An Outbreak of Clostridium (Clostridioides) difficile Infections within an Acute and Long-Term Care Wards Due to Moxifloxacin-Resistant PCR Ribotype 176 Genotyped as PCR Ribotype 027 by a Commercial Assay
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33233843
PubMed Central
PMC7699857
DOI
10.3390/jcm9113738
PII: jcm9113738
Knihovny.cz E-zdroje
- Klíčová slova
- MLVA, Slovakia, Thr82Ile, binary toxin, ribotyping, tcdC, Δ117,
- Publikační typ
- časopisecké články MeSH
We aimed to characterize Clostridioides difficile isolates cultured during a six-month single-center study from stool samples of patients with C. difficile infection (CDI) genotyped by the Xpert®C. difficile/Epi assay by polymerase chain reaction (PCR) ribotyping, toxin genes' detection and multi-locus variable number tandem repeats analysis (MLVA). The susceptibility to metronidazole, vancomycin and moxifloxacin was determined by agar dilution. In addition, the presence of Thr82Ile in the GyrA and a single nucleotide deletion at position (Δ117) in the tcdC gene were investigated. Between January 1 and June 30, 2016, of 114 CDIs, 75 cases were genotyped as presumptive PCR ribotype (RT) 027 infections using a commercial assay. C. difficile isolates cultured from presumptive RT027 stool samples belonged to RT176. These isolates carried genes for toxin A (tcdA), B (tcdB), binary (cdtA/B) and had Δ117 in the tcdC gene. Using MLVA, the 71/75 isolates clustered into two clonal complexes (CCs). Of these, 39 isolates (54.9%) were from patients hospitalized in acute care and 32 isolates (45.1%) were isolated from patients hospitalized in the long-term care department. All isolates were susceptible to metronidazole and vancomycin, and 105 isolates were resistant to moxifloxacin (92%) carrying Thr83Ile in the GyrA. An outbreak of RT176 CDIs, suspected as RT027, was recognized in a Slovakian hospital. In order to monitor the emergence and spread of RT027-variants, the identification of a presumptive RT027 CDI should be confirmed at a strain level by PCR ribotyping.
Department of Clinical Microbiology Clinical Biochemistry Inc 012 07 Zilina Slovakia
Department of Medical Microbiology Leiden University Medical Centre 2300 Leiden The Netherlands
Zobrazit více v PubMed
Lawson P.A., Citron D.M., Tyrrell K., Finegold S.M. Reclassification of Clostridium difficile as Clostridioides difficile (Hall and O’Toole 1935) Prévot 1938. Anaerobe. 2016;40:95–99. doi: 10.1016/j.anaerobe.2016.06.008. PubMed DOI
Cassini A., Plachouras D., Eckmanns T., Abu Sin M., Blank H.-P., Ducomble T., Haller S., Harder T., Klingeberg A., Sixtensson M., et al. Burden of Six Healthcare-Associated Infections on European Population Health: Estimating Incidence-Based Disability-Adjusted Life Years through a Population Prevalence-Based Modelling Study. PLoS Med. 2016;13:e1002150. doi: 10.1371/journal.pmed.1002150. PubMed DOI PMC
Gerding D.N., Johnson S., Rupnik M., Aktories K. Clostridium difficile binary toxin CDT. Gut Microbes. 2013;5:15–27. doi: 10.4161/gmic.26854. PubMed DOI PMC
Martin-Verstraete I., Peltier J., Dupuy B. The Regulatory Networks That Control Clostridium difficile Toxin Synthesis. Toxins. 2016;8:153. doi: 10.3390/toxins8050153. PubMed DOI PMC
Matamouros S., England P., Dupuy B. Clostridium difficile toxin expression is inhibited by the novel regulator TcdC. Mol. Microbiol. 2007;64:1274–1288. doi: 10.1111/j.1365-2958.2007.05739.x. PubMed DOI
