Extracellular vesicles shuttle protective messages against heat stress in bovine granulosa cells

. 2020 Sep 25 ; 10 (1) : 15824. [epub] 20200925

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32978452
Odkazy

PubMed 32978452
PubMed Central PMC7519046
DOI 10.1038/s41598-020-72706-z
PII: 10.1038/s41598-020-72706-z
Knihovny.cz E-zdroje

Elevated summer temperature is reported to be the leading cause of stress in dairy and beef cows, which negatively affects various reproductive functions. Follicular cells respond to heat stress (HS) by activating the expression of heat shock family proteins (HSPs) and other antioxidants. HS is reported to negatively affect the bi-directional communication between the follicular cells and the oocyte, which is partly mediated by follicular fluid extracellular vesicles (EVs) released from surrounding cells. As carriers of bioactive molecules (DNA, RNA, protein, and lipids), the involvement of EVs in mediating the stress response in follicular cells is not fully understood. Here we used an in vitro model to decipher the cellular and EV-coupled miRNAs of bovine granulosa cells in response to HS. Moreover, the protective role of stress-related EVs against subsequent HS was assessed. For this, bovine granulosa cells from smaller follicles were cultured in vitro and after sub-confluency, cells were either kept at 37 °C or subjected to HS (42 °C). Results showed that granulosa cells exposed to HS increased the accumulation of ROS, total oxidized protein, apoptosis, and the expression of HSPs and antioxidants, while the viability of cells was reduced. Moreover, 14 and 6 miRNAs were differentially expressed in heat-stressed granulosa cells and the corresponding EVs, respectively. Supplementation of stress-related EVs in cultured granulosa cells has induced adaptive response to subsequent HS. However, this potential was not pronounced when the cells were kept under 37 °C. Taking together, EVs generated from granulosa cells exposed to HS has the potential to shuttle bioactive molecules to recipient cells and make them robust to subsequent HS.

Zobrazit více v PubMed

Takahashi M. Heat stress on reproductive function and fertility in mammals. Reprod. Med. Biol. 2012;11:37–47. doi: 10.1007/s12522-011-0105-6. PubMed DOI PMC

Wolfenson D, Roth Z, Meidan R. Impaired reproduction in heat-stressed cattle: basic and applied aspects. Anim. Reprod. Sci. 2000;60–61:535–547. doi: 10.1016/S0378-4320(00)00102-0. PubMed DOI

Wilson SJ, et al. Effects of controlled heat stress on ovarian function of dairy cattle. 1. Lactating cows. J. Dairy Sci. 1998;81:2124–2131. doi: 10.3168/jds.S0022-0302(98)75788-1. PubMed DOI

Wegner K, Lambertz C, Das G, Reiner G, Gauly M. (2016) Effects of temperature and temperature-humidity index on the reproductive performance of sows during summer months under a temperate climate. Anim. Sci. J. Nihon chikusan Gakkaiho. 2016;87:1334–1339. doi: 10.1111/asj.12569. PubMed DOI

Sartori R, et al. Fertilization and early embryonic development in heifers and lactating cows in summer and lactating and dry cows in winter. J. Dairy Sci. 2002;85:2803–2812. doi: 10.3168/jds.S0022-0302(02)74367-1. PubMed DOI

de Rensis F, Scaramuzzi RJ. Heat stress and seasonal effects on reproduction in the dairy cow—a review. Theriogenology. 2003;60:1139–1151. doi: 10.1016/s0093-691x(03)00126-2. PubMed DOI

Roth Z, Meidan R, Shaham-Albalancy A, Braw-Tal R, Wolfenson D. Delayed effect of heat stress on steroid production in medium-sized and preovulatory bovine follicles. Reproduction (Cambridge, England) 2001;121:745–751. doi: 10.1530/rep.0.1210745. PubMed DOI

