Dynamics of extracellular vesicle-coupled microRNAs in equine follicular fluid associated with follicle selection and ovulation
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural
Grantová podpora
Ministry of Higher Education & Scientific Research, Baghdad
PubMed
36852862
PubMed Central
PMC10321592
DOI
10.1093/molehr/gaad009
PII: 7059535
Knihovny.cz E-zdroje
- Klíčová slova
- equine, extracellular vesicles, follicular fluid, folliculogenesis, microRNAs, noncoding RNA, oocytes, ovary,
- MeSH
- extracelulární vezikuly * genetika metabolismus MeSH
- folikulární tekutina metabolismus MeSH
- koně MeSH
- lidé MeSH
- mikro RNA * metabolismus MeSH
- ovariální folikul metabolismus MeSH
- ovulace genetika MeSH
- savci MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- mikro RNA * MeSH
- Mirn140 microRNA, human MeSH Prohlížeč
Innumerable similarities in reproductive cyclicity and hormonal alterations highlight the considerable utility of the mare to study aspects of follicular dynamics and reproductive function in view of the largely constricted, human research subjects. The bi-directional communication between the growing oocyte and the surrounding somatic cells embodies the hallmark of mammalian follicular development, partially mediated by extracellular vesicles (EVs) encapsulated with microRNAs (miRNAs) and present in the follicular fluid (FF). Here, we aimed to decipher the dynamics of the miRNAs in EVs from equine FF aspirated in vivo during different stages of follicular development, namely, predeviation (PreDev; 18-20 mm), deviation (Dev; 22-25 mm), postdeviation (PostDev; 26-29 mm), preovulatory (PreOV; 30-35 mm), and impending ovulation (IMP; ∼40 mm). Approximately 176 known miRNAs were found in all groups with 144 mutually detected among all groups. Cluster analysis exhibited 15 different expression patterns during follicular development. Among these patterns, a group of 22 miRNAs (including miR-146b-5p, miR-140, and miR-143) exhibited a sharp reduction in expression from the PreDev until the PreOV stage. Another cluster of 23 miRNAs (including miR-106b, miR-199a-5p, and miR-125a-5p) exhibited a stable expression pattern at the PreDev stage until the PostDev stage, with a significant increase at the PreOV stage followed by a significant decrease at the IMP stage. In conclusion, this study provides greater insights into the stage-specific expression dynamics of FF EV-miRNAs during equine follicular development, which may propose novel approaches to improve ART and provide new biomarkers to facilitate the assessment of ovarian pathophysiological conditions.
Department of Animal and Dairy Sciences Mississippi State University Mississippi State MS USA
Department of Animal Production Faculty of Agriculture Cairo University Giza Egypt
Zobrazit více v PubMed
Adams BD, Furneaux H, White BA.. The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines. Mol Endocrinol 2007;21:1132–1147. PubMed
Adams GP, Singh J, Baerwald AR.. Large animal models for the study of ovarian follicular dynamics in women. Theriogenology 2012;78:1733–1748. PubMed
Baerwald AR. Human antral folliculogenesis: What we have learned from the bovine and equine models. Anim Reprod 2009;6:20–29.
Baerwald AR, Adams GP, Pierson RA.. A new model for ovarian follicular development during the human menstrual cycle. Fertil Steril 2003a;80:116–122. PubMed
Baerwald AR, Adams GP, Pierson RA.. Characterization of ovarian follicular wave dynamics in women. Biol Reprod 2003b;69:1023–1031. PubMed
Bashir ST, Baerwald AR, Gastal MO, Pierson RA, Gastal EL.. Follicle growth and endocrine dynamics in women with spontaneous luteinized unruptured follicles versus ovulation. Hum Reprod 2018;33:1130–1140. PubMed
Bashir ST, Gastal MO, Tazawa SP, Tarso SGS, Hales DB, Cuervo-Arango J, Baerwald AR, Gastal EL.. The mare as a model for luteinized unruptured follicle syndrome: intrafollicular endocrine milieu. Reproduction 2016a;151:271–283. PubMed
Bashir ST, Ishak GM, Gastal MO, Roser JF, Gastal EL.. Changes in intrafollicular concentrations of free IGF-1, activin A, inhibin A, VEGF, estradiol, and prolactin before ovulation in mares. Theriogenology 2016b;85:1491–1498. PubMed
Beg MA, Ginther OJ.. Follicle selection in cattle and horses: role of intrafollicular factors. Reproduction 2006;132:365–377. PubMed
Benammar A, Derisoud E, Vialard F, Palmer E, Ayoubi JM, Poulain M, Chavatte-Palmer P.. The mare: a pertinent model for human assisted reproductive technologies? Animals (Basel) 2021;11:2304. PubMed PMC
Benjamini Y, Hochberg Y.. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 1995;57:289–300.
Campos-Chillon F, Farmerie TA, Bouma GJ, Clay CM, Carnevale EM.. Effects of aging on gene expression and mitochondrial DNA in the equine oocyte and follicle cells. Reprod Fertil Dev 2015;27:925–933. PubMed
Carletti MZ, Fiedler SD, Christenson LK.. MicroRNA 21 blocks apoptosis in mouse periovulatory granulosa cells. Biol Reprod 2010;83:286–295. PubMed PMC
Carnevale EM. The mare model for follicular maturation and reproductive aging in the woman. Theriogenology 2008;69:23–30. PubMed
Chen X, Xie M, Liu D, Shi K.. Downregulation of microRNA-146a inhibits ovarian granulosa cell apoptosis by simultaneously targeting interleukin-1 receptor-associated kinase and tumor necrosis factor receptor-associated factor 6. Mol Med Rep 2015;12:5155–5162. PubMed
Cui Z, Liu L, Kwame Amevor F, Zhu Q, Wang Y, Li D, Shu G, Tian Y, Zhao X.. High expression of miR-204 in chicken atrophic ovaries promotes granulosa cell apoptosis and inhibits autophagy. Front Cell Dev Biol 2020;8:580072. PubMed PMC
da Silveira JC, Veeramachaneni DNR, Winger QA, Carnevale EM, Bouma GJ.. Cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins: a possible new form of cell communication within the ovarian follicle. Biol Reprod 2012;86:71. PubMed
da Silveira JC, Winger QA, Bouma GJ, Carnevale EM.. Effects of age on follicular fluid exosomal microRNAs and granulosa cell transforming growth factor-β signalling during follicle development in the mare. Reprod Fertil Dev 2015;27:897–905. PubMed
Dehghan Z, Mohammadi-Yeganeh S, Rezaee D, Salehi M.. MicroRNA-21 is involved in oocyte maturation, blastocyst formation, and pre-implantation embryo development. Dev Biol 2021;480:69–77. PubMed
Ding Q, Jin M, Kalds P, Meng C, Wang H, Zhong J, Wang X, Chen Y.. Comparison of microRNA profiles in extracellular vesicles from small and large goat follicular fluid. Animals (Basel) 2021;11:3190. PubMed PMC
Donadeu FX, Ginther OJ.. Changes in concentrations of follicular fluid factors during follicle selection in mares. Biol Reprod 2002;66:1111–1118. PubMed
Garcia-Guerra A, Wiltbank MC, Battista SE, Kirkpatrick BW, Sartori R.. Mechanisms regulating follicle selection in ruminants: Lessons learned from multiple ovulation models. Anim Reprod 2018;15:660–679. PubMed PMC
Gastal EL, Gastal MO, Bergfelt DR, Ginther OJ.. Role of diameter differences among follicles in selection of a future dominant follicle in mares. Biol Reprod 1997;57:1320–1327. PubMed
Gastal EL, Gastal MO, Ginther OJ.. Serrated granulosa and other discrete ultrasound indicators of impending ovulation in mares. J Equine Vet Sci 2006;26:67–73.
Gebremedhn S, Gad A, Aglan HS, Laurincik J, Prochazka R, Salilew-Wondim D, Hoelker M, Schellander K, Tesfaye D.. Extracellular vesicles shuttle protective messages against heat stress in bovine granulosa cells. Sci Rep 2020;10:15824. PubMed PMC
Gilchrist RB, Ritter LJ, Armstrong DT.. Oocyte-somatic cell interactions during follicle development in mammals. Anim Reprod Sci 2004;82-83:431–446. PubMed
Ginther OJ. The mare: a 1000-pound Guinea pig for study of the ovulatory follicular wave in women. Theriogenology 2012;77:818–828. PubMed
Ginther OJ. Follicle selection in mares: 90 years from observation to theory. J Equine Vet Sci 2017a;54:24–31.
Ginther OJ. Systemic and intrafollicular components of follicle selection in mares. Domest Anim Endocrinol 2017b;59:116–133. PubMed
Ginther OJ, Beg MA, Gastal EL, Gastal MO, Baerwald AR, Pierson RA.. Systemic concentrations of hormones during the development of follicular waves in mares and women: a comparative study. Reproduction 2005;130:379–388. PubMed PMC
Ginther OJ, Bergfelt DR, Beg MA, Meira C, Kot K.. In vivo effects of an intrafollicular injection of insulin-like growth factor 1 on the mechanism of follicle deviation in heifers and mares. Biol Reprod 2004a;70:99–105. PubMed
Ginther OJ, Gastal EL, Gastal MO, Bergfelt DR, Baerwald AR, Pierson RA.. Comparative study of the dynamics of follicular waves in mares and women. Biol Reprod 2004b;71:1195–1201. PubMed PMC
Ginther OJ, Gastal MO, Gastal EL. Follicle dynamics and selection in mares. Anim Reprod2004c;1:45–63.
Grossman H, Har-Paz E, Gindi N, Miller I, Shalgi R.. Pre-ovulatory intercellular regulation of miR-125a-3p within mouse ovarian follicles. Reproduction 2020;159:215–225. PubMed
György B, Szabó TG, Pásztói M, Pál Z, Misják P, Aradi B, László V, Pállinger E, Pap E, Kittel A. et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 2011;68:2667–2688. PubMed PMC
Haag KT, Magalhães-Padilha DM, Fonseca GR, Wischral A, Gastal MO, King SS, Jones KL, Figueiredo JR, Gastal EL.. Quantification, morphology, and viability of equine preantral follicles obtained via the Biopsy Pick-Up method. Theriogenology 2013;79:599–609. PubMed
Hailay T, Hoelker M, Poirier M, Gebremedhn S, Rings F, Saeed-Zidane M, Salilew-Wondim D, Dauben C, Tholen E, Neuhoff C et al Extracellular vesicle-coupled miRNA profiles in follicular fluid of cows with divergent post-calving metabolic status. Sci Rep 2019;9:12851. PubMed PMC
Ishak GM, Bashir ST, Dutra GA, Gastal GDA, Gastal MO, Cavinder CA, Feugang JM, Gastal EL.. In vivo antral follicle wall biopsy: a new research technique to study ovarian function at the cellular and molecular levels. Reprod Biol Endocrinol 2018;16:71. PubMed PMC
Kumar LE, Futschik M.. Mfuzz: a software package for soft clustering of microarray data. Bioinformation 2007;2:5–7. PubMed PMC
Liu W, Xin Q, Wang X, Wang S, Wang H, Zhang W, Yang Y, Zhang Y, Zhang Z, Wang C. et al. Estrogen receptors in granulosa cells govern meiotic resumption of pre-ovulatory oocytes in mammals. Cell Death Dis 2017;8:e2662. PubMed PMC
Martinez RM, Liang L, Racowsky C, Dioni L, Mansur A, Adir M, Bollati V, Baccarelli AA, Hauser R, Machtinger R.. Extracellular microRNAs profile in human follicular fluid and IVF outcomes. Sci Rep 2018;8:17036. PubMed PMC
McBride D, Carré W, Sontakke SD, Hogg CO, Law A, Donadeu FX, Clinton M.. Identification of miRNAs associated with the follicular-luteal transition in the ruminant ovary. Reproduction 2012;144:221–233. PubMed
Montazerian M, Yasari F, Aghaalikhani N.. Ovarian extracellular MicroRNAs as the potential non-invasive biomarkers: an update. Biomed Pharmacother 2018;106:1633–1640. PubMed
Noferesti SS, Sohel MMH, Hoelker M, Salilew-Wondim D, Tholen E, Looft C, Rings F, Neuhoff C, Schellander K, Tesfaye D.. Controlled ovarian hyperstimulation induced changes in the expression of circulatory miRNA in bovine follicular fluid and blood plasma. J Ovarian Res 2015;8:81. PubMed PMC
O'Brien K, Breyne K, Ughetto S, Laurent LC, Breakefield XO.. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat Rev Mol Cell Biol 2020;21:585–606. PubMed PMC
Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M.. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 1999;27:29–34. PubMed PMC
Robinson MD, Oshlack A.. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 2010;11:R25. PubMed PMC
Roth LW, McCallie B, Alvero R, Schoolcraft WB, Minjarez D, Katz-Jaffe MG.. Altered microRNA and gene expression in the follicular fluid of women with polycystic ovary syndrome. J Assist Reprod Genet 2014;31:355–362. PubMed PMC
Sang Q, Yao Z, Wang H, Feng R, Wang H, Zhao X, Xing Q, Jin L, He L, Wu L. et al. Identification of microRNAs in human follicular fluid: Characterization of microRNAs that govern steroidogenesis in vitro and are associated with polycystic ovary syndrome in vivo. J Clin Endocrinol Metab 2013;98:3068–3079. PubMed
Santonocito M, Vento M, Guglielmino MR, Battaglia R, Wahlgren J, Ragusa M, Barbagallo D, Borzì P, Rizzari S, Maugeri M. et al. Molecular characterization of exosomes and their microRNA cargo in human follicular fluid: Bioinformatic analysis reveals that exosomal microRNAs control pathways involved in follicular maturation. Fertil Steril 2014;102:1751–1761.e1. PubMed
Scalici E, Traver S, Mullet T, Molinari N, Ferrières A, Brunet C, Belloc S, Hamamah S.. Circulating microRNAs in follicular fluid, powerful tools to explore in vitro fertilization process. Sci Rep 2016;6:24976. PubMed PMC
Schauer SN, Sontakke SD, Watson ED, Esteves CL, Donadeu FX.. Involvement of miRNAs in equine follicle development. Reproduction 2013;146:273–282. PubMed
Sela-Abramovich S, Edry I, Galiani D, Nevo N, Dekel N.. Disruption of gap junctional communication within the ovarian follicle induces oocyte maturation. Endocrinology 2006;147:2280–2286. PubMed
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T.. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13:2498–2504. PubMed PMC
Shi M, Sirard M-A.. Metabolism of fatty acids in follicular cells, oocytes, and blastocysts. Reprod Fertil 2022;3:R96–R108. PubMed PMC
Sohel MMH, Hoelker M, Noferesti SS, Salilew-Wondim D, Tholen E, Looft C, Rings F, Uddin MJ, Spencer TE, Schellander K. et al. Exosomal and non-exosomal transport of extra-cellular microRNAs in follicular fluid: implications for bovine oocyte developmental competence. PLoS One 2013;8:e78505. PubMed PMC
Sticht C, La Torre C D, Parveen A, Gretz N.. miRWalk: an online resource for prediction of microRNA binding sites. PLoS One 2018;13:e0206239. PubMed PMC
Sun X, Su S, Zhang G, Zhang H, Yu X.. MiR-204 suppresses cell proliferation and promotes apoptosis in ovarian granulosa cells via targeting TPT1 in polycystic ovary syndrome. Biochem Cell Biol 2019;97:554–562. PubMed
Taylor DD, Gercel-Taylor C.. The origin, function, and diagnostic potential of RNA within extracellular vesicles present in human biological fluids. Front Genet 2013;4:142. PubMed PMC
Tesfaye D, Hailay T, Salilew-Wondim D, Hoelker M, Bitseha S, Gebremedhn S.. Extracellular vesicle mediated molecular signaling in ovarian follicle: implication for oocyte developmental competence. Theriogenology 2020;150:70–74. PubMed
Uzbekova S, Bertevello PS, Dalbies-Tran R, Elis S, Labas V, Monget P, Teixeira-Gomes A-P.. Metabolic exchanges between the oocyte and its environment: focus on lipids. Reprod Fertil Dev 2021;34:1–26. PubMed
van Deun J, Mestdagh P, Agostinis P, Akay Ö, Anand S, Anckaert J, Martinez ZA, Baetens T, Beghein E, Bertier L. et al. EV-TRACK: Transparent reporting and centralizing knowledge in extracellular vesicle research. Nat Methods 2017;14:228–232. PubMed
Wang P, Li X, Cao L, Huang S, Li H, Zhang Y, Yang T, Jiang J, Shi D.. MicroRNA-148a overexpression improves the early development of porcine somatic cell nuclear transfer embryos. PLoS One 2017;12:e0180535. PubMed PMC
Wischral A, Pastorello M, Gastal MO, Beg MA, Gastal EL.. Hemodynamic, endocrine, and gene expression mechanisms regulating equine ovarian follicular and cellular development. Mol Reprod Dev 2022;89:23–38. PubMed
Yáñez-Mó M, Siljander PR-M, Andreu Z, Zavec AB, Borràs FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J. et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 2015;4:27066. PubMed PMC
Yang X, Zhou Y, Peng S, Wu L, Lin H-Y, Wang S, Wang H.. Differentially expressed plasma microRNAs in premature ovarian failure patients and the potential regulatory function of mir-23a in granulosa cell apoptosis. Reproduction 2012;144:235–244. PubMed
Yuan C, Li Z, Zhao Y, Wang X, Chen L, Zhao Z, Cao M, Chen T, Iqbal T, Zhang B. et al. Follicular fluid exosomes: Important modulator in proliferation and steroid synthesis of porcine granulosa cells. FASEB J 2021;35:e21610. PubMed
Zhang J, Xu Y, Liu H, Pan Z.. MicroRNAs in ovarian follicular atresia and granulosa cell apoptosis. Reprod Biol Endocrinol 2019a;17:9. PubMed PMC
Zhang Z, Chen C-Z, Xu M-Q, Zhang L-Q, Liu J-B, Gao Y, Jiang H, Yuan B, Zhang J-B.. MiR-31 and miR-143 affect steroid hormone synthesis and inhibit cell apoptosis in bovine granulosa cells through FSHR. Theriogenology 2019b;123:45–53. PubMed
Zhou J, Jin X, Sheng Z, Zhang Z.. miR-206 serves an important role in polycystic ovary syndrome through modulating ovarian granulosa cell proliferation and apoptosis. Exp Ther Med 2021;21:179. PubMed PMC
Seasonal influence on miRNA expression dynamics of extracellular vesicles in equine follicular fluid