Phylogenetic and functional characterization of water bears (Tardigrada) tubulins
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36997657
PubMed Central
PMC10063605
DOI
10.1038/s41598-023-31992-z
PII: 10.1038/s41598-023-31992-z
Knihovny.cz E-zdroje
- MeSH
- fylogeneze * MeSH
- Tardigrada * klasifikace MeSH
- tubulin genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- tubulin MeSH
Tardigrades are microscopic ecdysozoans that can withstand extreme environmental conditions. Several tardigrade species undergo reversible morphological transformations and enter into cryptobiosis, which helps them to survive periods of unfavorable environmental conditions. However, the underlying molecular mechanisms of cryptobiosis are mostly unknown. Tubulins are evolutionarily conserved components of the microtubule cytoskeleton that are crucial in many cellular processes. We hypothesize that microtubules are necessary for the morphological changes associated with successful cryptobiosis. The molecular composition of the microtubule cytoskeleton in tardigrades is unknown. Therefore, we analyzed and characterized tardigrade tubulins and identified 79 tardigrade tubulin sequences in eight taxa. We found three α-, seven β-, one γ-, and one ε-tubulin isoform. To verify in silico identified tardigrade tubulins, we also isolated and sequenced nine out of ten predicted Hypsibius exemplaris tubulins. All tardigrade tubulins were localized as expected when overexpressed in mammalian cultured cells: to the microtubules or to the centrosomes. The presence of a functional ε-tubulin, clearly localized to centrioles, is attractive from a phylogenetic point of view. Although the phylogenetically close Nematoda lost their δ- and ε-tubulins, some groups of Arthropoda still possess them. Thus, our data support the current placement of tardigrades into the Panarthropoda clade.
Centre for Genomic Regulation Barcelona Spain
Centre for Nanotechnology and Biotechnology Faculty of Science UJEP Usti Nad Labem Czech Republic
Department of Animal Taxonomy and Ecology Adam Mickiewicz University in Poznań Poznań Poland
Department of Biology Faculty of Science J E Purkyně University Usti Nad Labem Czech Republic
Zobrazit více v PubMed
Fleming JF, Arakawa K. Systematics of tardigrada: A reanalysis of tardigrade taxonomy with specific reference to Guil et al. (2019) Zool. Scr. 2021;50:376–382. doi: 10.1111/zsc.12476. DOI
Møbjerg N, Jørgensen A, Kristensen RM, Neves RC. Morphology and functional anatomy. In: Schill RO, editor. Water Bears: The Biology of Tardigrades. Springer International Publishing; 2018. pp. 57–94.
Halberg KA, Jørgensen A, Møbjerg N. Desiccation tolerance in the tardigrade Richtersius coronifer relies on muscle mediated structural reorganization. PLoS ONE. 2013;8:e85091. doi: 10.1371/journal.pone.0085091. PubMed DOI PMC
Czerneková M, Jönsson KI, Chajec L, Student S, Poprawa I. The structure of the desiccated Richtersius coronifer (Richters, 1903) Protoplasma. 2017;254:1367–1377. doi: 10.1007/s00709-016-1027-2. PubMed DOI
Czerneková M, Vinopal S. The tardigrade cuticle. Limnol. Rev. 2021;21:127–146. doi: 10.2478/limre-2021-0012. DOI
Schill RO, Hengherr S. Environmental adaptations: Desiccation tolerance. In: Schill RO, editor. Water Bears: The Biology of Tardigrades. Springer International Publishing; 2018. pp. 273–293.
Jönsson KI, Borsari S, Rebecchi L. Anhydrobiotic survival in populations of the tardigrades Richtersius coronifer and Ramazzottius oberhaeuseri from Italy and Sweden. Zool. Anzeiger A J. Comp. Zool. 2001;240:419–423. doi: 10.1078/0044-5231-00050. DOI
Rebecchi L, Altiero T, Guidetti R. Anhydrobiosis: the extreme limit of desiccation tolerance. Invertebr. Surv. J. 2007;4:65–81.
