Analysis of proteomes released from in vitro cultured eight Clostridium difficile PCR ribotypes revealed specific expression in PCR ribotypes 027 and 176 confirming their genetic relatedness and clinical importance at the proteomic level

. 2017 ; 9 () : 45. [epub] 20170814

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28814976

BACKGROUND: Clostridium difficile is the causative agent of C. difficile infection (CDI) that could be manifested by diarrhea, pseudomembranous colitis or life-threatening toxic megacolon. The spread of certain strains represents a significant economic burden for health-care. The epidemic successful strains are also associated with severe clinical features of CDI. Therefore, a proteomic study has been conducted that comprises proteomes released from in vitro cultured panel of eight different PCR ribotypes (RTs) and employs the combination of shotgun proteomics and label-free quantification (LFQ) approach. RESULTS: The comparative semi-quantitative analyses enabled investigation of a total of 662 proteins. Both hierarchical clustering and principal component analysis (PCA) created eight distinctive groups. From these quantifiable proteins, 27 were significantly increased in functional annotations. Among them, several known factors connected with virulence were identified, such as toxin A, B, binary toxin, flagellar proteins, and proteins associated with Pro-Pro endopeptidase (PPEP-1) functional complex. Comparative analysis of protein expression showed a higher expression or unique expression of proteins linked to pathogenicity or iron metabolism in RTs 027 and 176 supporting their genetic relatedness and clinical importance at the proteomic level. Moreover, the absence of putative nitroreductase and the abundance of the Abc-type fe3+ transport system protein were observed as biomarkers for the RTs possessing binary toxin genes (027, 176 and 078). Higher expression of selected flagellar proteins clearly distinguished RTs 027, 176, 005 and 012, confirming the pathogenic role of the assembly in CDI. Finally, the histidine synthesis pathway regulating protein complex HisG/HisZ was observed only in isolates possessing the genes for toxin A and B. CONCLUSIONS: This study showed the applicability of the LFQ approach and provided the first semi-quantitative insight into the proteomes released from in vitro cultured panel of eight RTs. The observed differences pointed to a new direction for studies focused on the elucidation of the mechanisms underlining the CDI nature.

Zobrazit více v PubMed

Warny M, Pepin J, Fang A, Killgore G, Thompson A, Brazier J, et al. Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet Lond Engl. 2005;366:1079–1084. doi: 10.1016/S0140-6736(05)67420-X. PubMed DOI

Moura H, Terilli RR, Woolfitt AR, Williamson YM, Wagner G, Blake TA, et al. Proteomic analysis and label-free quantification of the large Clostridium difficile toxins. Int J Proteom. 2013;2013:1–10. doi: 10.1155/2013/293782. PubMed DOI PMC

Stevenson E, Minton NP, Kuehne SA. The role of flagella in Clostridium difficile pathogenicity. Trends Microbiol. 2015;23:275–282. doi: 10.1016/j.tim.2015.01.004. PubMed DOI

Chilton CH, Gharbia SE, Fang M, Misra R, Poxton IR, Borriello SP, et al. Comparative proteomic analysis of Clostridium difficile isolates of varying virulence. J Med Microbiol. 2014;63:489–503. doi: 10.1099/jmm.0.070409-0. PubMed DOI

Wright A, Wait R, Begum S, Crossett B, Nagy J, Brown K, et al. Proteomic analysis of cell surface proteins from Clostridium difficile. Proteomics. 2005;5:2443–2452. doi: 10.1002/pmic.200401179. PubMed DOI

Boetzkes A, Felkel KW, Zeiser J, Jochim N, Just I, Pich A. Secretome analysis of Clostridium difficile strains. Arch Microbiol. 2012;194:675–687. doi: 10.1007/s00203-012-0802-5. PubMed DOI

Chen J-W, Scaria J, Mao C, Sobral B, Zhang S, Lawley T, et al. Proteomic comparison of historic and recently emerged hypervirulent Clostridium difficile strains. J Proteome Res. 2013;12:1151–1161. doi: 10.1021/pr3007528. PubMed DOI

Megger DA, Bracht T, Meyer HE, Sitek B. Label-free quantification in clinical proteomics. Biochim Biophys Acta BBA Proteins. 2013;1834:1581–1590. doi: 10.1016/j.bbapap.2013.04.001. PubMed DOI

Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteom. 2014;13:2513–2526. doi: 10.1074/mcp.M113.031591. PubMed DOI PMC

Glatter T, Ahrné E, Schmidt A. Comparison of different sample preparation protocols reveals lysis buffer-specific extraction biases in gram-negative bacteria and human cells. J Proteome Res. 2015;14:4472–4485. doi: 10.1021/acs.jproteome.5b00654. PubMed DOI

Little RH, Grenga L, Saalbach G, Howat AM, Pfeilmeier S, Trampari E, et al. Adaptive remodeling of the bacterial proteome by specific ribosomal modification regulates Pseudomonas infection and niche colonisation. PLoS Genet. 2016;12:e1005837. doi: 10.1371/journal.pgen.1005837. PubMed DOI PMC

Rosenberg A, Soufi B, Ravikumar V, Soares NC, Krug K, Smith Y, et al. Phosphoproteome dynamics mediate revival of bacterial spores. BMC Biol. 2015;13. http://www.biomedcentral.com/1741-7007/13/76. Accessed 5 Mar 2017. PubMed PMC

Krutova M, Nyc O, Matejkova J, Allerberger F, Wilcox MH, Kuijper EJ. Molecular characterisation of Czech Clostridium difficile isolates collected in 2013–2015. Int J Med Microbiol. 2016. http://linkinghub.elsevier.com/retrieve/pii/S1438422116301266. Accessed 29 Mar 2016. PubMed

Rao K, Micic D, Natarajan M, Winters S, Kiel MJ, Walk ST, et al. Clostridium difficile ribotype 027: relationship to age, detectability of toxins a or b in stool with rapid testing, severe infection, and mortality. Clin Infect Dis. 2015;61:233–241. doi: 10.1093/cid/civ254. PubMed DOI PMC

He M, Sebaihia M, Lawley TD, Stabler RA, Dawson LF, Martin MJ, et al. Evolutionary dynamics of Clostridium difficile over short and long time scales. Proc Natl Acad Sci. 2010;107:7527–7532. doi: 10.1073/pnas.0914322107. PubMed DOI PMC

Davies KA, Ashwin H, Longshaw CM, Burns DA, Davis GL, Wilcox MH, et al. Diversity of Clostridium difficile PCR ribotypes in Europe: results from the European, multicentre, prospective, biannual, point-prevalence study of Clostridium difficile infection in hospitalised patients with diarrhoea (EUCLID), 2012 and 2013. Eurosurveillance. 2016;21. http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=22536. Accessed 9 Mar 2017. PubMed

Stubbs SL, Brazier JS, O’Neill GL, Duerden BI. PCR targeted to the 16S-23S rRNA gene intergenic spacer region of Clostridium difficile and construction of a library consisting of 116 different PCR ribotypes. J Clin Microbiol. 1999;37:461–463. PubMed PMC

Wiśniewski JR, Zougman A, Mann M. Combination of FASP and StageTip-based fractionation allows in-depth analysis of the hippocampal membrane proteome. J Proteome Res. 2009;8:5674–5678. doi: 10.1021/pr900748n. PubMed DOI

Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, et al. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150:76–85. doi: 10.1016/0003-2697(85)90442-7. PubMed DOI

Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M. Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res. 2011;10:1794–1805. doi: 10.1021/pr101065j. PubMed DOI

Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57. doi: 10.1038/nprot.2008.211. PubMed DOI

Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8:785–786. doi: 10.1038/nmeth.1701. PubMed DOI

Bendtsen JD, Kiemer L, Fausbøll A, Brunak S. Non-classical protein secretion in bacteria. BMC Microbiol. 2005;5:58. doi: 10.1186/1471-2180-5-58. PubMed DOI PMC

Kazmierczak MJ, Wiedmann M, Boor KJ. Alternative sigma factors and their roles in bacterial virulence. Microbiol Mol Biol Rev. 2005;69:527–543. doi: 10.1128/MMBR.69.4.527-543.2005. PubMed DOI PMC

Stabler RA, He M, Dawson L, Martin M, Valiente E, Corton C, et al. Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. Genome Biol. 2009;10:R102. doi: 10.1186/gb-2009-10-9-r102. PubMed DOI PMC

Stabler RA, Gerding DN, Songer JG, Drudy D, Brazier JS, Trinh HT, et al. Comparative phylogenomics of Clostridium difficile reveals clade specificity and microevolution of hypervirulent strains. J Bacteriol. 2006;188:7297–7305. doi: 10.1128/JB.00664-06. PubMed DOI PMC

Valiente E, Dawson LF, Cairns MD, Stabler RA, Wren BW. Emergence of new PCR ribotypes from the hypervirulent Clostridium difficile 027 lineage. J Med Microbiol. 2012;61:49–56. doi: 10.1099/jmm.0.036194-0. PubMed DOI PMC

Lyon SA, Hutton ML, Rood JI, Cheung JK, Lyras D. CdtR regulates TcdA and TcdB production in Clostridium difficile. PLOS Pathog. 2016;12:e1005758. doi: 10.1371/journal.ppat.1005758. PubMed DOI PMC

Skaar EP. The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog. 2010;6:e1000949. doi: 10.1371/journal.ppat.1000949. PubMed DOI PMC

Miethke M, Marahiel MA. Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev. 2007;71:413–451. doi: 10.1128/MMBR.00012-07. PubMed DOI PMC

Ho TD, Ellermeier CD. Ferric uptake regulator fur control of putative iron acquisition systems in Clostridium difficile. J Bacteriol. 2015;197:2930–2940. doi: 10.1128/JB.00098-15. PubMed DOI PMC

Chong PM, Lynch T, McCorrister S, Kibsey P, Miller M, Gravel D, et al. Proteomic analysis of a NAP1 Clostridium difficile clinical isolate resistant to metronidazole. PLoS ONE. 2014;9:e82622. doi: 10.1371/journal.pone.0082622. PubMed DOI PMC

Minamino T, Yamaguchi S, Macnab RM. Interaction between FliE and FlgB, a proximal rod component of the flagellar basal body of Salmonella. J Bacteriol. 2000;182:3029–3036. doi: 10.1128/JB.182.11.3029-3036.2000. PubMed DOI PMC

Twine SM, Reid CW, Aubry A, McMullin DR, Fulton KM, Austin J, et al. Motility and flagellar glycosylation in Clostridium difficile. J Bacteriol. 2009;191:7050–7062. doi: 10.1128/JB.00861-09. PubMed DOI PMC

Faulds-Pain A, Twine SM, Vinogradov E, Strong PCR, Dell A, Buckley AM, et al. The post-translational modification of the Clostridium difficile flagellin affects motility, cell surface properties and virulence. Mol Microbiol. 2014;94:272–289. doi: 10.1111/mmi.12755. PubMed DOI PMC

Tasteyre A, Karjalainen T, Avesani V, Delmée M, Collignon A, Bourlioux P, et al. Phenotypic and genotypic diversity of the flagellin gene (fliC) among Clostridium difficile isolates from different serogroups. J Clin Microbiol. 2000;38:3179–3186. PubMed PMC

Tasteyre A, Karjalainen T, Avesani V, Delmée M, Collignon A, Bourlioux P, et al. Molecular characterization of fliD gene encoding flagellar cap and its expression among Clostridium difficile isolates from different serogroups. J Clin Microbiol. 2001;39:1178–1183. doi: 10.1128/JCM.39.3.1178-1183.2001. PubMed DOI PMC

Hensbergen PJ, Klychnikov OI, Bakker D, van Winden VJC, Ras N, Kemp AC, et al. A novel secreted metalloprotease (CD2830) from Clostridium difficile cleaves specific proline sequences in LPXTG cell surface proteins. Mol Cell Proteom. 2014;13:1231–1244. doi: 10.1074/mcp.M113.034728. PubMed DOI PMC

Hensbergen PJ, Klychnikov OI, Bakker D, Dragan I, Kelly ML, Minton NP, et al. Clostridium difficile secreted Pro-Pro endopeptidase PPEP-1 (ZMP1/CD2830) modulates adhesion through cleavage of the collagen binding protein CD2831. FEBS Lett. 2015;589:3952–3958. doi: 10.1016/j.febslet.2015.10.027. PubMed DOI

Peltier J, Shaw HA, Couchman EC, Dawson LF, Yu L, Choudhary JS, et al. Cyclic diGMP regulates production of sortase substrates of Clostridium difficile and their surface exposure through ZmpI protease-mediated cleavage. J Biol Chem. 2015;290:24453–24469. doi: 10.1074/jbc.M115.665091. PubMed DOI PMC

Delorme C, Ehrlich SD, Renault P. Histidine biosynthesis genes in Lactococcus lactis subsp. lactis. J Bacteriol. 1992;174:6571–6579. doi: 10.1128/jb.174.20.6571-6579.1992. PubMed DOI PMC

Sissler M, Delorme C, Bond J, Ehrlich SD, Renault P, Francklyn C. An aminoacyl-tRNA synthetase paralog with a catalytic role in histidine biosynthesis. Proc Natl Acad Sci USA. 1999;96:8985–8990. doi: 10.1073/pnas.96.16.8985. PubMed DOI PMC

Dineen SS, McBride SM, Sonenshein AL. Integration of metabolism and virulence by Clostridium difficile CodY. J Bacteriol. 2010;192:5350–5362. doi: 10.1128/JB.00341-10. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...