The emergence of Clostridium difficile ribotypes 027 and 176 with a predominance of the Clostridium difficile ribotype 001 recognized in Slovakia following the European standardized Clostridium difficile infection surveillance of 2016
Jazyk angličtina Země Kanada Médium print-electronic
Typ dokumentu časopisecké články
PubMed
31707136
PubMed Central
PMC6912155
DOI
10.1016/j.ijid.2019.10.038
PII: S1201-9712(19)30432-1
Knihovny.cz E-zdroje
- Klíčová slova
- Clostridium difficile infection, Moxifloxacin reduced susceptibility, PCR ribotype 001, PCR ribotype 027, PCR ribotype 176, Surveillance,
- MeSH
- antibakteriální látky farmakologie MeSH
- Clostridioides difficile klasifikace účinky léků genetika izolace a purifikace MeSH
- incidence MeSH
- klostridiové infekce epidemiologie mikrobiologie MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- moxifloxacin farmakologie MeSH
- ribotypizace MeSH
- senioři MeSH
- Check Tag
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Slovenská republika epidemiologie MeSH
- Názvy látek
- antibakteriální látky MeSH
- moxifloxacin MeSH
AIM: To obtain standardized epidemiological data for Clostridium difficile infection (CDI) in Slovakia. METHODS: Between October and December 2016, 36 hospitals in Slovakia used the European Centre for Disease Prevention and Control (ECDC) Clostridium difficile infection (CDI) surveillance protocol. RESULTS: The overall mean CDI incidence density was 2.8 (95% confidence interval 1.9-3.9) cases per 10 000 patient-days. Of 332 CDI cases, 273 (84.9%) were healthcare-associated, 45 (15.1%) were community-associated, and 14 (4.2%) were cases of recurrent CDI. A complicated course of CDI was reported in 14.8% of cases (n=51). CDI outcome data were available for 95.5% of cases (n=317). Of the 35 patients (11.1%) who died, 34 did so within 30 days after their CDI diagnosis. Of the 78 isolates obtained from 12 hospitals, 46 belonged to PCR ribotype 001 (59.0%; 11 hospitals) and 23 belonged to ribotype 176 (29.5%; six hospitals). A total of 73 isolates (93.6%) showed reduced susceptibility to moxifloxacin (ribotypes 001 and 176; p< 0.01). A reduced susceptibility to metronidazole was observed in 13 isolates that subsequently proved to be metronidazole-susceptible when, after thawing, they were retested using the agar dilution method. No reduced susceptibility to vancomycin was found. CONCLUSIONS: These results show the emergence of C. difficile ribotypes 027 and 176 with a predominance of ribotype 001 in Slovakia in 2016. Given that an almost homogeneous reduced susceptibility to moxifloxacin was detected in C. difficile isolates, this stresses the importance of reducing fluoroquinolone prescriptions in Slovak healthcare settings.
Department of Epidemiology Regional Public Health Authority Trenčín Slovakia
Department of Medical Microbiology Leiden University Medical Centre Leiden The Netherlands
Department of Public Health Comenius University Jessenius Faculty of Medicine in Martin Slovakia
Zobrazit více v PubMed
Alcalá L., Martín A., Marín M., Sánchez-Somolinos M., Catalán P., Peláez T. The undiagnosed cases of Clostridium difficile infection in a whole nation: where is the problem? Clin Microbiol Infect. 2012;18(7):E204–13. PubMed
Baines S.D., O’Connor R., Freeman J., Fawley W.N., Harmanus C., Mastrantonio P. Emergence of reduced susceptibility to metronidazole in Clostridium difficile. J Antimicrob Chemother. 2008;62(5):1046–1052. PubMed
Bauer M.P., Notermans D.W., van Benthem B.H., Brazier J.S., Wilcox M.H., Rupnik M. Clostridium difficile infection in Europe: a hospital-based survey. Lancet. 2011;377(9759):63–73. PubMed
Berger F.K., Gfrörer S., Becker S.L., Baldan R., Cirillo D.M., Frentrup M. Hospital outbreak due to Clostridium difficile ribotype 018 (RT018) in Southern Germany. Int J Med Microbiol. 2019;309(3–4):189–193. PubMed