Schill RO, Fritz GB. Desiccation tolerance in embryonic stages of the tardigrade. J. Zool. 2008;276:103–107. doi: 10.1111/j.1469-7998.2008.00474.x. DOI
Wełnicz W, Grohme MA, Kaczmarek Ł, Schill RO, Frohme M. Anhydrobiosis in tardigrades—The last decade. J. Insect Physiol. 2011;57:577–583. doi: 10.1016/j.jinsphys.2011.03.019. PubMed DOI
Czernekova M, Jönsson KI. Experimentally induced repeated anhydrobiosis in the eutardigrade Richtersius coronifer. PLoS ONE. 2016;11:e0164062. doi: 10.1371/journal.pone.0164062. PubMed DOI PMC
Guidetti R, Rizzo AM, Altiero T, Rebecchi L. What can we learn from the toughest animals of the Earth? Water bears (tardigrades) as multicellular model organisms in order to perform scientific preparations for lunar exploration. Planet. Space Sci. 2012;74:97–102. doi: 10.1016/j.pss.2012.05.021. DOI
Kaczmarek Ł, et al. Staying young and fit? Ontogenetic and phylogenetic consequences of animal anhydrobiosis. J. Zool. 2019;309:1–11. doi: 10.1111/jzo.12677. DOI
Hengherr S, Brümmer F, Schill RO. Anhydrobiosis in tardigrades and its effects on longevity traits. J. Zool. 2008;275:216–220. doi: 10.1111/j.1469-7998.2008.00427.x. DOI
Arakawa K. Examples of extreme survival: tardigrade genomics and molecular anhydrobiology. Annu. Rev. Anim. Biosci. 2022;10:17–37. doi: 10.1146/annurev-animal-021419-083711. PubMed DOI
Hesgrove C, Boothby TC. The biology of tardigrade disordered proteins in extreme stress tolerance. Cell Commun. Signal. 2020;18:178. doi: 10.1186/s12964-020-00670-2. PubMed DOI PMC
Yagi-Utsumi M, et al. Desiccation-induced fibrous condensation of CAHS protein from an anhydrobiotic tardigrade. Sci. Rep. 2021;11:21328. doi: 10.1038/s41598-021-00724-6. PubMed DOI PMC
Tanaka A, et al. Stress-dependent cell stiffening by tardigrade tolerance proteins that reversibly form a filamentous network and gel. PLOS Biol. 2022;20:e3001780. doi: 10.1371/journal.pbio.3001780. PubMed DOI PMC
Kasianchuk N, Rzymski P, Kaczmarek Ł. The biomedical potential of tardigrade proteins: A review. Biomed. Pharmacother. 2023;158:114063. doi: 10.1016/j.biopha.2022.114063. PubMed DOI
Jørgensen A, Kristensen RM, Møbjerg N. Phylogeny and Integrative Taxonomy of Tardigrada. In: Schill RO, editor. Water Bears: The Biology of Tardigrades. Springer International Publishing; 2018. pp. 95–114.
Mayer G, et al. Selective neuronal staining in tardigrades and onychophorans provides insights into the evolution of segmental ganglia in panarthropods. BMC Evol. Biol. 2013;13:230. doi: 10.1186/1471-2148-13-230. PubMed DOI PMC
Rota-Stabelli O, et al. Ecdysozoan mitogenomics: evidence for a common origin of the legged invertebrates, the Panarthropoda. Genome Biol. Evol. 2010;2:425–440. doi: 10.1093/gbe/evq030. PubMed DOI PMC
Rota-Stabelli O, Daley AC, Pisani D. Molecular timetrees reveal a cambrian colonization of land and a new scenario for ecdysozoan evolution. Curr. Biol. 2013;23:392–398. doi: 10.1016/j.cub.2013.01.026. PubMed DOI
Yoshida Y, et al. Comparative genomics of the tardigrades Hypsibius dujardini and Ramazzottius varieornatus. PLOS Biol. 2017;15:e2002266. doi: 10.1371/journal.pbio.2002266. PubMed DOI PMC
Pollard TD, Goldman RD. Overview of the cytoskeleton from an evolutionary perspective. Cold Spring Harb. Perspect. Biol. 2018;10:a030288. doi: 10.1101/cshperspect.a030288. PubMed DOI PMC
Herrmann H, Strelkov SV. History and phylogeny of intermediate filaments: Now in insects. BMC Biol. 2011;9:16. doi: 10.1186/1741-7007-9-16. PubMed DOI PMC
Goldstein LSB, Gunawardena S. Flying through the Drosophila cytoskeletal genome. J. Cell Biol. 2000;150:F63–F68. doi: 10.1083/jcb.150.2.F63. PubMed DOI PMC
Hering L, Bouameur J-EE, Reichelt J, Magin TM, Mayer G. Novel origin of lamin-derived cytoplasmic intermediate filaments in tardigrades. Elife. 2016;5:1–18. doi: 10.7554/eLife.11117. PubMed DOI PMC
Janke C, Magiera MM. The tubulin code and its role in controlling microtubule properties and functions. Nat. Rev. Mol. Cell Biol. 2020;21:307–326. doi: 10.1038/s41580-020-0214-3. PubMed DOI
Walz B. Molting in Tardigrada. A review including new results on cuticle formation in Macrobiotus hufelandi. In: Nelson DR, editor. Proceedings of the Third International Symposium on the Tardigrada. East Tennessee State University Press; 1982. pp. 129–142.
Gross V, Mayer G. Neural development in the tardigrade Hypsibius dujardini based on anti-acetylated α-tubulin immunolabeling. EvoDevo. 2015;6:12. doi: 10.1186/s13227-015-0008-4. PubMed DOI PMC
Mayer G, Kauschke S, Rüdiger J, Stevenson PA. Neural markers reveal a one-segmented head in tardigrades (water bears) PLoS ONE. 2013;8:e59090. doi: 10.1371/journal.pone.0059090. PubMed DOI PMC
Persson DK, Halberg KA, Jørgensen A, Møbjerg N, Kristensen RM. Neuroanatomy of Halobiotus crispae (Eutardigrada: Hypsibiidae): Tardigrade brain structure supports the clade panarthropoda. J. Morphol. 2012;273:1227–1245. doi: 10.1002/jmor.20054. PubMed DOI
Persson DK, Halberg KA, Jørgensen A, Møbjerg N, Kristensen RM. Brain anatomy of the marine tardigrade Actinarctus doryphorus (Arthrotardigrada) J. Morphol. 2014;275:173–190. doi: 10.1002/jmor.20207. PubMed DOI
Smith FW, Jockusch EL. The metameric pattern of Hypsibius dujardini (Eutardigrada) and its relationship to that of other panarthropods. Front. Zool. 2014;11:66. doi: 10.1186/s12983-014-0066-9. DOI
Schulze C, Neves RC, Schmidt-Rhaesa A. Comparative immunohistochemical investigation on the nervous system of two species of Arthrotardigrada (Heterotardigrada, Tardigrada) Zool. Anz. 2014;253:225–235. doi: 10.1016/j.jcz.2013.11.001. DOI
Zantke J, Wolff C, Scholtz G. Three-dimensional reconstruction of the central nervous system of Macrobiotus hufelandi (Eutardigrada, Parachela): implications for the phylogenetic position of Tardigrada. Zoomorphology. 2008;127:21–36. doi: 10.1007/s00435-007-0045-1. DOI
Garriga E, et al. Large multiple sequence alignments with a root-to-leaf regressive method. Nat. Biotechnol. 2019;37:1466–1470. doi: 10.1038/s41587-019-0333-6. PubMed DOI PMC
Findeisen P, et al. Six subgroups and extensive recent duplications characterize the evolution of the eukaryotic tubulin protein family. Genome Biol. Evol. 2014;6:2274–2288. doi: 10.1093/gbe/evu187. PubMed DOI PMC
Luallen RJ, et al. Discovery of a natural microsporidian pathogen with a broad tissue tropism in Caenorhabditis elegans. PLOS Pathog. 2016;12:e1005724. doi: 10.1371/journal.ppat.1005724. PubMed DOI PMC
Gąsiorek P, Kristensen RM. New marine heterotardigrade lineages (Echiniscoididae) from the tropics. Eur. Zool. J. 2022;89:719–754. doi: 10.1080/24750263.2022.2079737. DOI
Ludueña RF. Possible roles of specific amino acids in β-tubulin isotypes in the growth and maintenance of neurons: novel insights from cephalopod mollusks. Front. Mol. Neurosci. 2022;15:838393. doi: 10.3389/fnmol.2022.838393. PubMed DOI PMC
Wang W, et al. Novel mutations involving βI-, βIIA-, or βIVB-tubulin isotypes with functional resemblance to βIII-tubulin in breast cancer. Protoplasma. 2017;254:1163–1173. doi: 10.1007/s00709-016-1060-1. PubMed DOI
Gąsiorek P, Stec D, Morek W, Michalczyk Ł. An integrative redescription of Hypsibius dujardini (Doyère, 1840), the nominal taxon for Hypsibioidea (Tardigrada: Eutardigrada) Zootaxa. 2018;4415:45. doi: 10.11646/zootaxa.4415.1.2. PubMed DOI
Brunak S, Engelbrecht J, Knudsen S. Prediction of human mRNA donor and acceptor sites from the DNA sequence. J. Mol. Biol. 1991;220:49–65. doi: 10.1016/0022-2836(91)90380-O. PubMed DOI
Hebsgaard S. Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information. Nucleic Acids Res. 1996;24:3439–3452. doi: 10.1093/nar/24.17.3439. PubMed DOI PMC
Yutin N, Koonin EV. Archaeal origin of tubulin. Biol. Direct. 2012;7:10. doi: 10.1186/1745-6150-7-10. PubMed DOI PMC
Zhao Z, et al. Molecular evolution and functional divergence of tubulin superfamily in the fungal tree of life. Sci. Rep. 2015;4:6746. doi: 10.1038/srep06746. PubMed DOI PMC
Morek W, et al. Redescription of Milnesium alpigenum Ehrenberg, 1853 (Tardigrada: Apochela) and a description of Milnesium inceptum sp. nov., a tardigrade laboratory model. Zootaxa. 2019;4586:35–64. doi: 10.11646/zootaxa.4586.1.2. PubMed DOI