Nabenishi H, et al. The effects of cysteine addition during in vitro maturation on the developmental competence, ROS, GSH and apoptosis level of bovine oocytes exposed to heat stress. Zygote (Cambridge, England) 2012;20:249–259. doi: 10.1017/S0967199411000220. PubMed DOI

Roth Z, Hansen PJ. Disruption of nuclear maturation and rearrangement of cytoskeletal elements in bovine oocytes exposed to heat shock during maturation. Reproduction (Cambridge, England) 2005;129:235–244. doi: 10.1530/rep.1.00394. PubMed DOI

Calderwood SK, Stevenson MA, Murshid A. Heat shock proteins, autoimmunity, and cancer treatment. Autoimmune Dis. 2012;2012:486069. doi: 10.1155/2012/486069. PubMed DOI PMC

Hou C-H, Lin F-L, Hou S-M, Liu J-F. Hyperthermia induces apoptosis through endoplasmic reticulum and reactive oxygen species in human osteosarcoma cells. Int. J. Mol. Sci. 2014;15:17380–17395. doi: 10.3390/ijms151017380. PubMed DOI PMC

Paul C, Teng S, Saunders PTK. A single, mild, transient scrotal heat stress causes hypoxia and oxidative stress in mouse testes, which induces germ cell death. Biol. Reprod. 2009;80:913–919. doi: 10.1095/biolreprod.108.071779. PubMed DOI PMC

Liu Z-Q, et al. Expression of PUMA in follicular granulosa cells regulated by FoxO1 activation during oxidative stress. Reprod. Sci. 2015;22:696–705. doi: 10.1177/1933719114556483. PubMed DOI PMC

Feder ME, Hofmann GE. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 1999;61:243–282. doi: 10.1146/annurev.physiol.61.1.243. PubMed DOI

Horowitz M. In: Progress in Brain Research: Neurobiology of Hyperthermia. Sharma HS, editor. Amsterdam: Elsevier; 2007. pp. 373–392.

Alemu TW, et al. Oxidative and endoplasmic reticulum stress defense mechanisms of bovine granulosa cells exposed to heat stress. Theriogenology. 2018;110:130–141. doi: 10.1016/j.theriogenology.2017.12.042. PubMed DOI

Li J, et al. Effects of chronic heat stress on granulosa cell apoptosis and follicular atresia in mouse ovary. J. Anim. Sci. Biotechnol. 2016;7:57. doi: 10.1186/s40104-016-0116-6. PubMed DOI PMC

Tsuboyama K, Tadakuma H, Tomari Y. Conformational activation of argonaute by distinct yet coordinated actions of the Hsp70 and Hsp90 chaperone systems. Mol. Cell. 2018;70:722–729.e4. doi: 10.1016/j.molcel.2018.04.010. PubMed DOI

Santos HB, et al. Ovarian follicular atresia is mediated by heterophagy, autophagy, and apoptosis in Prochilodus argenteus and Leporinus taeniatus (Teleostei: Characiformes) Theriogenology. 2008;70:1449–1460. doi: 10.1016/j.theriogenology.2008.06.091. PubMed DOI

Yang Y, et al. Luman recruiting factor regulates endoplasmic reticulum stress in mouse ovarian granulosa cell apoptosis. Theriogenology. 2013;79:633–9.e1–3. doi: 10.1016/j.theriogenology.2012.11.017. PubMed DOI

Matzuk MM, Burns KH, Viveiros MM, Eppig JJ. Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science (New York, N.Y.) 2002;296:2178–2180. doi: 10.1126/science.1071965. PubMed DOI

Ahmed KA, Xiang J. Mechanisms of cellular communication through intercellular protein transfer. J. Cell Mol. Med. 2011;15:1458–1473. doi: 10.1111/j.1582-4934.2010.01008.x. PubMed DOI PMC

de Maio A, Vega VL, Contreras JE. Gap junctions, homeostasis, and injury. J. Cell. Physiol. 2002;191:269–282. doi: 10.1002/jcp.10108. PubMed DOI