Crobach M.J., Planche T., Eckert C., Barbut F., Terveer E.M., Dekkers O.M. European Society of Clinical Microbiology and Infectious Diseases: update of the diagnostic guidance document for Clostridium difficile infection. Clin Microbiol Infect. 2016;22 Suppl 4:S63–81. PubMed
Davies K.A., Longshaw C.M., Davis G.L., Bouza E., Barbut F., Barna Z. Underdiagnosis of Clostridium difficile across Europe: the European, multicentre, prospective, biannual, point-prevalence study of Clostridium difficile infection in hospitalised patients with diarrhoea (EUCLID) Lancet Infect Dis. 2014;14(12):1208–1219. PubMed
Davies K.A., Ashwin H., Longshaw C.M., Burns D.A., Davis G.L., Wilcox M.H. Diversity of Clostridium difficile PCR ribotypes in Europe: results from the European, multicentre, prospective, biannual, point-prevalence study of Clostridium difficile infection in hospitalised patients with diarrhoea (EUCLID), 2012 and 2013. Euro Surveill. 2016;21(29) PubMed
Dingle K.E., Didelot X., Quan T.P., Eyre D.W., Stoesser N., Golubchik T. Effects of control interventions on Clostridium difficile infection in England: an observational study. Lancet Infect Dis. 2017;17(4):411–421. PubMed PMC
Dresler J., Krutova M., Fucikova A., Klimentova J., Hruzova V., Duracova M. Analysis of proteomes released from in vitro cultured eight Clostridium difficile PCR ribotypes revealed specific expression in PCR ribotypes 027 and 176 confirming their genetic relatedness and clinical importance at the proteomic level. Gut Pathog. 2017;9:45. PubMed PMC
European Centre for Disease Prevention and Control . ECDC; Stockholm: 2013. Point prevalence survey of healthcare-associated infections and antimicrobial use in European acute care hospitals.
European Centre for Disease Prevention and Control . ECDC; Stockholm: 2015. European Surveillance of Clostridium difficile infections. Surveillance protocol version 2.2.
European Centre for Disease Prevention and Control . ECDC. Annual epidemiological report for 2016. ECDC; Stockholm: 2018. Clostridium difficile infections.
Eyre D.W., Davies K.A., Davis G., Fawley W.N., Dingle K.E., De Maio N. Two distinct patterns of Clostridium difficile diversity across Europe indicating contrasting routes of spread. Clin Infect Dis. 2018;67(7):1035–1044. PubMed PMC
Fawley W.N., Knetsch C.W., MacCannell D.R., Harmanus C., Du T., Mulvey M.R. Development and validation of an internationally-standardized, high-resolution capillary gel-based electrophoresis PCR-ribotyping protocol for Clostridium difficile. PLoS One. 2015;10(2) PubMed PMC
Freeman J., Vernon J., Pilling S., Morris K., Nicholson S., Shearman S. The ClosER study: results from a three-year pan-European longitudinal surveillance of antibiotic resistance among prevalent Clostridium difficile ribotypes, 2011-2014. Clin Microbiol Infect. 2018;24(7):724–731. PubMed
Gateau C., Deboscker S., Couturier J., Vogel T., Schmitt E., Muller J. Local outbreak of Clostridioides difficile PCR-Ribotype 018 investigated by multi locus variable number tandem repeat analysis, whole genome multi locus sequence typing and core genome single nucleotide polymorphism typing. Anaerobe. 2019;(August) PubMed
Knetsch C.W., Terveer E.M., Lauber C., Gorbalenya A.E., Harmanus C., Kuijper E.J. Comparative analysis of an expanded Clostridium difficile reference strain collection reveals genetic diversity and evolution through six lineages. Infect Genet Evol. 2012;12(7):1577–1585. PubMed
Krehelova M., Nyč O., Sinajová E., Krutova M. The predominance and clustering of Clostridioides (Clostridium) difficile PCR ribotype 001 isolates in three hospitals in Eastern Slovakia, 2017. Folia Microbiol (Praha) 2019;64(1):49–54. 10.1007/s12223-018-0629-9. PubMed
Krutova M., Matejkova J., Tkadlec J., Nyc O. Antibiotic profiling of Clostridium difficile ribotype 176—a multidrug resistant relative to C. difficile ribotype 027. Anaerobe. 2015;36:88–90. PubMed
Krutova M., Matejkova J., Kuijper E.J., Drevinek P., Nyc O., Czech Clostridium difficile study group Clostridium difficile PCR ribotypes 001 and 176 – the common denominator of C. difficile infection epidemiology in the Czech Republic, 2014. Euro Surveill. 2016;21(29) PubMed
Krutova M., Kinross P., Barbut F., Hajdu A., Wilcox M.H., Kuijper E.J. How to: surveillance of Clostridium difficile infections. Clin Microbiol Infect. 2018;24(5):469–475. PubMed
Krutova M., Wilcox M.H., Kuijper E.J. The pitfalls of laboratory diagnostics of Clostridium difficile infection. Clin Microbiol Infect. 2018;24(7):682–683. PubMed
Lachowicz D., Pituch H., Obuch-Woszczatyński P. Antimicrobial susceptibility patterns of Clostridium difficile strains belonging to different polymerase chain reaction ribotypes isolated in Poland in 2012. Anaerobe. 2015;31:37–41. PubMed
Lawes T., Lopez-Lozano J.M., Nebot C.A., Macartney G., Subbarao-Sharma R., Wares K.D. Effect of a national 4C antibiotic stewardship intervention on the clinical and molecular epidemiology of Clostridium difficile infections in a region of Scotland: a non-linear time-series analysis. Lancet Infect Dis. 2017;17(2):194–206. PubMed
Martin H., Willey B., Low D.E., Staempfli H.R., McGeer A., Boerlin P. Characterization of Clostridium difficile strains isolated from patients in Ontario, Canada, from 2004 to 2006. J Clin Microbiol. 2008;46(9):2999–3004. PubMed PMC
Nyc O., Krutova M., Liskova A., Matejkova J., Drabek J., Kuijper E.J. The emergence of Clostridium difficile PCR-ribotype 001 in Slovakia. Eur J Clin Microbiol Infect Dis. 2015;34(8):1701–1708. PubMed
Oren A., Rupnik M. Clostridium difficile and Clostridioides difficile: two validly published and correct names. Anaerobe. 2018;52:125–126. PubMed
Peláez T., Cercenado E., Alcalá L., Marín M., Martín-López A., Martínez-Alarcón J. Metronidazole resistance in Clostridium difficile is heterogeneous. J Clin Microbiol. 2008;46(9):3028–3032. PubMed PMC
Persson S., Torpdahl M., Olsen K.E. New multiplex PCR method for the detection of Clostridium difficile toxin A (tcdA) and toxin B (tcdB) and the binary toxin (cdtA/cdtB) genes applied to a Danish strain collection. Clin Microbiol Infect. 2008;14(11):1057–1064. Erratum in: Clin Microbiol Infect. 2009;15(3):296. PubMed
Pituch H., Obuch-Woszczatyński P., Lachowicz D., Wultańska D., Karpiński P., Młynarczyk G. Hospital-based Clostridium difficile infection surveillance reveals high proportions of PCR ribotypes 027 and 176 in different areas of Poland, 2011 to 2013. Euro Surveill. 2015;20(38) PubMed
Rupnik M., Tambic Andrasevic A., Trajkovska Dokic E., Matas I., Jovanovic M., Pasic S. Distribution of Clostridium difficile PCR ribotypes and high proportion of 027 and 176 in some hospitals in four South Eastern European countries. Anaerobe. 2016;42:142–144. PubMed
Tóth J., Urbán E., Osztie H., Benczik M., Indra A., Nagy E. Distribution of PCR ribotypes among recent Clostridium difficile isolates collected in two districts of Hungary using capillary gel electrophoresis and review of changes in the circulating ribotypes over time. J Med Microbiol. 2016;65(10):1158–1163. PubMed
Tschudin-Sutter S., Kuijper E.J., Durovic A., Vehreschild M.J.G.T., Barbut F., Eckert C. Guidance document for prevention of Clostridium difficile infection in acute healthcare settings. Clin Microbiol Infect. 2018;24(10):1051–1054. PubMed
van Dorp S.M., Kinross P., Gastmeier P., Behnke M., Kola A., Delmée M. Standardised surveillance of Clostridium difficile infection in European acute care hospitals: a pilot study, 2013. Euro Surveill. 2016;21(29) PubMed