Adaptive and Biological Responses of Buffalo Granulosa Cells Exposed to Heat Stress under In Vitro Condition

. 2021 Mar 12 ; 11 (3) : . [epub] 20210312

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33809236

Grantová podpora
GP.03192002027540 Faculty of Agriculture, Cairo University
CZ.02.1.01/0.0/0.0/15_003/0000460 Ministry of Education, Youth and Sports of the Czech Republic, Operational Program Research, Development and Education

The steroidogenesis capacity and adaptive response of follicular granulosa cells (GCs) to heat stress were assessed together with the underlying regulating molecular mechanisms in Egyptian buffalo. In vitro cultured GCs were exposed to heat stress treatments at 39.5, 40.5, or 41.5 °C for the final 24 h of the culture period (7 days), while the control group was kept under normal conditions (37 °C). Comparable viability was observed between the control and heat-treated GCs at 39.5 and 40.5 °C. A higher release of E2, P4 and IGF-1 was observed in the 40.5 °C group compared with the 39.5 or 41.5 °C groups. The total antioxidant capacity was higher in response to heat stress at 39.5 °C. At 40.5 °C, a significant upregulation pattern was found in the expression of the stress resistance transcripts (SOD2 and NFE2L2) and of CPT2. The relative abundance of ATP5F1A was significantly downregulated for all heat-treated groups compared to the control, while TNFα was downregulated in GCs at 39.5 °C. Expression analyses of stress-related miRNAs (miR-1246, miR-181a and miR-27b) exhibited a significant downregulation in the 40.5 °C group compared to the control, whereas miR-708 was upregulated in the 39.5 and 40.5 °C groups. In conclusion, buffalo GCs exhibited different adaptive responses, to the different heat stress conditions. The integration mechanism between the molecular and secretory actions of the GCs cultured at 40.5 °C might provide possible insights into the biological mechanism through which buffalo GCs react to heat stress.

Zobrazit více v PubMed

Senbon S., Hirao Y., Miyano T. Interactions between the oocyte and surrounding somatic cells in follicular development: Lessons from in vitro culture. J. Reprod. Dev. 2003;49:259–269. doi: 10.1262/jrd.49.259. PubMed DOI

Gilchrist R.B., Lane M., Thompson J.G. Oocyte-secreted factors: Regulators of cumulus cell function and oocyte quality. Hum. Reprod. Update. 2008;14:159–177. doi: 10.1093/humupd/dmm040. PubMed DOI

Makabe S., Naguro T., Stallone T. Oocyte–follicle cell interactions during ovarian follicle development, as seen by high resolution scanning and transmission electron microscopy in humans. Microsc. Res. Tech. 2006;69:436–449. doi: 10.1002/jemt.20303. PubMed DOI

Gebremedhn S., Salilew-Wondim D., Ahmad I., Sahadevan S., Hossain M., Hoelker M., Rings F., Neuhoff C., Tholen E., Looft C., et al. MicroRNA expression profile in bovine granulosa cells of preovulatory dominant and subordinate follicles during the late follicular phase of the estrous cycle. PLoS ONE. 2015;10:e0125912. doi: 10.1371/journal.pone.0125912. PubMed DOI PMC

Alam M.H., Miyano T. Interaction between growing oocytes and granulosa cells in vitro. Reprod. Med. Biol. 2020;19:13–23. doi: 10.1002/rmb2.12292. PubMed DOI PMC

Carabatsos M.J., Sellitto C., Goodenough D.A., Albertini D.F. Oocyte–granulosa cell heterologous gap junctions are required for the coordination of nuclear and cytoplasmic meiotic competence. Dev. Biol. 2000;226:167–179. doi: 10.1006/dbio.2000.9863. PubMed DOI

De La Fuente R., Eppig J.J. Transcriptional activity of the mouse oocyte genome: Companion granulosa cells modulate transcription and chromatin remodeling. Dev. Biol. 2001;229:224–236. doi: 10.1006/dbio.2000.9947. PubMed DOI

Roth Z., Meidan R., Braw-Tal R., Wolfenson D. Immediate and delayed effects of heat stress on follicular development and its association with plasma FSH and inhibin concentration in cows. Reproduction. 2000;120:83–90. doi: 10.1530/jrf.0.1200083. PubMed DOI

Shimizu T., Ohshima I., Ozawa M., Takahashi S., Tajima A., Shiota M., Miyazaki H., Kanai Y. Heat stress diminishes gonadotropin receptor expression and enhances susceptibility to apoptosis of rat granulosa cells. Reproduction. 2005;129:463–472. doi: 10.1530/rep.1.00502. PubMed DOI

Leung A.K.L., Sharp P.A. MicroRNA functions in stress responses. Mol. Cell. 2010;40:205–215. doi: 10.1016/j.molcel.2010.09.027. PubMed DOI PMC

Shandilya U.K., Sharma A., Sodhi M., Mukesh M. Heat stress modulates differential response in skin fibroblast cells of native cattle (Bos Indicus) and riverine buffaloes (Bubalus Bubalis) Biosci. Rep. 2020;40 doi: 10.1042/BSR20191544. PubMed DOI PMC

Marai I.F.M., Haeeb A.A.M. Buffalo’s biological functions as affected by heat stress—A review. Livest. Sci. 2010;127:89–109. doi: 10.1016/j.livsci.2009.08.001. DOI

Baufeld A., Vanselow J. A tissue culture model of estrogen-producing primary bovine granulosa cells. J. Vis. Exp. 2018;139 doi: 10.3791/58208. PubMed DOI PMC

Khan A., Dou J., Wang Y., Jiang X., Khan M.Z., Luo H., Usman T., Zhu H. Evaluation of heat stress effects on cellular and transcriptional adaptation of bovine granulosa cells. J. Anim. Sci. Biotechnol. 2020;11:25. doi: 10.1186/s40104-019-0408-8. PubMed DOI PMC

Gebremedhn S., Gad A., Aglan H.S., Laurincik J., Prochazka R., Salilew-Wondim D., Hoelker M., Schellander K., Tesfaye D. Extracellular vesicles shuttle protective messages against heat stress in bovine granulosa cells. Sci. Rep. 2020;10:1–19. doi: 10.1038/s41598-020-72706-z. PubMed DOI PMC

Zeebaree B.K., Kwong W.Y., Mann G.E., Gutierrez C.G., Sinclair K.D. Physiological responses of cultured bovine granulosa cells to elevated temperatures under low and high oxygen in the presence of different concentrations of melatonin. Theriogenology. 2018;105:107–114. doi: 10.1016/j.theriogenology.2017.09.014. PubMed DOI

Chaube S.K., Prasad P.V., Thakur S.C., Shrivastav T.G. Estradiol protects clomiphene citrate–induced apoptosis in ovarian follicular cells and ovulated cumulus–oocyte complexes. Fertil. Steril. 2005;84:1163–1172. doi: 10.1016/j.fertnstert.2005.03.073. PubMed DOI

Luo M., Li L., Xiao C., Sun Y., Wang G.-L. Heat stress impairs mice granulosa cell function by diminishing steroids production and inducing apoptosis. Mol. Cell. Biochem. 2016;412:81–90. doi: 10.1007/s11010-015-2610-0. PubMed DOI

Silva J.R.V., Figueiredo J.R., van den Hurk R. Involvement of growth hormone (GH) and insulin-like growth factor (IGF) system in ovarian folliculogenesis. Theriogenology. 2009;71:1193–1208. doi: 10.1016/j.theriogenology.2008.12.015. PubMed DOI

Sirotkin A.V. Growth factors controlling ovarian functions. J. Cell. Physiol. 2011;226:2222–2225. doi: 10.1002/jcp.22588. PubMed DOI

Mani A.M., Fenwick M.A., Cheng Z., Sharma M.K., Singh D., Wathes D.C. IGF1 induces up-regulation of steroidogenic and apoptotic regulatory genes via activation of phosphatidylinositol-dependent Kinase/AKT in bovine granulosa cells. Reproduction. 2010;139:139–151. doi: 10.1530/REP-09-0050. PubMed DOI

Devoto L., Christenson L.K., McAllister J.M., Makrigiannakis A., Strauss J.F. Insulin and insulin-like growth factor-I and- II modulate human granulosa-lutein cell steroidogenesis: Enhancement of steroidogenic acute regulatory protein (StAR) expression. Mol. Hum. Reprod. 1999;5:1003–1010. doi: 10.1093/molehr/5.11.1003. PubMed DOI

Wang Y., Zeng S. Melatonin promotes ubiquitination of phosphorylated pro-apoptotic protein Bcl-2-interacting mediator of cell death-extra long (BimEL) in porcine granulosa cells. Int. J. Mol. Sci. 2018;19:3431. doi: 10.3390/ijms19113431. PubMed DOI PMC

Yang M.Y., Rajamahendran R. Morphological and biochemical identification of apoptosis in small, medium, and large bovine follicles and the effects of follicle-stimulating hormone and insulin-like growth factor-1 on spontaneous apoptosis in cultured bovine granulosa cells. Biol. Reprod. 2000;62:1209–1217. doi: 10.1095/biolreprod62.5.1209. PubMed DOI

Fu Y., He C.-J., Ji P.-Y., Zhuo Z.-Y., Tian X.-Z., Wang F., Tan D.-X., Liu G.-S. Effects of melatonin on the proliferation and apoptosis of sheep granulosa cells under thermal stress. Int. J. Mol. Sci. 2014;15:21090–21104. doi: 10.3390/ijms151121090. PubMed DOI PMC

Bhardwaj J.K., Sharma R.K., Saraf P. Alterations in phosphatases and antioxidant enzymes’ activity in follicular fluid and granulosa cells during follicular atresia in goat (Capra Hircus) ovary. J. Adv. Zool. 2017;38:154–163.