Bertolani R, Kinchin IM. A new species of Ramazzottius (Tardigrada, Hypsibiidae) in a rain gutter sediment from England. Zool. J. Linn. Soc. 1993;109:327–333. doi: 10.1111/j.1096-3642.1993.tb02538.x. DOI
Hashimoto T, et al. Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein. Nat. Commun. 2016;7:12808. doi: 10.1038/ncomms12808. PubMed DOI PMC
Knossow M, Campanacci V, Khodja LA, Gigant B. The mechanism of tubulin assembly into microtubules: Insights from structural studies. iScience. 2020;23:101511. doi: 10.1016/j.isci.2020.101511. PubMed DOI PMC
Szyk A, Deaconescu AM, Piszczek G, Roll-Mecak A. Tubulin tyrosine ligase structure reveals adaptation of an ancient fold to bind and modify tubulin. Nat. Struct. Mol. Biol. 2011;18:1250–1258. doi: 10.1038/nsmb.2148. PubMed DOI PMC
Roszkowska M, et al. Tips and tricks how to culture water bears: Simple protocols for culturing eutardigrades (Tardigrada) under laboratory conditions. Eur. Zool. J. 2021;88:449–465. doi: 10.1080/24750263.2021.1881631. DOI
Li G, Moore JK. Microtubule dynamics at low temperature: Evidence that tubulin recycling limits assembly. Mol. Biol. Cell. 2020;31:1154–1166. doi: 10.1091/mbc.E19-11-0634. PubMed DOI PMC
Turk E, et al. Zeta-tubulin is a member of a conserved tubulin module and is a component of the centriolar basal foot in multiciliated cells. Curr. Biol. 2015;25:2177–2183. doi: 10.1016/j.cub.2015.06.063. PubMed DOI PMC
Smith FW, Bartels PJ, Goldstein B. A hypothesis for the composition of the tardigrade brain and its implications for panarthropod brain evolution. Integr. Comp. Biol. 2017;57:546–559. doi: 10.1093/icb/icx081. PubMed DOI
Stathatos GG, Dunleavy JEM, Zenker J, O’Bryan MK. Delta and epsilon tubulin in mammalian development. Trends Cell Biol. 2021;31:774–787. doi: 10.1016/j.tcb.2021.03.010. PubMed DOI
Chang P, Giddings TH, Winey M, Stearns T. ɛ-Tubulin is required for centriole duplication and microtubule organization. Nat. Cell Biol. 2003;5:71–76. doi: 10.1038/ncb900. PubMed DOI
Roll-Mecak A. The tubulin code in microtubule dynamics and information encoding. Dev. Cell. 2020;54:7–20. doi: 10.1016/j.devcel.2020.06.008. PubMed DOI PMC
Kamilari M, Jørgensen A, Schiøtt M, Møbjerg N. Comparative transcriptomics suggest unique molecular adaptations within tardigrade lineages. BMC Genomics. 2019;20:607. doi: 10.1186/s12864-019-5912-x. PubMed DOI PMC
Mapalo MA, et al. The unique antimicrobial recognition and signaling pathways in tardigrades with a comparison across ecdysozoa. Genes Genomes Genet. 2020;10:1137–1148. PubMed PMC
Mapalo MA, Stec D, Mirano-Bafscos D, Michalczyk Ł. Mesobiotus philippinicus sp. nov., the first limnoterrestrial tardigrade from the Philippines. Zootaxa. 2016;4126:411. doi: 10.11646/zootaxa.4126.3.6. PubMed DOI
Perry E, Miller WR, Kaczmarek Ł. Recommended abbreviations for the names of genera of the phylum Tardigrada. Zootaxa. 2019;4608:145. doi: 10.11646/zootaxa.4608.1.8. PubMed DOI
Camacho C, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421. doi: 10.1186/1471-2105-10-421. PubMed DOI PMC
Sievers F, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011;7:539. doi: 10.1038/msb.2011.75. PubMed DOI PMC
Mistry J, et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021;49:D412–D419. doi: 10.1093/nar/gkaa913. PubMed DOI PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Lefort V, Desper R, Gascuel O. FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program. Mol. Biol. Evol. 2015;32:2798–2800. doi: 10.1093/molbev/msv150. PubMed DOI PMC
Littler DS, Hellebust JA, Litter MM, Craigie JS. Handbook of Phycological Methods: Culture Methods and Growth Measurements. Cambridge University Press; 1973.
Bindels DS, et al. MScarlet: A bright monomeric red fluorescent protein for cellular imaging. Nat. Methods. 2016;14:53–56. doi: 10.1038/nmeth.4074. PubMed DOI
Clift D, et al. A method for the acute and rapid degradation of endogenous proteins. Cell. 2017;171:1692–1706.e18. doi: 10.1016/j.cell.2017.10.033. PubMed DOI PMC
Schindelin J, et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC