA: Modulating inappropriate- and failed-conversion frequencies. Nucleic Acids Res. 2008;36:e150. doi: 10.1093/nar/gkn691. PubMed DOI PMC

Katsman E., Orlanski S., Martignano F., Eden A., Petrini I., Conticello S.G., Berman B.P. Detecting cell-of-origin and cancer-specific features of cell-free dna with nanopore sequencing. Genome Biol. 2022;23:158. doi: 10.1186/s13059-022-02710-1. PubMed DOI PMC

Korlach J., Bjornson K.P., Chaudhuri B.P., Cicero R.L., Flusberg B.A., Gray J.J., Holden D., Saxena R., Wegener J., Turner S.W. Methods in Enzymology. Volume 472. Elsevier; Amsterdam, The Netherlands: 2010. Real-time DNA sequencing from single polymerase molecules; pp. 431–455. PubMed

Feng Z., Fang G., Korlach J., Clark T., Luong K., Zhang X., Wong W., Schadt E. Detecting DNA modifications from SMRT sequencing data by modeling sequence context dependence of polymerase kinetic. PLoS Comput. Biol. 2013;9:e1002935. doi: 10.1371/journal.pcbi.1002935. PubMed DOI PMC

Flusberg B.A., Webster D.R., Lee J.H., Travers K.J., Olivares E.C., Clark T.A., Korlach J., Turner S.W. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat. Methods. 2010;7:461–465. doi: 10.1038/nmeth.1459. PubMed DOI PMC

Eid J., Fehr A., Gray J., Luong K., Lyle J., Otto G., Peluso P., Rank D., Baybayan P., Bettman B., et al. Real-time DNA sequencing from single polymerase molecules. Science. 2009;323:133–138. doi: 10.1126/science.1162986. PubMed DOI

Ardui S., Ameur A., Vermeesch J.R., Hestand M.S. Single molecule real-time (SMRT) sequencing comes of age: Applications and utilities for medical diagnostics. Nucleic Acids Res. 2018;46:2159–2168. doi: 10.1093/nar/gky066. PubMed DOI PMC

Tse O.Y.O., Jiang P., Cheng S.H., Peng W., Shang H., Wong J., Chan S.L., Poon L.C.Y., Leung T.Y., Chan K.C.A., et al. Genome-wide detection of cytosine methylation by single molecule real-time sequencing. Proc. Natl. Acad. Sci. USA. 2021;118:e2019768118. doi: 10.1073/pnas.2019768118. PubMed DOI PMC

Clark T.A., Lu X., Luong K., Dai Q., Boitano M., Turner S.W., He C., Korlach J. Enhanced 5-methylcytosine detection in single-molecule, real-time sequencing via Tet1 oxidation. BMC Biol. 2013;11:4. doi: 10.1186/1741-7007-11-4. PubMed DOI PMC

Choy L.Y.L., Peng W., Jiang P., Cheng S.H., Yu S.C.Y., Shang H., Olivia Tse O.Y., Wong J., Wong V.W.S., Wong G.L.H., et al. Single-molecule sequencing enables long cell-free DNA detection and direct methylation analysis for cancer patients. Clin. Chem. 2022;68:1151–1163. doi: 10.1093/clinchem/hvac086. PubMed DOI

Feng Y., Zhang Y., Ying C., Wang D., Du C. Nanopore-based fourth-generation DNA sequencing technology. Genom. Proteom. Bioinform. 2015;13:4–16. doi: 10.1016/j.gpb.2015.01.009. PubMed DOI PMC

Deamer D., Akeson M., Branton D. Three decades of nanopore sequencing. Nat. Biotechnol. 2016;34:518–524. doi: 10.1038/nbt.3423. PubMed DOI PMC

Martignano F., Munagala U., Crucitta S., Mingrino A., Semeraro R., Del Re M., Petrini I., Magi A., Conticello S.G. Nanopore sequencing from liquid biopsy: Analysis of copy number variations from cell-free DNA of lung cancer patients. Mol. Cancer. 2021;20:32. doi: 10.1186/s12943-021-01327-5. PubMed DOI PMC

Kuschel L.P., Hench J., Frank S., Hench I.B., Girard E., Blanluet M., Masliah-Planchon J., Misch M., Onken J., Czabanka M., et al. Robust Methylation-based classification of brain tumors using nanopore sequencing. medRxiv. 2021 doi: 10.1101/2021.03.06.21252627. PubMed DOI

Djirackor L., Halldorsson S., Niehusmann P., Leske H., Capper D., Kuschel L.P., Pahnke J., Due-Tønnessen B.J., Langmoen I.A., Sandberg C.J., et al. Intraoperative DNA methylation classification of brain tumors impacts neurosurgical strategy. Neurooncol. Adv. 2021;3:vdab149. doi: 10.1093/noajnl/vdab149. PubMed DOI PMC

Rang F.J., Kloosterman W.P., de Ridder J. From squiggle to basepair: Computational approaches for improving nanopore sequencing read accuracy. Genome Biol. 2018;19:90. doi: 10.1186/s13059-018-1462-9. PubMed DOI PMC

Tyler A.D., Mataseje L., Urfano C.J., Schmidt L., Antonation K.S., Mulvey M.R., Corbett C.R. Evaluation of Oxford Nanopore’s MinION sequencing device for microbial whole genome sequencing applications. Sci. Rep. 2018;8:10931. doi: 10.1038/s41598-018-29334-5. PubMed DOI PMC

Wang Y., Zhao Y., Bollas A., Wang Y., Au K.F. Nanopore sequencing technology, bioinformatics and applications. Nat. Biotechnol. 2021;39:1348–1365. doi: 10.1038/s41587-021-01108-x. PubMed DOI PMC

Oxford Nanopore Releases Short Fragment Mode: A New Tool For Real-Time Sequencing Of Short Fragments of DNA. [(accessed on 20 June 2022)]. Oxford Nanopore Technology News. Available online: https://nanoporetech.com/about-us/news/oxford-nanopore-releases-short-fragment-mode-new-tool-real-time-sequencing-short.

Oxford Nanopore Integrates “Remora”: A Tool To Enable Real-Time, High-Accuracy Epigenetic Insights with Nanopore Sequencing Software MinKNOW. [(accessed on 20 June 2022)]. Oxford Nanopore Technology News. Available online: https://nanoporetech.com/about-us/news/oxford-nanopore-integrates-remora-tool-enable-real-time-high-accuracy-epigenetic.

Brown C.G. Oxford Nanopore Technology Update: CTO Clive G Brown Unveils Latest Sequencing Chemistry with Highest Performance to Date, Short Fragment Mode and Latest Methylation Performance Evaluations. [(accessed on 20 June 2022)]. Oxford Nanopore Technology News. Available online: https://nanoporetech.com/about-us/news/oxford-nanopore-technology-update-cto-clive-g-brown-unveils-latest-sequencing.

Klutstein M., Nejman D., Greenfield R., Cedar H. DNA methylation in cancer and aging. Cancer Res. 2016;76:3446–3450. doi: 10.1158/0008-5472.CAN-15-3278. PubMed DOI

Glezeva N., Moran B., Collier P., Moravec C.S., Phelan D., Donnellan E., Russell-Hallinan A., O’Connor D.P., Gallagher W.M., Gallagher J., et al. Targeted DNA methylation profiling of human cardiac tissue reveals novel epigenetic traits and gene deregulation across different heart failure patient subtypes. Circ. Heart Fail. 2019;12:e005765. doi: 10.1161/CIRCHEARTFAILURE.118.005765. PubMed DOI

Imperiale T.F., Ransohoff D.F., Itzkowitz S.H., Levin T.R., Lavin P., Lidgard G.P., Ahlquist D.A., Berger B.M. Multitarget stool DNA testing for colorectal-cancer screening. N. Engl. J. Med. 2014;370:1287–1297. doi: 10.1056/NEJMoa1311194. PubMed DOI

Lin J.S., Piper M.A., Perdue L.A., Rutter C.M., Webber E.M., O’Connor E., Smith N., Whitlock E.P. Screening for colorectal cancer: Updated evidence report and systematic review for the US preventive services task force. JAMA. 2016;315:2576. doi: 10.1001/jama.2016.3332. PubMed DOI

Potter N.T., Hurban P., White M.N., Whitlock K.D., Lofton-Day C.E., Tetzner R., Koenig T., Quigley N.B., Weiss G. Validation of a real-time PCR—Based qualitative assay for the detection of methylated SEPT9 DNA in human plasma. Clin. Chem. 2014;60:1183–1191. doi: 10.1373/clinchem.2013.221044. PubMed DOI

Oh T., Kim N., Moon Y., Kim M.S., Hoehn B.D., Park C.H., Kim T.S., Kim N.K., Chung H.C., An S. Genome-wide identification and validation of a novel methylation biomarker, SDC2, for blood-based detection of colorectal cancer. J. Mol. Diagn. 2013;15:498–507. doi: 10.1016/j.jmoldx.2013.03.004. PubMed DOI

Han Y.D., Oh T.J., Chung T.-H., Jang H.W., Kim Y.N., An S., Kim N.K. Early detection of colorectal cancer based on presence of methylated syndecan-2 (SDC2) in stool DNA. Clin. Epigenetics. 2019;11:51. doi: 10.1186/s13148-019-0642-0. PubMed DOI PMC

Aubele M., Schmitt M., Napieralski R., Paepke S., Ettl J., Absmaier M., Magdolen V., Martens J., Foekens J.A., Wilhelm O.G., et al. The predictive value of PITX2 DNA methylation for high-risk breast cancer therapy: Current guidelines, medical needs, and challenges. Dis. Markers. 2017;2017:4934608. doi: 10.1155/2017/4934608. PubMed DOI PMC

Schricker G., Napieralski R., Noske A., Piednoir E., Manner O., Schüren E., Lauber J., Perkins J., Magdolen V., Schmitt M., et al. Clinical performance of an analytically validated assay in comparison to microarray technology to assess PITX2 DNA-methylation in breast cancer. Sci. Rep. 2018;8:16861. doi: 10.1038/s41598-018-34919-1. PubMed DOI PMC

Dietrich D. Performance evaluation of the DNA methylation biomarker SHOX2 for the Aid in Diagnosis of Lung Cancer Based on the Analysis of Bronchial Aspirates. Int. J. Oncol. 2012;40:825–832. doi: 10.3892/ijo.2011.1264. PubMed DOI

Weiss G., Schlegel A., Kottwitz D., König T., Tetzner R. Validation of the SHOX2/PTGER4 DNA methylation marker panel for plasma-based discrimination between patients with malignant and nonmalignant lung disease. J. Thorac. Oncol. 2017;12:77–84. doi: 10.1016/j.jtho.2016.08.123. PubMed DOI PMC

Schmidt B., Liebenberg V., Dietrich D., Schlegel T., Kneip C., Seegebarth A., Flemming N., Seemann S., Distler J., Lewin J., et al. SHOX2 DNA methylation is a biomarker for the diagnosis of lung cancer based on bronchial aspirates. BMC Cancer. 2010;10:600. doi: 10.1186/1471-2407-10-600. PubMed DOI PMC

Beltrán-García J., Osca-Verdegal R., Mena-Mollá S., García-Giménez J.L. Epigenetic IVD tests for personalized precision medicine in cancer. Front. Genet. 2019;10:621. doi: 10.3389/fgene.2019.00621. PubMed DOI PMC

Srivastava S. Cancer biomarker discovery and development in gastrointestinal cancers: Early detection research network—A collaborative approach. Gastrointest. Cancer Res. GCR. 2007;1:S60–S63. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...