Gould SJ, Raposo G. As we wait: coping with an imperfect nomenclature for extracellular vesicles. J. Extracell. Vesicles. 2013 doi: 10.3402/jev.v2i0.20389. PubMed DOI PMC

Yanez-Mo M, et al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles. 2015;4:27066. doi: 10.3402/jev.v4.27066. PubMed DOI PMC

Lee Y, El Andaloussi S, Wood MJA. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum. Mol. Genet. 2012;21:R125–R134. doi: 10.1093/hmg/dds317. PubMed DOI

Valadi H, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007;9:654–659. doi: 10.1038/ncb1596. PubMed DOI

Sohel MMH, et al. Exosomal and non-exosomal transport of extra-cellular microRNAs in follicular fluid: implications for bovine oocyte developmental competence. PLoS ONE. 2013;8:e78505. doi: 10.1371/journal.pone.0078505. PubMed DOI PMC

Navakanitworakul R, et al. Characterization and small RNA content of extracellular vesicles in follicular fluid of developing bovine antral follicles. Sci. Rep. 2016;6:25486. doi: 10.1038/srep25486. PubMed DOI PMC

Hailay T, et al. Extracellular vesicle-coupled miRNA profiles in follicular fluid of cows with divergent post-calving metabolic status. Sci. Rep. 2019;9:12851. doi: 10.1038/s41598-019-49029-9. PubMed DOI PMC

Franchi A, Moreno-Irusta A, Dominguez EM, Adre AJ, Giojalas LC. Extracellular vesicles from oviductal isthmus and ampulla stimulate the induced acrosome reaction and signaling events associated with capacitation in bovine spermatozoa. J. Cell. Biochem. 2020;121:2877–2888. doi: 10.1002/jcb.29522. PubMed DOI

Saeed-Zidane M, et al. Cellular and exosome mediated molecular defense mechanism in bovine granulosa cells exposed to oxidative stress. PLoS ONE. 2017;12:e0187569. doi: 10.1371/journal.pone.0187569. PubMed DOI PMC

da Silveira JC, et al. Supplementation with small-extracellular vesicles from ovarian follicular fluid during in vitro production modulates bovine embryo development. PLoS ONE. 2017;12:e0179451–e0179451. doi: 10.1371/journal.pone.0179451. PubMed DOI PMC

de Maio A. Extracellular heat shock proteins, cellular export vesicles, and the Stress Observation System: a form of communication during injury, infection, and cell damage. It is never known how far a controversial finding will go! Dedicated to Ferruccio Ritossa. Cell Stress Chaperones. 2011;16:235–249. doi: 10.1007/s12192-010-0236-4. PubMed DOI PMC

Rodrigues TA, et al. Follicular fluid exosomes act on the bovine oocyte to improve oocyte competence to support development and survival to heat shock. Reprod. Fertil. Dev. 2019;31:888–897. doi: 10.1071/RD18450. PubMed DOI

Hightower LE, Guidon PT. Selective release from cultured mammalian cells of heat-shock (stress) proteins that resemble glia-axon transfer proteins. J. Cell. Physiol. 1989;138:257–266. doi: 10.1002/jcp.1041380206. PubMed DOI

Tsutsumi S, Neckers L. Extracellular heat shock protein 90: a role for a molecular chaperone in cell motility and cancer metastasis. Cancer Sci. 2007;98:1536–1539. doi: 10.1111/j.1349-7006.2007.00561.x. PubMed DOI PMC

Sidera K, Patsavoudi E. Extracellular HSP90: conquering the cell surface. Cell Cycle (Georgetown, Tex.) 2008;7:1564–1568. doi: 10.4161/cc.7.11.6054. PubMed DOI

Kern J, et al. GRP-78 secreted by tumor cells blocks the antiangiogenic activity of bortezomib. Blood. 2009;114:3960–3967. doi: 10.1182/blood-2009-03-209668. PubMed DOI

Poirier M, et al. Metabolism-associated genome-wide epigenetic changes in bovine oocytes during early lactation. Sci. Rep. 2020;10:2345. doi: 10.1038/s41598-020-59410-8. PubMed DOI PMC

Wakayo BU, Brar PS, Prabhakar S. Review on mechanisms of dairy summer infertility and implications for hormonal intervention. Open Vet. J. 2015;5:6–10. PubMed PMC

Badinga L, Thatcher WW, Diaz T, Drost M, Wolfenson D. Effect of environmental heat stress on follicular development and steroidogenesis in lactating Holstein cows. Theriogenology. 1993;39:797–810. doi: 10.1016/0093-691x(93)90419-6. PubMed DOI

Heads RJ, Yellon DM, Latchman DS. Differential cytoprotection against heat stress or hypoxia following expression of specific stress protein genes in myogenic cells. J. Mol. Cell. Cardiol. 1995;27:1669–1678. doi: 10.1016/S0022-2828(95)90722-X. PubMed DOI

Mehla K, et al. Genome-wide analysis of the heat stress response in Zebu (Sahiwal) cattle. Gene. 2014;533:500–507. doi: 10.1016/j.gene.2013.09.051. PubMed DOI

Mosser DD, Caron AW, Bourget L, Denis-Larose C, Massie B. Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol. Cell. Biol. 1997;17:5317–5327. doi: 10.1128/mcb.17.9.5317. PubMed DOI PMC

Sirotkin AV, Bauer M. Heat shock proteins in porcine ovary: synthesis, accumulation and regulation by stress and hormones. Cell Stress Chaperones. 2011;16:379–387. doi: 10.1007/s12192-010-0252-4. PubMed DOI PMC

Lee M-W, et al. The protective role of HSP90 against 3-hydroxykynurenine-induced neuronal apoptosis. Biochem. Biophys. Res. Commun. 2001;284:261–267. doi: 10.1006/bbrc.2001.4938. PubMed DOI

Bewicke-Copley F, et al. Extracellular vesicles released following heat stress induce bystander effect in unstressed populations. J. Extracell. Vesicles. 2017;6:1340746. doi: 10.1080/20013078.2017.1340746. PubMed DOI PMC

Azad MAK, Kikusato M, Sudo S, Amo T, Toyomizu M. Time course of ROS production in skeletal muscle mitochondria from chronic heat-exposed broiler chicken. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2010;157:266–271. doi: 10.1016/j.cbpa.2010.07.011. PubMed DOI

Fu Y, et al. Effects of melatonin on the proliferation and apoptosis of sheep granulosa cells under thermal stress. Int. J. Mol. Sci. 2014;15:21090–21104. doi: 10.3390/ijms151121090. PubMed DOI PMC

Stadtman ER, Berlett BS. Reactive oxygen-mediated protein oxidation in aging and disease. Chem. Res. Toxicol. 1997;10:485–494. doi: 10.1021/tx960133r. PubMed DOI

Thery C, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles. 2018;7:1535750. doi: 10.1080/20013078.2018.1535750. PubMed DOI PMC

Clayton A, Turkes A, Navabi H, Mason MD, Tabi Z. Induction of heat shock proteins in B-cell exosomes. J. Cell Sci. 2005;118:3631–3638. doi: 10.1242/jcs.02494. PubMed DOI

Hedlund M, Nagaeva O, Kargl D, Baranov V, Mincheva-Nilsson L. Thermal- and oxidative stress causes enhanced release of NKG2D ligand-bearing immunosuppressive exosomes in leukemia/lymphoma T and B cells. PLoS ONE. 2011;6:e16899. doi: 10.1371/journal.pone.0016899. PubMed DOI PMC

Zheng Y, Chen K-L, Zheng X-M, Li H-X, Wang G-L. Identification and bioinformatics analysis of microRNAs associated with stress and immune response in serum of heat-stressed and normal Holstein cows. Cell Stress Chaperones. 2014;19:973–981. doi: 10.1007/s12192-014-0521-8. PubMed DOI PMC

Hu Y, et al. MiR-1246 is upregulated and regulates lung cell apoptosis during heat stress in feedlot cattle. Cell Stress Chaperones. 2018;23:1219–1228. doi: 10.1007/s12192-018-0927-9. PubMed DOI PMC

Korhan P, Erdal E, Atabey N. miR-181a-5p is downregulated in hepatocellular carcinoma and suppresses motility, invasion and branching-morphogenesis by directly targeting c-Met. Biochem. Biophys. Res. Commun. 2014;450:1304–1312. doi: 10.1016/j.bbrc.2014.06.142. PubMed DOI

Chen K-L, Fu Y-Y, Shi M-Y, Li H-X. Down-regulation of miR-181a can reduce heat stress damage in PBMCs of Holstein cows. In Vitro Cell. Dev. Biol. Anim. 2016;52:864–871. doi: 10.1007/s11626-016-0045-x. PubMed DOI

Vega VL, et al. Hsp70 translocates into the plasma membrane after stress and is released into the extracellular environment in a membrane-associated form that activates macrophages. J. Immunol. (Baltimore, Md.: 1950) 2008;180:4299–4307. doi: 10.4049/jimmunol.180.6.4299. PubMed DOI

Al-Mayah A, et al. The non-targeted effects of radiation are perpetuated by exosomes. Mutat. Res. 2015;772:38–45. doi: 10.1016/j.mrfmmm.2014.12.007. PubMed DOI

Shankar B, Pandey R, Sainis K. Radiation-induced bystander effects and adaptive response in murine lymphocytes. Int. J. Radiat. Biol. 2006;82:537–548. doi: 10.1080/09553000600877114. PubMed DOI

Gebremedhn S, et al. MicroRNA expression profile in bovine granulosa cells of preovulatory dominant and subordinate follicles during the late follicular phase of the estrous cycle. PLoS ONE. 2015;10:e0125912. doi: 10.1371/journal.pone.0125912. PubMed DOI PMC

Gebremedhn S, et al. MicroRNA-183-96-182 cluster regulates bovine granulosa cell proliferation and cell cycle transition by coordinately targeting FOXO1. Biol. Reprod. 2016;94:127. doi: 10.1095/biolreprod.115.137539. PubMed DOI PMC

van Engeland M, Ramaekers FC, Schutte B, Reutelingsperger CP. A novel assay to measure loss of plasma membrane asymmetry during apoptosis of adherent cells in culture. Cytometry. 1996;24:131–139. doi: 10.1002/(SICI)1097-0320(19960601)24:2<131::AID-CYTO5>3.0.CO;2-M. PubMed DOI

Eldh M, et al. Exosomes communicate protective messages during oxidative stress; possible role of exosomal shuttle RNA. PLoS ONE. 2010;5:e15353. doi: 10.1371/journal.pone.0015353. PubMed DOI PMC

van Deun J, et al. EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research. Nat. Methods. 2017;14:228–232. doi: 10.1038/nmeth.4185. PubMed DOI

Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008;3:1101–1108. doi: 10.1038/nprot.2008.73. PubMed DOI

Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25. doi: 10.1186/gb-2009-10-3-r25. PubMed DOI PMC

Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11:R25. doi: 10.1186/gb-2010-11-3-r25. PubMed DOI PMC

Agarwal V, Bell GW, Nam J-W, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. eLife. 2015;4:10. doi: 10.7554/eLife.05005. PubMed DOI PMC

Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30. doi: 10.1093/nar/28.1.27. PubMed DOI PMC

Shannon P, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi: 10.1101/gr.1239303. PubMed DOI PMC

Bindea G, et al. ClueGO: a cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics (Oxford, England) 2009;25:1091–1093. doi: 10.1093/bioinformatics/btp101. PubMed DOI PMC

Gad A, et al. microRNA expression profile in porcine oocytes with different developmental competence derived from large or small follicles. Mol. Reprod. Dev. 2019;86:426–439. doi: 10.1002/mrd.23121. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace