Seasonal influence on miRNA expression dynamics of extracellular vesicles in equine follicular fluid
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
58-6066-3-038
USDA-ARS
5P20GMI03476-19
NIH MS-INBRE
PubMed
39380110
PubMed Central
PMC11462823
DOI
10.1186/s40104-024-01097-2
PII: 10.1186/s40104-024-01097-2
Knihovny.cz E-zdroje
- Klíčová slova
- Extracellular vesicle, Follicle growth, Follicular fluid, Horse, Mare, Ovulation, Pre-ovulation, Seasonal breeding,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Ovarian follicular fluid (FF) is a dynamic environment that changes with the seasons, affecting follicle development, ovulation, and oocyte quality. Cells in the follicles release tiny particles called extracellular vesicles (EVs) containing vital regulatory molecules, such as microRNAs (miRNAs). These miRNAs are pivotal in facilitating communication within the follicles through diverse signaling and information transfer forms. EV-coupled miRNA signaling is implicated to be associated with ovarian function, follicle and oocyte growth and response to various environmental insults. Herein, we investigated how seasonal variations directly influence the ovulatory and anovulatory states of ovarian follicles and how are they associated with follicular fluid EV-coupled miRNA dynamics in horses. RESULTS: Ultrasonographic monitoring and follicular fluid aspiration of preovulatory follicles in horses during the anovulatory (spring: non-breeding) and ovulatory (spring, summer, and fall: breeding) seasons and subsequent EV isolation and miRNA profiling identified significant variation in EV-miRNA cargo content. We identified 97 miRNAs with differential expression among the groups and specific clusters of miRNAs involved in the spring transition (miR-149, -200b, -206, -221, -328, and -615) and peak breeding period (including miR-143, -192, -451, -302b, -100, and let-7c). Bioinformatic analyses showed enrichments in various biological functions, e.g., transcription factor activity, transcription and transcription regulation, nucleic acid binding, sequence-specific DNA binding, p53 signaling, and post-translational modifications. Cluster analyses revealed distinct sets of significantly up- and down-regulated miRNAs associated with spring anovulatory (Cluster 1) and summer ovulation-the peak breeding season (Clusters 4 and 6). CONCLUSIONS: The findings from the current study shed light on the dynamics of FF-EV-coupled miRNAs in relation to equine ovulatory and anovulatory seasons, and their roles in understanding the mechanisms involved in seasonal shifts and ovulation during the breeding season warrant further investigation.
Animal Science School of Agricultural Sciences Southern Illinois University Carbondale IL 62901 USA
Department of Animal and Dairy Sciences Mississippi State University Mississippi State MS 39762 USA
Department of Animal Production Faculty of Agriculture Cairo University Giza 12613 Egypt
Institute of Animal Physiology and Genetics Czech Academy of Sciences Liběchov 27721 Czech Republic
Zobrazit více v PubMed
Donadeu F, Watson E. Seasonal changes in ovarian activity: lessons learnt from the horse. Anim Reprod Sci. 2007;100(3–4):225–42. PubMed
Donadeu F, Pedersen H. Follicle development in mares. Reprod Domest Anim. 2008;43:224–31. PubMed
Matsuda F, Inoue N, Manabe N, Ohkura S. Follicular growth and atresia in mammalian ovaries: regulation by survival and death of granulosa cells. J Reprod Dev. 2012;58(1):44–50. PubMed
De Rensis F, Scaramuzzi RJ. Heat stress and seasonal effects on reproduction in the dairy cow—a review. Theriogenology. 2003;60(6):1139–51. PubMed
Habeeb AA, Osman SF, Teama FEI, Gad AE. The detrimental impact of high environmental temperature on physiological response, growth, milk production, and reproductive efficiency of ruminants. Trop Anim Health Prod. 2023;55(6):388. PubMed PMC
Wolfenson D, Thatcher W, Badinga L, Savio J, Meidan R, Lew B, et al. Effect of heat stress on follicular development during the estrous cycle in lactating dairy cattle. Biol Reprod. 1995;52(5):1106–13. PubMed
Dobson H, Smith R. What is stress, and how does it affect reproduction? Anim Reprod Sci. 2000;60:743–52. PubMed
Roth Z. Heat stress, the follicle, and its enclosed oocyte: mechanisms and potential strategies to improve fertility in dairy cows. Reprod Domest Anim. 2008;43:238–44. PubMed
Wilson S, Marion R, Spain J, Spiers D, Keisler D, Lucy M. Effects of controlled heat stress on ovarian function of dairy cattle. 1. Lactating cows. J Dairy Sci. 1998;81(8):2124–31. PubMed
Ju J-C, Jiang S, Tseng J-K, Parks JE, Yang X. Heat shock reduces developmental competence and alters spindle configuration of bovine oocytes. Theriogenology. 2005;64(8):1677–89. PubMed
Paes V, Vieira L, Correia H, Sa N, Moura A, Sales A, et al. Effect of heat stress on the survival and development of in vitro cultured bovine preantral follicles and on in vitro maturation of cumulus–oocyte complex. Theriogenology. 2016;86(4):994–1003. PubMed
Ginther OJ. The mare: a 1000-pound guinea pig for study of the ovulatory follicular wave in women. Theriogenology. 2012;77(5):818–28. PubMed
Gastal E. Recent advances and new concepts on follicle and endocrine dynamics during the equine periovulatory period. Anim Reprod. 2009;6(1):144–58.
Ginther O, Beg MA, Bergfelt D, Donadeu F, Kot K. Follicle selection in monovular species. Biol Reprod. 2001;65(3):638–47. PubMed
Ginther O. Folliculogenesis during the transitional period and early ovulatory season in mares. J Reprod Fertil. 1990;90(1):311–20. PubMed
Ginther O. Reproductive biology of the mare: basic and applied aspects. J Equine Vet Sci. 1992;12(2):71.
Bergfelt D, Ginther O. Embryo loss following GnRH-induced ovulation in anovulatory mares. Theriogenology. 1992;38(1):33–43. PubMed
Nagy P, Guillaume D, Daels P. Seasonality in mares. Anim Reprod Sci. 2000;60:245–62. PubMed
Ginther O, Gastal E, Gastal M, Beg M. Seasonal influence on equine follicle dynamics. Anim Reprod. 2004;1(1):31–44.
Donadeu F, Schauer S. Differential miRNA expression between equine ovulatory and anovulatory follicles. Domest Anim Endocrinol. 2013;45(3):122–5. PubMed
Acosta T, Beg MA, Ginther O. Aberrant blood flow area and plasma gonadotropin concentrations during the development of dominant-sized transitional anovulatory follicles in mares. Biol Reprod. 2004;71(2):637–42. PubMed
Ishak GM, Dutra GA, Gastal GD, Gastal MO, Feugang JM, Gastal EL. Transition to the ovulatory season in mares: an investigation of antral follicle receptor gene expression in vivo. Mol Reprod Dev. 2019;86(12):1832–45. PubMed
Dutra G, Ishak G, Pechanova O, Pechan T, Peterson D, Jacob J, et al. Seasonal variation in equine follicular fluid proteome. Reprod Biol Endocrinol. 2019;17(1):29. PubMed PMC
Ishak GM, Feugang JM, Pechanova O, Pechan T, Peterson DG, Willard ST, et al. Follicular-fluid proteomics during equine follicle development. Mol Reprod Dev. 2022;89(7):298–311. PubMed
Gebremedhn S, Gad A, Ishak GM, Menjivar NG, Gastal MO, Feugang JM, et al. Dynamics of extracellular vesicle-coupled microRNAs in equine follicular fluid associated with follicle selection and ovulation. Mol Hum Reprod. 2023;29(4):gaad009. PubMed PMC
Donadeu FX, Schauer SN, Sontakke SD. Involvement of miRNAs in ovarian follicular and luteal development. J Endocrinol. 2012;215(3):323–34. PubMed
Li Y, Fang Y, Liu Y, Yang X. MicroRNAs in ovarian function and disorders. J Ovarian Res. 2015;8:51. PubMed PMC
Martinez RM, Liang L, Racowsky C, Dioni L, Mansur A, Adir M, et al. Extracellular microRNAs profile in human follicular fluid and IVF outcomes. Sci Rep. 2018;8:17036. PubMed PMC
Dalanezi FM, Garcia HDM, de Andrade FR, Franchi FF, Fontes PK, de Souza Castilho AC, et al. Extracellular vesicles of follicular fluid from heat-stressed cows modify the gene expression of in vitro-matured oocytes. Anim Reprod Sci. 2019;205:94–104. PubMed
Gebremedhn S, Gad A, Aglan HS, Laurincik J, Prochazka R, Salilew-Wondim D, et al. Extracellular vesicles shuttle protective messages against heat stress in bovine granulosa cells. Sci Rep. 2020;10:15824. PubMed PMC
Gad A, Joyce K, Menjivar NG, Heredia D, Rojas CS, Tesfaye D, et al. Extracellular vesicle-microRNAs mediated response of bovine ovaries to seasonal environmental changes. J Ovarian Res. 2023;16:101. PubMed PMC
Di Pietro C. Exosome-mediated communication in the ovarian follicle. J Assist Reprod Genet. 2016;33:303–11. PubMed PMC
Yuan C, Li Z, Zhao Y, Wang X, Chen L, Zhao Z, et al. Follicular fluid exosomes: Important modulator in proliferation and steroid synthesis of porcine granulosa cells. FASEB J. 2021;35(5):e21610. PubMed
Shao H, Im H, Castro CM, Breakefield X, Weissleder R, Lee H. New technologies for analysis of extracellular vesicles. Chem Rev. 2018;118(4):1917–50. PubMed PMC
Yáñez-Mó M, Siljander PRM, Andreu Z, BedinaZavec A, Borràs FE, Buzas EI, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4(1):27066. PubMed PMC
Gastal EL, Gastal MO, Bergfelt DR, Ginther OJ. Role of diameter differences among follicles in selection of a future dominant follicle in mares. Biol Reprod. 1997;57(6):1320–7. PubMed
Haag K, Magalhaes-Padilha D, Fonseca G, Wischral A, Gastal M, King S, et al. Quantification, morphology, and viability of equine preantral follicles obtained via the Biopsy Pick-Up method. Theriogenology. 2013;79(4):599–609. PubMed
Ishak G, Bashir S, Dutra G, Gastal G, Gastal M, Cavinder C, et al. In vivo antral follicle wall biopsy: a new research technique to study ovarian function at the cellular and molecular levels. Reprod Biol Endocrinol. 2018;16:71. PubMed PMC
Menjivar NG, Gad A, Gebremedhn S, Ghosh S, Tesfaye D. Granulosa cell-derived extracellular vesicles mitigate the detrimental impact of thermal stress on bovine oocytes and embryos. Front Cell Dev Biol. 2023;11:1142629. PubMed PMC
Van Deun J, Mestdagh P, Agostinis P, Akay Ö, Anand S, Anckaert J, et al. EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research. Nat Methods. 2017;14(3):228–32. PubMed
Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11(3):R25. PubMed PMC
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc: Ser B (Methodol). 1995;57(1):289–300.
Kumar L, Futschik M. Mfuzz: a software package for soft clustering of microarray data. Bioinformation. 2007;2(1):5–7. PubMed PMC
Sticht C, De La Torre C, Parveen A, Gretz N. miRWalk: an online resource for prediction of microRNA binding sites. PLoS One. 2018;13(10):e0206239. PubMed PMC
Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 1999;27(1):29–34. PubMed PMC
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504. PubMed PMC
Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750. PubMed PMC
Godakumara K, Dissanayake K, Hasan MM, Kodithuwakku SP, Fazeli A. Role of extracellular vesicles in intercellular communication during reproduction. Reprod Domest Anim. 2022;57:14–21. PubMed PMC
Thomou T, Mori MA, Dreyfuss JM, Konishi M, Sakaguchi M, Wolfrum C, et al. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature. 2017;542(7642):450–5. PubMed PMC
da Silveira JC, Veeramachaneni DNR, Winger QA, Carnevale EM, Bouma GJ. Cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins: a possible new form of cell communication within the ovarian follicle. Biol Reprod. 2012;86(3):71. PubMed
Leung AK, Sharp PA. MicroRNA functions in stress responses. Mol Cell. 2010;40(2):205–15. PubMed PMC
Nehammer C, Podolska A, Mackowiak SD, Kagias K, Pocock R. Specific microRNAs regulate heat stress responses in Caenorhabditis elegans. Sci Rep. 2015;5:8866. PubMed PMC
Li Q, Yang C, Du J, Zhang B, He Y, Hu Q, et al. Characterization of miRNA profiles in the mammary tissue of dairy cattle in response to heat stress. BMC Genomics. 2018;19:975. PubMed PMC
Gebremedhn S, Ali A, Gad A, Prochazka R, Tesfaye D. Extracellular vesicles as mediators of environmental and metabolic stress coping mechanisms during mammalian follicular development. Front Vet Sci. 2020;7:602043. PubMed PMC
Inoue Y, Munakata Y, Shinozawa A, Kawahara-Miki R, Shirasuna K, Iwata H. Prediction of major microRNAs in follicular fluid regulating porcine oocyte development. J Assist Reprod Genet. 2020;37:2569–79. PubMed PMC
Di R, He J, Song S, Tian D, Liu Q, Liang X, et al. Characterization and comparative profiling of ovarian microRNAs during ovine anestrus and the breeding season. BMC Genomics. 2014;15:899. PubMed PMC
Zhai M, Xie Y, Liang H, Lei X, Zhao Z. Comparative profiling of differentially expressed microRNAs in estrous ovaries of Kazakh sheep in different seasons. Gene. 2018;664:181–91. PubMed
Capra E, Lazzari B, Russo M, Kosior MA, Valle GD, Longobardi V, et al. Seasonal effects on miRNA and transcriptomic profile of oocytes and follicular cells in buffalo (Bubalus bubalis). Sci Rep. 2020;10:13557. PubMed PMC
Li Y, Deng X, Zeng X, Peng X. The role of Mir-148a in cancer. J Cancer. 2016;7(10):1233–41. PubMed PMC
Nagata S, Inoue Y, Sato T, Tanaka K, Shinozawa A, Shirasuna K, et al. Age-associated changes in miRNA profile of bovine follicular fluid. Reproduction. 2022;164(5):195–206. PubMed
Wei C, Xiang S, Yu Y, Song J, Zheng M, Lian F. MiR-221-3p regulates apoptosis of ovarian granulosa cells via targeting FOXO1 in older women with diminished ovarian reserve (DOR). Mol Reprod Dev. 2021;88(4):251–60. PubMed PMC
da Silveira JC, Winger QA, Bouma GJ, Carnevale EM. Effects of age on follicular fluid exosomal microRNAs and granulosa cell transforming growth factor-β signalling during follicle development in the mare. Reprod Fertil Dev. 2015;27(6):897–905. PubMed
Noferesti SS, Sohel MMH, Hoelker M, Salilew-Wondim D, Tholen E, Looft C, et al. Controlled ovarian hyperstimulation induced changes in the expression of circulatory miRNA in bovine follicular fluid and blood plasma. J Ovarian Res. 2015;8:81. PubMed PMC
Hilker RE, Pan B, Zhan X, Li J. MicroRNA-21 enhances estradiol production by inhibiting WT1 expression in granulosa cells. J Mol Endocrinol. 2022;68(1):11–22. PubMed
Ding Q, Jin M, Kalds P, Meng C, Wang H, Zhong J, et al. Comparison of microRNA profiles in extracellular vesicles from small and large goat follicular fluid. Animals. 2021;11(11):3190. PubMed PMC
Dai T, Kang X, Yang C, Mei S, Wei S, Guo X. Integrative analysis of miRNA-mRNA in ovarian granulosa cells treated with kisspeptin in Tan sheep. Animals. 2022;12(21):2989. PubMed PMC
Xie L, Li A, Huang W, Zhang X, Miao X. Identification and analysis of miRNAs at different developmental stages in Hu sheep ovaries. Acta Vet Zootech Sin. 2019;50(7):1396–404.
Zhang X, Chen Y, Yang M, Shang J, Xu Y, Zhang L, et al. MiR-21-5p actions at the Smad7 gene during pig ovarian granulosa cell apoptosis. Anim Reprod Sci. 2020;223:106645. PubMed
Xu G, Hu Y, Yu D, Chen X, Li X, Duan S, et al. Discovery of differentially expressed microRNAs in porcine ovaries with smaller and larger litter size. Front Genet. 2022;13:762124. PubMed PMC
Zhang T, Huo S, Wei S, Cui S. miR-21, miR-125b, and let-7b contribute to the involution of atretic follicles and corpus lutea in Tibetan sheep ovaries. Anim Sci J. 2022;93(1):e13756. PubMed
Sohel MMH, Hoelker M, Noferesti SS, Salilew-Wondim D, Tholen E, Looft C, et al. Exosomal and non-exosomal transport of extra-cellular microRNAs in follicular fluid: implications for bovine oocyte developmental competence. PLoS One. 2013;8(11):e78505. PubMed PMC
Dehghan Z, Mohammadi-Yeganeh S, Rezaee D, Salehi M. MicroRNA-21 is involved in oocyte maturation, blastocyst formation, and pre-implantation embryo development. Dev Biol. 2021;480:69–77. PubMed
Gao R, Li Q, Qiu M, Xie S, Sun X, Huang T. Serum exosomal miR-192 serves as a potential detective biomarker for early pregnancy screening in sows. Anim Biosci. 2023;36(9):1336. PubMed PMC
Du X, Zhang L, Li X, Pan Z, Liu H, Li Q. TGF-β signaling controls FSHR signaling-reduced ovarian granulosa cell apoptosis through the SMAD4/miR-143 axis. Cell Death Dis. 2016;7(11):e2476–576. PubMed PMC
Zhao Y, Pan S, Li Y, Wu X. Exosomal miR-143-3p derived from follicular fluid promotes granulosa cell apoptosis by targeting BMPR1A in polycystic ovary syndrome. Sci Rep. 2022;12:4359. PubMed PMC
Jarrett BY, Vanden Brink H, Oldfield AL, Lujan ME. Ultrasound characterization of disordered antral follicle development in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2020;105(11):e3847–61. PubMed PMC
Lu S, Tang Y, Yao R, Xu R, Zhang H, Liu J, et al. E2/ER signaling mediates the meiotic arrest of goat intrafollicular oocytes induced by follicle-stimulating hormone. J Anim Sci. 2023;101:skad351. PubMed PMC
Liu W, Xin Q, Wang X, Wang S, Wang H, Zhang W, et al. Estrogen receptors in granulosa cells govern meiotic resumption of pre-ovulatory oocytes in mammals. Cell Death Dis. 2017;8(3):e2662–762. PubMed PMC
Zhang X, Zhang L, Shang J, Tao Q, Tian M, Ma Y, et al. Combined microRNAome and transcriptome analysis of follicular phase and luteal phase in porcine ovaries. Reprod Domest Anim. 2019;54(7):1018–25. PubMed
Andrei D, Nagy RA, van Montfoort A, Tietge U, Terpstra M, Kok K, et al. Differential miRNA expression profiles in cumulus and mural granulosa cells from human pre-ovulatory follicles. MicroRNA. 2019;8(1):61–7. PubMed PMC
Martinez RM, Baccarelli AA, Liang L, Dioni L, Mansur A, Adir M, et al. Body mass index in relation to extracellular vesicle–linked microRNAs in human follicular fluid. Fertil Steril. 2019;112(2):387-96. e3. PubMed PMC
Hu J, Dong J, Zeng Z, Wu J, Tan X, Tang T, et al. Using exosomal miRNAs extracted from porcine follicular fluid to investigate their role in oocyte development. BMC Vet Res. 2020;16:485. PubMed PMC
Song P, Chen X, Zhang P, Zhou Y, Zhou R. miR-200b/MYBL2/CDK1 suppresses proliferation and induces senescence through cell cycle arrest in ovine granulosa cells. Theriogenology. 2023;207:19–30. PubMed
Yang J, Li X, Cao Y-H, Pokharel K, Hu X-J, Chen Z-H, et al. Comparative mRNA and miRNA expression in European mouflon (Ovis musimon) and sheep (Ovis aries) provides novel insights into the genetic mechanisms for female reproductive success. Heredity. 2019;122(2):172–86. PubMed PMC
Tesfaye D, Gebremedhn S, Salilew-Wondim D, Hailay T, Hoelker M, Grosse-Brinkhaus C, et al. MicroRNAs: tiny molecules with a significant role in mammalian follicular and oocyte development. Reproduction. 2018;155(3):R121–35. PubMed
Zhang D, Lv J, Tang R, Feng Y, Zhao Y, Fei X, et al. Association of exosomal microRNAs in human ovarian follicular fluid with oocyte quality. Biochem Biophys Res Commun. 2021;534:468–73. PubMed
Machtinger R, Rodosthenous RS, Adir M, Mansour A, Racowsky C, Baccarelli AA, et al. Extracellular microRNAs in follicular fluid and their potential association with oocyte fertilization and embryo quality: an exploratory study. J Assist Reprod Genet. 2017;34:525–33. PubMed PMC
Liu Y, Zhou Z, He X, Tao L, Jiang Y, Lan R, et al. Integrated analyses of miRNA-mRNA expression profiles of ovaries reveal the crucial interaction networks that regulate the prolificacy of goats in the follicular phase. BMC Genomics. 2021;22:812. PubMed PMC
Yang H, Liu X, Hu G, Xie Y, Lin S, Zhao Z, et al. Identification and analysis of microRNAs-mRNAs pairs associated with nutritional status in seasonal sheep. Biochem Biophys Res Commun. 2018;499(2):321–7. PubMed
Eisenberg I, Nahmias N, Novoselsky Persky M, Greenfield C, Goldman-Wohl D, Hurwitz A, et al. Elevated circulating micro-ribonucleic acid (miRNA)-200b and miRNA-429 levels in anovulatory women. Fertil Steril. 2017;107(1):269–75. PubMed
Salas-Huetos A, James ER, Aston KI, Jenkins TG, Carrell DT, Yeste M. The expression of miRNAs in human ovaries, oocytes, extracellular vesicles, and early embryos: a systematic review. Cells. 2019;8(12):1564. PubMed PMC
Lázár B, Szabadi NT, Anand M, Tóth R, Ecker A, Urbán M, et al. Effect of miR-302b microRNA inhibition on chicken primordial germ cell proliferation and apoptosis rate. Genes. 2021;13(1):82. PubMed PMC
Li X, Zhang W, Fu J, Xu Y, Gu R, Qu R, et al. MicroRNA-451 is downregulated in the follicular fluid of women with endometriosis and influences mouse and human embryonic potential. Reprod Biol Endocrinol. 2019;17:96. PubMed PMC
Hasuwa H, Ueda J, Ikawa M, Okabe M. miR-200b and miR-429 function in mouse ovulation and are essential for female fertility. Science. 2013;341(6141):71–3. PubMed
Sontakke SD, Mohammed BT, McNeilly AS, Donadeu FX. Characterization of microRNAs differentially expressed during bovine follicle development. Reproduction. 2014;148(3):271–83. PubMed
Assou S, Al-Edani T, Haouzi D, Philippe N, Lecellier C-H, Piquemal D, et al. MicroRNAs: new candidates for the regulation of the human cumulus–oocyte complex. Hum Reprod. 2013;28(11):3038–49. PubMed
Bhushan L, Kandpal RP. EphB6 receptor modulates micro RNA profile of breast carcinoma cells. PLoS One. 2011;6(7):e22484. PubMed PMC
Assou S, Cerecedo D, Tondeur S, Pantesco V, Hovatta O, Klein B, et al. A gene expression signature shared by human mature oocytes and embryonic stem cells. BMC Genomics. 2009;10:10. PubMed PMC
Nagaraja AK, Creighton CJ, Yu Z, Zhu H, Gunaratne PH, Reid JG, et al. A link between mir-100 and FRAP1/mTOR in clear cell ovarian cancer. Mol Endocrinol. 2010;24(2):447–63. PubMed PMC
Kharazi U, Badalzadeh R. A review on the stem cell therapy and an introduction to exosomes as a new tool in reproductive medicine. Reprod Biol. 2020;20(4):447–59. PubMed
Machtinger R, Laurent LC, Baccarelli AA. Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation. Hum Reprod Update. 2016;22(2):182–93. PubMed PMC
Wei L, Yang X, Gao L, Liang Z, Yu H, Zhang N, et al. Comparison of miRNA landscapes between the human oocytes with or without arrested development. J Assist Reprod Genet. 2022;39(10):2227–37. PubMed PMC