An Outbreak of Clostridium (Clostridioides) difficile Infections within an Acute and Long-Term Care Wards Due to Moxifloxacin-Resistant PCR Ribotype 176 Genotyped as PCR Ribotype 027 by a Commercial Assay

. 2020 Nov 20 ; 9 (11) : . [epub] 20201120

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33233843

We aimed to characterize Clostridioides difficile isolates cultured during a six-month single-center study from stool samples of patients with C. difficile infection (CDI) genotyped by the Xpert®C. difficile/Epi assay by polymerase chain reaction (PCR) ribotyping, toxin genes' detection and multi-locus variable number tandem repeats analysis (MLVA). The susceptibility to metronidazole, vancomycin and moxifloxacin was determined by agar dilution. In addition, the presence of Thr82Ile in the GyrA and a single nucleotide deletion at position (Δ117) in the tcdC gene were investigated. Between January 1 and June 30, 2016, of 114 CDIs, 75 cases were genotyped as presumptive PCR ribotype (RT) 027 infections using a commercial assay. C. difficile isolates cultured from presumptive RT027 stool samples belonged to RT176. These isolates carried genes for toxin A (tcdA), B (tcdB), binary (cdtA/B) and had Δ117 in the tcdC gene. Using MLVA, the 71/75 isolates clustered into two clonal complexes (CCs). Of these, 39 isolates (54.9%) were from patients hospitalized in acute care and 32 isolates (45.1%) were isolated from patients hospitalized in the long-term care department. All isolates were susceptible to metronidazole and vancomycin, and 105 isolates were resistant to moxifloxacin (92%) carrying Thr83Ile in the GyrA. An outbreak of RT176 CDIs, suspected as RT027, was recognized in a Slovakian hospital. In order to monitor the emergence and spread of RT027-variants, the identification of a presumptive RT027 CDI should be confirmed at a strain level by PCR ribotyping.

Zobrazit více v PubMed

Lawson P.A., Citron D.M., Tyrrell K., Finegold S.M. Reclassification of Clostridium difficile as Clostridioides difficile (Hall and O’Toole 1935) Prévot 1938. Anaerobe. 2016;40:95–99. doi: 10.1016/j.anaerobe.2016.06.008. PubMed DOI

Cassini A., Plachouras D., Eckmanns T., Abu Sin M., Blank H.-P., Ducomble T., Haller S., Harder T., Klingeberg A., Sixtensson M., et al. Burden of Six Healthcare-Associated Infections on European Population Health: Estimating Incidence-Based Disability-Adjusted Life Years through a Population Prevalence-Based Modelling Study. PLoS Med. 2016;13:e1002150. doi: 10.1371/journal.pmed.1002150. PubMed DOI PMC

Gerding D.N., Johnson S., Rupnik M., Aktories K. Clostridium difficile binary toxin CDT. Gut Microbes. 2013;5:15–27. doi: 10.4161/gmic.26854. PubMed DOI PMC

Martin-Verstraete I., Peltier J., Dupuy B. The Regulatory Networks That Control Clostridium difficile Toxin Synthesis. Toxins. 2016;8:153. doi: 10.3390/toxins8050153. PubMed DOI PMC

Matamouros S., England P., Dupuy B. Clostridium difficile toxin expression is inhibited by the novel regulator TcdC. Mol. Microbiol. 2007;64:1274–1288. doi: 10.1111/j.1365-2958.2007.05739.x. PubMed DOI

Krutova M., Kinross P., Barbut F., Hajdu A., Wilcox M., Kuijper E., Allerberger F., Delmée M., Van Broeck J., Vatcheva-Dobrevska R., et al. How to: Surveillance of Clostridium difficile infections. Clin. Microbiol. Infect. 2018;24:469–475. doi: 10.1016/j.cmi.2017.12.008. PubMed DOI

He M., Miyajima F., Roberts P., Ellison L., Pickard D.J., Martin M.J., Connor T.R., Harris S.R., Fairley D., Bamford K.B., et al. Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat. Genet. 2013;45:109–113. doi: 10.1038/ng.2478. PubMed DOI PMC