Krutova M., Kinross P., Barbut F., Hajdu A., Wilcox M., Kuijper E., Allerberger F., Delmée M., Van Broeck J., Vatcheva-Dobrevska R., et al. How to: Surveillance of Clostridium difficile infections. Clin. Microbiol. Infect. 2018;24:469–475. doi: 10.1016/j.cmi.2017.12.008. PubMed DOI
He M., Miyajima F., Roberts P., Ellison L., Pickard D.J., Martin M.J., Connor T.R., Harris S.R., Fairley D., Bamford K.B., et al. Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat. Genet. 2013;45:109–113. doi: 10.1038/ng.2478. PubMed DOI PMC
Curry S.R., Marsh J.W., Muto C.A., O’Leary M.M., Pasculle A.W., Harrison L.H. tcdC Genotypes Associated with Severe TcdC Truncation in an Epidemic Clone and Other Strains of Clostridium difficile. J. Clin. Microbiol. 2006;45:215–221. doi: 10.1128/JCM.01599-06. PubMed DOI PMC
Gateau C., Couturier J., Coia J., Barbut F. How to: Diagnose infection caused by Clostridium difficile. Clin. Microbiol. Infect. 2018;24:463–468. doi: 10.1016/j.cmi.2017.12.005. PubMed DOI
Fawley W.N., Knetsch C.W., MacCannell D.R., Harmanus C., Du T., Mulvey M.R., Paulick A., Anderson L., Kuijper E.J., Wilcox M.H. Development and Validation of an Internationally-Standardized, High-Resolution Capillary Gel-Based Electrophoresis PCR-Ribotyping Protocol for Clostridium difficile. PLoS ONE. 2015;10:e0118150. doi: 10.1371/journal.pone.0118150. PubMed DOI PMC
Persson S., And M.T., Olsen K. New multiplex PCR method for the detection of Clostridium difficile toxin A (tcdA) and toxin B (tcdB) and the binary toxin (cdtA/cdtB) genes applied to a Danish strain collection. Clin. Microbiol. Infect. 2008;14:1057–1064. doi: 10.1111/j.1469-0691.2008.02092.x. PubMed DOI
Spigaglia P., Mastrantonio P. Molecular Analysis of the Pathogenicity Locus and Polymorphism in the Putative Negative Regulator of Toxin Production (TcdC) among Clostridium difficile Clinical Isolates. J. Clin. Microbiol. 2002;40:3470–3475. doi: 10.1128/JCM.40.9.3470-3475.2002. PubMed DOI PMC
Berg R.J.V.D., Schaap I., Templeton K.E., Klaassen C.H.W., Kuijper E.J. Typing and Subtyping of Clostridium difficile Isolates by Using Multiple-Locus Variable-Number Tandem-Repeat Analysis. J. Clin. Microbiol. 2006;45:1024–1028. doi: 10.1128/JCM.02023-06. PubMed DOI PMC
Griffiths D., Fawley W., Kachrimanidou M., Bowden R., Crook D.W., Fung R., Golubchik T., Harding R.M., Jeffery K.J.M., Jolley K.A., et al. Multilocus Sequence Typing of Clostridium difficile. J. Clin. Microbiol. 2010;48:770–778. doi: 10.1128/JCM.01796-09. PubMed DOI PMC
Dridi L., Tankovic J., Burghoffer B., Barbut F., Petit J.-C. gyrA and gyrB Mutations Are Implicated in Cross-Resistance to Ciprofloxacin and Moxifloxacin in Clostridium difficile. Antimicrob. Agents Chemother. 2002;46:3418–3421. doi: 10.1128/AAC.46.11.3418-3421.2002. PubMed DOI PMC
Novakova E., Stefkovicova M., Kopilec M.G., Novak M., Kotlebova N., Kuijper E., Krutova M., Garabasova M.K. The emergence of Clostridium difficile ribotypes 027 and 176 with a predominance of the Clostridium difficile ribotype 001 recognized in Slovakia following the European standardized Clostridium difficile infection surveillance of 2016. Int. J. Infect. Dis. 2019;90:111–115. doi: 10.1016/j.ijid.2019.10.038. PubMed DOI PMC
Krutova M., Wilcox M., Kuijper E. A two-step approach for the investigation of a Clostridium difficile outbreak by molecular methods. Clin. Microbiol. Infect. 2019;25:1300–1301. doi: 10.1016/j.cmi.2019.07.022. PubMed DOI
Pituch H., Obuch-Woszczatyński P., Lachowicz D., Wultańska D., Karpiński P., Młynarczyk G., Van Dorp S.M., Kuijper E.J. Hospital-based Clostridium difficile infection surveillance reveals high proportions of PCR ribotypes 027 and 176 in different areas of Poland, 2011 to 2013. Eurosurveillance. 2015;20:30025. doi: 10.2807/1560-7917.ES.2015.20.38.30025. PubMed DOI
Krutova M., Matejkova J., Kuijper E.J., Drevinek P., Nyc O., Czech Clostridium difficile study group Clostridium difficile PCR ribotypes 001 and 176—The common denominator of C. difficile infection epidemiology in the Czech Republic, 2014. Eurosurveillance. 2016;21 doi: 10.2807/1560-7917.ES.2016.21.29.30296. PubMed DOI
Emele M.F., Joppe F.M., Riedel T., Overmann J., Rupnik M., Cooper P., Kusumawati R.L., Berger F.K., Laukien F., Zimmermann O., et al. Proteotyping of Clostridioides difficile as Alternate Typing Method to Ribotyping Is Able to Distinguish the Ribotypes RT027 and RT176 From Other Ribotypes. Front. Microbiol. 2019;10:2087. doi: 10.3389/fmicb.2019.02087. PubMed DOI PMC
Rupnik M., Andrasevic A.T., Dokic E.T., Matas I., Jovanovic M., Pasic S., Kocuvan A., Janezic S. Distribution of Clostridium difficile PCR ribotypes and high proportion of 027 and 176 in some hospitals in four South Eastern European countries. Anaerobe. 2016;42:142–144. doi: 10.1016/j.anaerobe.2016.10.005. PubMed DOI
Krutova M., Nyc O., Matejkova J., Kuijper E.J., Jalava J., Mentula S. The recognition and characterisation of Finnish Clostridium difficile isolates resembling PCR-ribotype 027. J. Microbiol. Immunol. Infect. 2018;51:344–351. doi: 10.1016/j.jmii.2017.02.002. PubMed DOI
Tóth J., Urbán E., Osztie H., Benczik M., Indra A., Nagy E., Allerberger F. Distribution of PCR ribotypes among recent Clostridium difficile isolates collected in two districts of Hungary using capillary gel electrophoresis and review of changes in the circulating ribotypes over time. J. Med. Microbiol. 2016;65:1158–1163. doi: 10.1099/jmm.0.000334. PubMed DOI
Couturier J., Eckert C., Barbut F. Spatio-temporal variability of the epidemic 027 Clostridium difficile strains in France based on MLVA typing. Anaerobe. 2017;48:179–183. doi: 10.1016/j.anaerobe.2017.08.007. PubMed DOI
Krůtová M., Matejkova J., Nyc O.C. C. difficile ribotype 027 or 176? Folia Microbiol. 2014;59:523–526. doi: 10.1007/s12223-014-0323-5. PubMed DOI
Lim S.K., Stuart R.L., Mackin K.E., Carter G.P., Kotsanas D., Francis M.J., Easton M., Dimovski K., Elliott B., Riley T.V., et al. Emergence of a Ribotype 244 Strain of Clostridium difficile Associated with Severe Disease and Related to the Epidemic Ribotype 027 Strain. Clin. Infect. Dis. 2014;58:1723–1730. doi: 10.1093/cid/ciu203. PubMed DOI
Skinner A.M., Petrella L., Siddiqui F., Sambol S.P., Gulvik C.A., Gerding D.N., Donskey C.J., Johnson S. Unique Clindamycin-Resistant Clostridioides difficile Strain Related to Fluoroquinolone-Resistant Epidemic BI/RT027 Strain. Emerg. Infect. Dis. 2020;26:247–254. doi: 10.3201/eid2602.181965. PubMed DOI PMC
Rao K., Micic D., Natarajan M., Winters S., Kiel M.J., Walk S.T., Santhosh K., Mogle J.A., Galecki A.T., Lebar W., et al. Clostridium difficile Ribotype 027: Relationship to Age, Detectability of Toxins A or B in Stool With Rapid Testing, Severe Infection, and Mortality. Clin. Infect. Dis. 2015;61:233–241. doi: 10.1093/cid/civ254. PubMed DOI PMC
Dingle K.E., Didelot X., Quan T.P., Eyre D.W., Stoesser N., Golubchik T., Harding R.M., Wilson D.J., Griffiths D., Vaughan A., et al. Effects of control interventions on Clostridium difficile infection in England: An observational study. Lancet Infect. Dis. 2017;17:411–421. doi: 10.1016/S1473-3099(16)30514-X. PubMed DOI PMC