Nuñez-Calonge R., Rancan L., Cortés S., Vara E., Andrés C., Caballero P., Fernández-Tresguerres J. Apoptotic markers and antioxidant enzymes have altered expression in cumulus and granulosa cells of young women with poor response to ovarian stimulation. J. Reprod. Biol. Endocrinol. 2019;3:1–6.

Suzuki T., Sugino N., Fukaya T., Sugiyama S., Uda T., Takaya R., Yajima A., Sasano H. Superoxide dismutase in normal cycling human ovaries: Immunohistochemical localization and characterization. Fertil. Steril. 1999;72:720–726. doi: 10.1016/S0015-0282(99)00332-5. PubMed DOI

Khadrawy O., Gebremedhn S., Salilew-Wondim D., Rings F., Neuhoff C., Hoelker M., Schellander K., Tesfaye D. Quercetin supports bovine preimplantation embryo development under oxidative stress condition via activation of the Nrf2 signalling pathway. Reprod. Domest. Anim. 2020;55:1275–1285. doi: 10.1111/rda.13688. PubMed DOI

Saeed-Zidane M., Linden L., Salilew-Wondim D., Held E., Neuhoff C., Tholen E., Hoelker M., Schellander K., Tesfaye D. Cellular and exosome mediated molecular defense mechanism in bovine granulosa cells exposed to oxidative stress. PLoS ONE. 2017;12:e0187569. doi: 10.1371/journal.pone.0187569. PubMed DOI PMC

Sasaki J., Sato E.F., Nomura T., Mori H., Watanabe S., Kanda S., Watanabe H., Utsumi K., Inoue M. Detection of manganese superoxide dismutase mRNA in the theca interna cells of rat ovary during the ovulatory process by in situ hybridization. Histochemistry. 1994;102:173–176. doi: 10.1007/BF00268893. PubMed DOI

Khadrawy O., Gebremedhn S., Salilew-Wondim D., Taqi M.O., Neuhoff C., Tholen E., Hoelker M., Schellander K., Tesfaye D. Endogenous and exogenous modulation of Nrf2 mediated oxidative stress response in bovine granulosa cells: Potential implication for ovarian function. Int. J. Mol. Sci. 2019;20:1635. doi: 10.3390/ijms20071635. PubMed DOI PMC

Faheem M.S., Dessouki S.M., Abdel- Rahman F.E.S., Ghanem N. Physiological and molecular aspects of heat-treated cultured granulosa cells of egyptian buffalo (Bubalus Bubalis) Anim. Reprod. Sci. 2021;224:106665. doi: 10.1016/j.anireprosci.2020.106665. PubMed DOI

Sanchez-Lazo L., Brisard D., Elis S., Maillard V., Uzbekov R., Labas V., Desmarchais A., Papillier P., Monget P., Uzbekova S. Fatty acid synthesis and oxidation in cumulus cells support oocyte maturation in bovine. Mol. Endocrinol. 2014;28:1502–1521. doi: 10.1210/me.2014-1049. PubMed DOI PMC

Seo H., Lee I., Chung H.S., Bae G.-U., Chang M., Song E., Kim M.J. ATP5B regulates mitochondrial fission and fusion in mammalian cells. Anim. Cells Syst. 2016;20:157–164. doi: 10.1080/19768354.2016.1188855. DOI

Kim M.-S., Ramakrishna S., Lim K.-H., Kim J.-H., Baek K.-H. Protein stability of mitochondrial superoxide dismutase SOD2 is regulated by USP36. J. Cell. Biochem. 2011;112:498–508. doi: 10.1002/jcb.22940. PubMed DOI

Appasamy M., Jauniaux E., Serhal P., Al-Qahtani A., Groome N.P., Muttukrishna S. Evaluation of the relationship between follicular fluid oxidative stress, ovarian hormones, and response to gonadotropin stimulation. Fertil. Steril. 2008;89:912–921. doi: 10.1016/j.fertnstert.2007.04.034. PubMed DOI

Verit F.F., Erel O., Kocyigit A. Association of increased total antioxidant capacity and anovulation in nonobese infertile patients with clomiphene citrate–resistant polycystic ovary syndrome. Fertil. Steril. 2007;88:418–424. doi: 10.1016/j.fertnstert.2006.11.172. PubMed DOI

Alemu T.W., Pandey H.O., Salilew Wondim D., Gebremedhn S., Neuhof C., Tholen E., Holker M., Schellander K., Tesfaye D. Oxidative and endoplasmic reticulum stress defense mechanisms of bovine granulosa cells exposed to heat stress. Theriogenology. 2018;110:130–141. doi: 10.1016/j.theriogenology.2017.12.042. PubMed DOI

Moura M.T., Paula-Lopes F.F. Thermoprotective molecules to improve oocyte competence under elevated temperature. Theriogenology. 2020;156:262–271. doi: 10.1016/j.theriogenology.2020.06.017. PubMed DOI

Hu Y., Cai M.-C., Wang L., Zhang T.-H., Luo Z.-G., Zhang G.-W., Zuo F.-Y. MiR-1246 is upregulated and regulates lung cell apoptosis during heat stress in feedlot cattle. Cell Stress Chaperon. 2018;23:1219–1228. doi: 10.1007/s12192-018-0927-9. PubMed DOI PMC

Zheng Y., Chen K.-L., Zheng X.-M., Li H.-X., Wang G.-L. Identification and bioinformatics analysis of MicroRNAs associated with stress and immune response in serum of heat-stressed and normal holstein cows. Cell Stress Chaperon. 2014;19:973–981. doi: 10.1007/s12192-014-0521-8. PubMed DOI PMC

Chen Q., Lin H., Deng X., Li S., Zhang J. MiR-1246 promotes anti-apoptotic effect of mini-αa in oxidative stress-induced apoptosis in retinal pigment epithelial cells. Clin. Exp. Ophthalmol. 2020;48:682–688. doi: 10.1111/ceo.13751. PubMed DOI

Yin C., Zheng X., Xiang H., Li H., Gao M., Meng X., Yang K. Differential expression profile analysis of cisplatin-regulated MiRNAs in a human gastric cancer cell line. Mol. Med. Rep. 2019;20:1966–1976. doi: 10.3892/mmr.2019.10430. PubMed DOI

Lee J., Lee S., Son J., Lim H., Kim E., Kim D., Ha S., Hur T., Lee S., Choi I. Analysis of circulating-MicroRNA expression in lactating holstein cows under summer heat stress. PLoS ONE. 2020;15:e0231125. doi: 10.1371/journal.pone.0231125. PubMed DOI PMC

Sakumoto R., Hayashi K.-G., Hosoe M., Iga K., Kizaki K., Okuda K. Gene expression profiles in the bovine corpus luteum (CL) during the estrous cycle and pregnancy: Possible roles of chemokines in regulating CL function during pregnancy. J. Reprod. Dev. 2015;61:42–48. doi: 10.1262/jrd.2014-101. PubMed DOI PMC

Sontakke S.D., Mohammed B.T., McNeilly A.S., Donadeu F.X. Characterization of MicroRNAs differentially expressed during bovine follicle development. Reproduction. 2014;148:271–283. doi: 10.1530/REP-14-0140. PubMed DOI

Korhan P., Erdal E., Atabey N. MiR-181a-5p is downregulated in hepatocellular carcinoma and suppresses motility, invasion and branching-morphogenesis by directly targeting c-Met. Biochem. Biophys. Res. Commun. 2014;450:1304–1312. doi: 10.1016/j.bbrc.2014.06.142. PubMed DOI

Cheleschi S., Tenti S., Mondanelli N., Corallo C., Barbarino M., Giannotti S., Gallo I., Giordano A., Fioravanti A. MicroRNA-34a and MicroRNA-181a mediate visfatin-induced apoptosis and oxidative stress via NF-ΚB pathway in human osteoarthritic chondrocytes. Cells. 2019;8:874. doi: 10.3390/cells8080874. PubMed DOI PMC

Chen K.-L., Fu Y.-Y., Shi M.-Y., Li H.-X. Down-regulation of MiR-181a can reduce heat stress damage in pbmcs of holstein cows. In Vitro Cell. Dev. Biol. Anim. 2016;52:864–871. doi: 10.1007/s11626-016-0045-x. PubMed DOI

Xu W., Li F., Liu Z., Xu Z., Sun B., Cao J., Liu Y. MicroRNA-27b inhibition promotes Nrf2/ARE pathway activation and alleviates intracerebral hemorrhage-induced brain injury. Oncotarget. 2017;8:70669–70684. doi: 10.18632/oncotarget.19974. PubMed DOI PMC

Xu S., Zhang R., Niu J., Cui D., Xie B., Zhang B., Lu K., Yu W., Wang X., Zhang Q. Oxidative stress mediated-alterations of the MicroRNA expression profile in mouse hippocampal neurons. Int. J. Mol. Sci. 2012;13:16945–16960. doi: 10.3390/ijms131216945. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...