Curry S.R., Marsh J.W., Muto C.A., O’Leary M.M., Pasculle A.W., Harrison L.H. tcdC Genotypes Associated with Severe TcdC Truncation in an Epidemic Clone and Other Strains of Clostridium difficile. J. Clin. Microbiol. 2006;45:215–221. doi: 10.1128/JCM.01599-06. PubMed DOI PMC

Gateau C., Couturier J., Coia J., Barbut F. How to: Diagnose infection caused by Clostridium difficile. Clin. Microbiol. Infect. 2018;24:463–468. doi: 10.1016/j.cmi.2017.12.005. PubMed DOI

Fawley W.N., Knetsch C.W., MacCannell D.R., Harmanus C., Du T., Mulvey M.R., Paulick A., Anderson L., Kuijper E.J., Wilcox M.H. Development and Validation of an Internationally-Standardized, High-Resolution Capillary Gel-Based Electrophoresis PCR-Ribotyping Protocol for Clostridium difficile. PLoS ONE. 2015;10:e0118150. doi: 10.1371/journal.pone.0118150. PubMed DOI PMC

Persson S., And M.T., Olsen K. New multiplex PCR method for the detection of Clostridium difficile toxin A (tcdA) and toxin B (tcdB) and the binary toxin (cdtA/cdtB) genes applied to a Danish strain collection. Clin. Microbiol. Infect. 2008;14:1057–1064. doi: 10.1111/j.1469-0691.2008.02092.x. PubMed DOI

Spigaglia P., Mastrantonio P. Molecular Analysis of the Pathogenicity Locus and Polymorphism in the Putative Negative Regulator of Toxin Production (TcdC) among Clostridium difficile Clinical Isolates. J. Clin. Microbiol. 2002;40:3470–3475. doi: 10.1128/JCM.40.9.3470-3475.2002. PubMed DOI PMC

Berg R.J.V.D., Schaap I., Templeton K.E., Klaassen C.H.W., Kuijper E.J. Typing and Subtyping of Clostridium difficile Isolates by Using Multiple-Locus Variable-Number Tandem-Repeat Analysis. J. Clin. Microbiol. 2006;45:1024–1028. doi: 10.1128/JCM.02023-06. PubMed DOI PMC

Griffiths D., Fawley W., Kachrimanidou M., Bowden R., Crook D.W., Fung R., Golubchik T., Harding R.M., Jeffery K.J.M., Jolley K.A., et al. Multilocus Sequence Typing of Clostridium difficile. J. Clin. Microbiol. 2010;48:770–778. doi: 10.1128/JCM.01796-09. PubMed DOI PMC

Dridi L., Tankovic J., Burghoffer B., Barbut F., Petit J.-C. gyrA and gyrB Mutations Are Implicated in Cross-Resistance to Ciprofloxacin and Moxifloxacin in Clostridium difficile. Antimicrob. Agents Chemother. 2002;46:3418–3421. doi: 10.1128/AAC.46.11.3418-3421.2002. PubMed DOI PMC

Novakova E., Stefkovicova M., Kopilec M.G., Novak M., Kotlebova N., Kuijper E., Krutova M., Garabasova M.K. The emergence of Clostridium difficile ribotypes 027 and 176 with a predominance of the Clostridium difficile ribotype 001 recognized in Slovakia following the European standardized Clostridium difficile infection surveillance of 2016. Int. J. Infect. Dis. 2019;90:111–115. doi: 10.1016/j.ijid.2019.10.038. PubMed DOI PMC

Krutova M., Wilcox M., Kuijper E. A two-step approach for the investigation of a Clostridium difficile outbreak by molecular methods. Clin. Microbiol. Infect. 2019;25:1300–1301. doi: 10.1016/j.cmi.2019.07.022. PubMed DOI

Pituch H., Obuch-Woszczatyński P., Lachowicz D., Wultańska D., Karpiński P., Młynarczyk G., Van Dorp S.M., Kuijper E.J. Hospital-based Clostridium difficile infection surveillance reveals high proportions of PCR ribotypes 027 and 176 in different areas of Poland, 2011 to 2013. Eurosurveillance. 2015;20:30025. doi: 10.2807/1560-7917.ES.2015.20.38.30025. PubMed DOI

Krutova M., Matejkova J., Kuijper E.J., Drevinek P., Nyc O., Czech Clostridium difficile study group Clostridium difficile PCR ribotypes 001 and 176—The common denominator of C. difficile infection epidemiology in the Czech Republic, 2014. Eurosurveillance. 2016;21 doi: 10.2807/1560-7917.ES.2016.21.29.30296. PubMed DOI

Emele M.F., Joppe F.M., Riedel T., Overmann J., Rupnik M., Cooper P., Kusumawati R.L., Berger F.K., Laukien F., Zimmermann O., et al. Proteotyping of Clostridioides difficile as Alternate Typing Method to Ribotyping Is Able to Distinguish the Ribotypes RT027 and RT176 From Other Ribotypes. Front. Microbiol. 2019;10:2087. doi: 10.3389/fmicb.2019.02087. PubMed DOI PMC

Rupnik M., Andrasevic A.T., Dokic E.T., Matas I., Jovanovic M., Pasic S., Kocuvan A., Janezic S. Distribution of Clostridium difficile PCR ribotypes and high proportion of 027 and 176 in some hospitals in four South Eastern European countries. Anaerobe. 2016;42:142–144. doi: 10.1016/j.anaerobe.2016.10.005. PubMed DOI

Krutova M., Nyc O., Matejkova J., Kuijper E.J., Jalava J., Mentula S. The recognition and characterisation of Finnish Clostridium difficile isolates resembling PCR-ribotype 027. J. Microbiol. Immunol. Infect. 2018;51:344–351. doi: 10.1016/j.jmii.2017.02.002. PubMed DOI

Tóth J., Urbán E., Osztie H., Benczik M., Indra A., Nagy E., Allerberger F. Distribution of PCR ribotypes among recent Clostridium difficile isolates collected in two districts of Hungary using capillary gel electrophoresis and review of changes in the circulating ribotypes over time. J. Med. Microbiol. 2016;65:1158–1163. doi: 10.1099/jmm.0.000334. PubMed DOI

Couturier J., Eckert C., Barbut F. Spatio-temporal variability of the epidemic 027 Clostridium difficile strains in France based on MLVA typing. Anaerobe. 2017;48:179–183. doi: 10.1016/j.anaerobe.2017.08.007. PubMed DOI

Krůtová M., Matejkova J., Nyc O.C. C. difficile ribotype 027 or 176? Folia Microbiol. 2014;59:523–526. doi: 10.1007/s12223-014-0323-5. PubMed DOI

Lim S.K., Stuart R.L., Mackin K.E., Carter G.P., Kotsanas D., Francis M.J., Easton M., Dimovski K., Elliott B., Riley T.V., et al. Emergence of a Ribotype 244 Strain of Clostridium difficile Associated with Severe Disease and Related to the Epidemic Ribotype 027 Strain. Clin. Infect. Dis. 2014;58:1723–1730. doi: 10.1093/cid/ciu203. PubMed DOI

Skinner A.M., Petrella L., Siddiqui F., Sambol S.P., Gulvik C.A., Gerding D.N., Donskey C.J., Johnson S. Unique Clindamycin-Resistant Clostridioides difficile Strain Related to Fluoroquinolone-Resistant Epidemic BI/RT027 Strain. Emerg. Infect. Dis. 2020;26:247–254. doi: 10.3201/eid2602.181965. PubMed DOI PMC

Rao K., Micic D., Natarajan M., Winters S., Kiel M.J., Walk S.T., Santhosh K., Mogle J.A., Galecki A.T., Lebar W., et al. Clostridium difficile Ribotype 027: Relationship to Age, Detectability of Toxins A or B in Stool With Rapid Testing, Severe Infection, and Mortality. Clin. Infect. Dis. 2015;61:233–241. doi: 10.1093/cid/civ254. PubMed DOI PMC

Dingle K.E., Didelot X., Quan T.P., Eyre D.W., Stoesser N., Golubchik T., Harding R.M., Wilson D.J., Griffiths D., Vaughan A., et al. Effects of control interventions on Clostridium difficile infection in England: An observational study. Lancet Infect. Dis. 2017;17:411–421. doi: 10.1016/S1473-3099(16)30514-X. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace