Phylogenetic and functional characterization of water bears (Tardigrada) tubulins

. 2023 Mar 30 ; 13 (1) : 5194. [epub] 20230330

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36997657
Odkazy

PubMed 36997657
PubMed Central PMC10063605
DOI 10.1038/s41598-023-31992-z
PII: 10.1038/s41598-023-31992-z
Knihovny.cz E-zdroje

Tardigrades are microscopic ecdysozoans that can withstand extreme environmental conditions. Several tardigrade species undergo reversible morphological transformations and enter into cryptobiosis, which helps them to survive periods of unfavorable environmental conditions. However, the underlying molecular mechanisms of cryptobiosis are mostly unknown. Tubulins are evolutionarily conserved components of the microtubule cytoskeleton that are crucial in many cellular processes. We hypothesize that microtubules are necessary for the morphological changes associated with successful cryptobiosis. The molecular composition of the microtubule cytoskeleton in tardigrades is unknown. Therefore, we analyzed and characterized tardigrade tubulins and identified 79 tardigrade tubulin sequences in eight taxa. We found three α-, seven β-, one γ-, and one ε-tubulin isoform. To verify in silico identified tardigrade tubulins, we also isolated and sequenced nine out of ten predicted Hypsibius exemplaris tubulins. All tardigrade tubulins were localized as expected when overexpressed in mammalian cultured cells: to the microtubules or to the centrosomes. The presence of a functional ε-tubulin, clearly localized to centrioles, is attractive from a phylogenetic point of view. Although the phylogenetically close Nematoda lost their δ- and ε-tubulins, some groups of Arthropoda still possess them. Thus, our data support the current placement of tardigrades into the Panarthropoda clade.

Zobrazit více v PubMed

Fleming JF, Arakawa K. Systematics of tardigrada: A reanalysis of tardigrade taxonomy with specific reference to Guil et al. (2019) Zool. Scr. 2021;50:376–382. doi: 10.1111/zsc.12476. DOI

Møbjerg N, Jørgensen A, Kristensen RM, Neves RC. Morphology and functional anatomy. In: Schill RO, editor. Water Bears: The Biology of Tardigrades. Springer International Publishing; 2018. pp. 57–94.

Halberg KA, Jørgensen A, Møbjerg N. Desiccation tolerance in the tardigrade Richtersius coronifer relies on muscle mediated structural reorganization. PLoS ONE. 2013;8:e85091. doi: 10.1371/journal.pone.0085091. PubMed DOI PMC

Czerneková M, Jönsson KI, Chajec L, Student S, Poprawa I. The structure of the desiccated Richtersius coronifer (Richters, 1903) Protoplasma. 2017;254:1367–1377. doi: 10.1007/s00709-016-1027-2. PubMed DOI

Czerneková M, Vinopal S. The tardigrade cuticle. Limnol. Rev. 2021;21:127–146. doi: 10.2478/limre-2021-0012. DOI

Schill RO, Hengherr S. Environmental adaptations: Desiccation tolerance. In: Schill RO, editor. Water Bears: The Biology of Tardigrades. Springer International Publishing; 2018. pp. 273–293.

Jönsson KI, Borsari S, Rebecchi L. Anhydrobiotic survival in populations of the tardigrades Richtersius coronifer and Ramazzottius oberhaeuseri from Italy and Sweden. Zool. Anzeiger A J. Comp. Zool. 2001;240:419–423. doi: 10.1078/0044-5231-00050. DOI

Rebecchi L, Altiero T, Guidetti R. Anhydrobiosis: the extreme limit of desiccation tolerance. Invertebr. Surv. J. 2007;4:65–81.

Schill RO, Fritz GB. Desiccation tolerance in embryonic stages of the tardigrade. J. Zool. 2008;276:103–107. doi: 10.1111/j.1469-7998.2008.00474.x. DOI

Wełnicz W, Grohme MA, Kaczmarek Ł, Schill RO, Frohme M. Anhydrobiosis in tardigrades—The last decade. J. Insect Physiol. 2011;57:577–583. doi: 10.1016/j.jinsphys.2011.03.019. PubMed DOI

Czernekova M, Jönsson KI. Experimentally induced repeated anhydrobiosis in the eutardigrade Richtersius coronifer. PLoS ONE. 2016;11:e0164062. doi: 10.1371/journal.pone.0164062. PubMed DOI PMC

Guidetti R, Rizzo AM, Altiero T, Rebecchi L. What can we learn from the toughest animals of the Earth? Water bears (tardigrades) as multicellular model organisms in order to perform scientific preparations for lunar exploration. Planet. Space Sci. 2012;74:97–102. doi: 10.1016/j.pss.2012.05.021. DOI

Kaczmarek Ł, et al. Staying young and fit? Ontogenetic and phylogenetic consequences of animal anhydrobiosis. J. Zool. 2019;309:1–11. doi: 10.1111/jzo.12677. DOI

Hengherr S, Brümmer F, Schill RO. Anhydrobiosis in tardigrades and its effects on longevity traits. J. Zool. 2008;275:216–220. doi: 10.1111/j.1469-7998.2008.00427.x. DOI

Arakawa K. Examples of extreme survival: tardigrade genomics and molecular anhydrobiology. Annu. Rev. Anim. Biosci. 2022;10:17–37. doi: 10.1146/annurev-animal-021419-083711. PubMed DOI

Hesgrove C, Boothby TC. The biology of tardigrade disordered proteins in extreme stress tolerance. Cell Commun. Signal. 2020;18:178. doi: 10.1186/s12964-020-00670-2. PubMed DOI PMC

Yagi-Utsumi M, et al. Desiccation-induced fibrous condensation of CAHS protein from an anhydrobiotic tardigrade. Sci. Rep. 2021;11:21328. doi: 10.1038/s41598-021-00724-6. PubMed DOI PMC

Tanaka A, et al. Stress-dependent cell stiffening by tardigrade tolerance proteins that reversibly form a filamentous network and gel. PLOS Biol. 2022;20:e3001780. doi: 10.1371/journal.pbio.3001780. PubMed DOI PMC

Kasianchuk N, Rzymski P, Kaczmarek Ł. The biomedical potential of tardigrade proteins: A review. Biomed. Pharmacother. 2023;158:114063. doi: 10.1016/j.biopha.2022.114063. PubMed DOI

Jørgensen A, Kristensen RM, Møbjerg N. Phylogeny and Integrative Taxonomy of Tardigrada. In: Schill RO, editor. Water Bears: The Biology of Tardigrades. Springer International Publishing; 2018. pp. 95–114.

Mayer G, et al. Selective neuronal staining in tardigrades and onychophorans provides insights into the evolution of segmental ganglia in panarthropods. BMC Evol. Biol. 2013;13:230. doi: 10.1186/1471-2148-13-230. PubMed DOI PMC

Rota-Stabelli O, et al. Ecdysozoan mitogenomics: evidence for a common origin of the legged invertebrates, the Panarthropoda. Genome Biol. Evol. 2010;2:425–440. doi: 10.1093/gbe/evq030. PubMed DOI PMC

Rota-Stabelli O, Daley AC, Pisani D. Molecular timetrees reveal a cambrian colonization of land and a new scenario for ecdysozoan evolution. Curr. Biol. 2013;23:392–398. doi: 10.1016/j.cub.2013.01.026. PubMed DOI

Yoshida Y, et al. Comparative genomics of the tardigrades Hypsibius dujardini and Ramazzottius varieornatus. PLOS Biol. 2017;15:e2002266. doi: 10.1371/journal.pbio.2002266. PubMed DOI PMC

Pollard TD, Goldman RD. Overview of the cytoskeleton from an evolutionary perspective. Cold Spring Harb. Perspect. Biol. 2018;10:a030288. doi: 10.1101/cshperspect.a030288. PubMed DOI PMC

Herrmann H, Strelkov SV. History and phylogeny of intermediate filaments: Now in insects. BMC Biol. 2011;9:16. doi: 10.1186/1741-7007-9-16. PubMed DOI PMC

Goldstein LSB, Gunawardena S. Flying through the Drosophila cytoskeletal genome. J. Cell Biol. 2000;150:F63–F68. doi: 10.1083/jcb.150.2.F63. PubMed DOI PMC

Hering L, Bouameur J-EE, Reichelt J, Magin TM, Mayer G. Novel origin of lamin-derived cytoplasmic intermediate filaments in tardigrades. Elife. 2016;5:1–18. doi: 10.7554/eLife.11117. PubMed DOI PMC

Janke C, Magiera MM. The tubulin code and its role in controlling microtubule properties and functions. Nat. Rev. Mol. Cell Biol. 2020;21:307–326. doi: 10.1038/s41580-020-0214-3. PubMed DOI

Walz B. Molting in Tardigrada. A review including new results on cuticle formation in Macrobiotus hufelandi. In: Nelson DR, editor. Proceedings of the Third International Symposium on the Tardigrada. East Tennessee State University Press; 1982. pp. 129–142.

Gross V, Mayer G. Neural development in the tardigrade Hypsibius dujardini based on anti-acetylated α-tubulin immunolabeling. EvoDevo. 2015;6:12. doi: 10.1186/s13227-015-0008-4. PubMed DOI PMC

Mayer G, Kauschke S, Rüdiger J, Stevenson PA. Neural markers reveal a one-segmented head in tardigrades (water bears) PLoS ONE. 2013;8:e59090. doi: 10.1371/journal.pone.0059090. PubMed DOI PMC

Persson DK, Halberg KA, Jørgensen A, Møbjerg N, Kristensen RM. Neuroanatomy of Halobiotus crispae (Eutardigrada: Hypsibiidae): Tardigrade brain structure supports the clade panarthropoda. J. Morphol. 2012;273:1227–1245. doi: 10.1002/jmor.20054. PubMed DOI

Persson DK, Halberg KA, Jørgensen A, Møbjerg N, Kristensen RM. Brain anatomy of the marine tardigrade Actinarctus doryphorus (Arthrotardigrada) J. Morphol. 2014;275:173–190. doi: 10.1002/jmor.20207. PubMed DOI

Smith FW, Jockusch EL. The metameric pattern of Hypsibius dujardini (Eutardigrada) and its relationship to that of other panarthropods. Front. Zool. 2014;11:66. doi: 10.1186/s12983-014-0066-9. DOI

Schulze C, Neves RC, Schmidt-Rhaesa A. Comparative immunohistochemical investigation on the nervous system of two species of Arthrotardigrada (Heterotardigrada, Tardigrada) Zool. Anz. 2014;253:225–235. doi: 10.1016/j.jcz.2013.11.001. DOI

Zantke J, Wolff C, Scholtz G. Three-dimensional reconstruction of the central nervous system of Macrobiotus hufelandi (Eutardigrada, Parachela): implications for the phylogenetic position of Tardigrada. Zoomorphology. 2008;127:21–36. doi: 10.1007/s00435-007-0045-1. DOI

Garriga E, et al. Large multiple sequence alignments with a root-to-leaf regressive method. Nat. Biotechnol. 2019;37:1466–1470. doi: 10.1038/s41587-019-0333-6. PubMed DOI PMC

Findeisen P, et al. Six subgroups and extensive recent duplications characterize the evolution of the eukaryotic tubulin protein family. Genome Biol. Evol. 2014;6:2274–2288. doi: 10.1093/gbe/evu187. PubMed DOI PMC

Luallen RJ, et al. Discovery of a natural microsporidian pathogen with a broad tissue tropism in Caenorhabditis elegans. PLOS Pathog. 2016;12:e1005724. doi: 10.1371/journal.ppat.1005724. PubMed DOI PMC

Gąsiorek P, Kristensen RM. New marine heterotardigrade lineages (Echiniscoididae) from the tropics. Eur. Zool. J. 2022;89:719–754. doi: 10.1080/24750263.2022.2079737. DOI

Ludueña RF. Possible roles of specific amino acids in β-tubulin isotypes in the growth and maintenance of neurons: novel insights from cephalopod mollusks. Front. Mol. Neurosci. 2022;15:838393. doi: 10.3389/fnmol.2022.838393. PubMed DOI PMC

Wang W, et al. Novel mutations involving βI-, βIIA-, or βIVB-tubulin isotypes with functional resemblance to βIII-tubulin in breast cancer. Protoplasma. 2017;254:1163–1173. doi: 10.1007/s00709-016-1060-1. PubMed DOI

Gąsiorek P, Stec D, Morek W, Michalczyk Ł. An integrative redescription of Hypsibius dujardini (Doyère, 1840), the nominal taxon for Hypsibioidea (Tardigrada: Eutardigrada) Zootaxa. 2018;4415:45. doi: 10.11646/zootaxa.4415.1.2. PubMed DOI

Brunak S, Engelbrecht J, Knudsen S. Prediction of human mRNA donor and acceptor sites from the DNA sequence. J. Mol. Biol. 1991;220:49–65. doi: 10.1016/0022-2836(91)90380-O. PubMed DOI

Hebsgaard S. Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information. Nucleic Acids Res. 1996;24:3439–3452. doi: 10.1093/nar/24.17.3439. PubMed DOI PMC

Yutin N, Koonin EV. Archaeal origin of tubulin. Biol. Direct. 2012;7:10. doi: 10.1186/1745-6150-7-10. PubMed DOI PMC

Zhao Z, et al. Molecular evolution and functional divergence of tubulin superfamily in the fungal tree of life. Sci. Rep. 2015;4:6746. doi: 10.1038/srep06746. PubMed DOI PMC

Morek W, et al. Redescription of Milnesium alpigenum Ehrenberg, 1853 (Tardigrada: Apochela) and a description of Milnesium inceptum sp. nov., a tardigrade laboratory model. Zootaxa. 2019;4586:35–64. doi: 10.11646/zootaxa.4586.1.2. PubMed DOI

Bertolani R, Kinchin IM. A new species of Ramazzottius (Tardigrada, Hypsibiidae) in a rain gutter sediment from England. Zool. J. Linn. Soc. 1993;109:327–333. doi: 10.1111/j.1096-3642.1993.tb02538.x. DOI

Hashimoto T, et al. Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein. Nat. Commun. 2016;7:12808. doi: 10.1038/ncomms12808. PubMed DOI PMC

Knossow M, Campanacci V, Khodja LA, Gigant B. The mechanism of tubulin assembly into microtubules: Insights from structural studies. iScience. 2020;23:101511. doi: 10.1016/j.isci.2020.101511. PubMed DOI PMC

Szyk A, Deaconescu AM, Piszczek G, Roll-Mecak A. Tubulin tyrosine ligase structure reveals adaptation of an ancient fold to bind and modify tubulin. Nat. Struct. Mol. Biol. 2011;18:1250–1258. doi: 10.1038/nsmb.2148. PubMed DOI PMC

Roszkowska M, et al. Tips and tricks how to culture water bears: Simple protocols for culturing eutardigrades (Tardigrada) under laboratory conditions. Eur. Zool. J. 2021;88:449–465. doi: 10.1080/24750263.2021.1881631. DOI

Li G, Moore JK. Microtubule dynamics at low temperature: Evidence that tubulin recycling limits assembly. Mol. Biol. Cell. 2020;31:1154–1166. doi: 10.1091/mbc.E19-11-0634. PubMed DOI PMC

Turk E, et al. Zeta-tubulin is a member of a conserved tubulin module and is a component of the centriolar basal foot in multiciliated cells. Curr. Biol. 2015;25:2177–2183. doi: 10.1016/j.cub.2015.06.063. PubMed DOI PMC

Smith FW, Bartels PJ, Goldstein B. A hypothesis for the composition of the tardigrade brain and its implications for panarthropod brain evolution. Integr. Comp. Biol. 2017;57:546–559. doi: 10.1093/icb/icx081. PubMed DOI

Stathatos GG, Dunleavy JEM, Zenker J, O’Bryan MK. Delta and epsilon tubulin in mammalian development. Trends Cell Biol. 2021;31:774–787. doi: 10.1016/j.tcb.2021.03.010. PubMed DOI

Chang P, Giddings TH, Winey M, Stearns T. ɛ-Tubulin is required for centriole duplication and microtubule organization. Nat. Cell Biol. 2003;5:71–76. doi: 10.1038/ncb900. PubMed DOI

Roll-Mecak A. The tubulin code in microtubule dynamics and information encoding. Dev. Cell. 2020;54:7–20. doi: 10.1016/j.devcel.2020.06.008. PubMed DOI PMC

Kamilari M, Jørgensen A, Schiøtt M, Møbjerg N. Comparative transcriptomics suggest unique molecular adaptations within tardigrade lineages. BMC Genomics. 2019;20:607. doi: 10.1186/s12864-019-5912-x. PubMed DOI PMC

Mapalo MA, et al. The unique antimicrobial recognition and signaling pathways in tardigrades with a comparison across ecdysozoa. Genes Genomes Genet. 2020;10:1137–1148. PubMed PMC

Mapalo MA, Stec D, Mirano-Bafscos D, Michalczyk Ł. Mesobiotus philippinicus sp. nov., the first limnoterrestrial tardigrade from the Philippines. Zootaxa. 2016;4126:411. doi: 10.11646/zootaxa.4126.3.6. PubMed DOI

Perry E, Miller WR, Kaczmarek Ł. Recommended abbreviations for the names of genera of the phylum Tardigrada. Zootaxa. 2019;4608:145. doi: 10.11646/zootaxa.4608.1.8. PubMed DOI

Camacho C, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421. doi: 10.1186/1471-2105-10-421. PubMed DOI PMC

Sievers F, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011;7:539. doi: 10.1038/msb.2011.75. PubMed DOI PMC

Mistry J, et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021;49:D412–D419. doi: 10.1093/nar/gkaa913. PubMed DOI PMC

Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC

Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC

Lefort V, Desper R, Gascuel O. FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program. Mol. Biol. Evol. 2015;32:2798–2800. doi: 10.1093/molbev/msv150. PubMed DOI PMC

Littler DS, Hellebust JA, Litter MM, Craigie JS. Handbook of Phycological Methods: Culture Methods and Growth Measurements. Cambridge University Press; 1973.

Bindels DS, et al. MScarlet: A bright monomeric red fluorescent protein for cellular imaging. Nat. Methods. 2016;14:53–56. doi: 10.1038/nmeth.4074. PubMed DOI

Clift D, et al. A method for the acute and rapid degradation of endogenous proteins. Cell. 2017;171:1692–1706.e18. doi: 10.1016/j.cell.2017.10.033. PubMed DOI PMC

Schindelin J, et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...