Ribotyping of Clostridioides difficile in the Liberec Regional Hospital: a tertiary health care facility
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
SVV UK
Grantová Agentura, Univerzita Karlova
LFHK
Grantová Agentura, Univerzita Karlova
No. 260544
Grantová Agentura, Univerzita Karlova
PubMed
36454512
PubMed Central
PMC9713161
DOI
10.1007/s12223-022-01021-z
PII: 10.1007/s12223-022-01021-z
Knihovny.cz E-zdroje
- Klíčová slova
- Clonal spreading, Clostridioides difficile, Health care facility, Ribotyping, Toxinotyping,
- MeSH
- bakteriální toxiny * MeSH
- Clostridioides difficile * genetika MeSH
- Clostridioides MeSH
- klostridiové infekce * diagnóza epidemiologie MeSH
- lidé MeSH
- nemocnice univerzitní MeSH
- poskytování zdravotní péče MeSH
- ribotypizace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální toxiny * MeSH
The ribotyping of Clostridioides difficile is one of the basic methods of molecular epidemiology for monitoring the spread of C. difficile infections. In the Czech Republic, this procedure is mainly available in university hospitals. The introduction of ribotyping in a tertiary health care facility such as Liberec Regional Hospital not only increases safety in the facility but also supports regional professional development. In our study, 556 stool samples collected between June 2017 and June 2018 were used for C. difficile infection screening, followed by cultivation, toxinotyping, and ribotyping of positive samples. The toxinotyping of 96 samples revealed that 44.8% of typed strains could produce toxins A and B encoded by tcdA and tcdB, respectively. The ribotyping of the same samples revealed two epidemic peaks, caused by the regionally most prevalent ribotype 176 (n = 30, 31.3). C. difficile infection incidence ranged between 5.5 and 4.2 cases per 10,000 patient-bed days. Molecular diagnostics and molecular epidemiology are the two most developing parts of clinical laboratories. The correct applications of molecular methods help ensure greater safety in hospitals.
Zobrazit více v PubMed
Aptekorz M, Szczegielniak A, Wiechuła B, et al. Occurrence of Clostridium difficile ribotype 027 in hospitals of Silesia, Poland. Anaerobe. 2017;45:106–113. doi: 10.1016/j.anaerobe.2017.02.002. PubMed DOI
Bauer MP, Notermans DW, van Benthem BH, et al. Clostridium difficile infection in Europe: a hospital-based survey. The Lancet. 2011;377:63–73. doi: 10.1016/S0140-6736(10)61266-4. PubMed DOI
Beneš J, Husa P, Nyč O. Recommendations for diagnosis and therapy of colitis caused by Clostridium difficile. Klin Mikrobiol Infekcni Lek. 2012;18:160–167. PubMed
Beran V, Chmelar D, Vobejdova J, et al. Sensitivity to antibiotics of Clostridium difficile toxigenic nosocomial strains. Folia Microbiol (praha) 2014;59:209–215. doi: 10.1007/s12223-013-0283-1. PubMed DOI
Beran V, Kuijper EJ, Harmanus C, et al. Molecular typing and antimicrobial susceptibility testing to six antimicrobials of Clostridium difficile isolates from three Czech hospitals in Eastern Bohemia in 2011–2012. Folia Microbiol (praha) 2017;62:445–451. doi: 10.1007/s12223-017-0515-x. PubMed DOI
Bidet P, Barbut F, Lalande V, et al. Development of a new PCR-ribotyping method for Clostridium difficile based on ribosomal RNA gene sequencing. FEMS Microbiol Lett. 1999;175:261–266. doi: 10.1111/j.1574-6968.1999.tb13629.x. PubMed DOI
Corbellini S, Piccinelli G, De Francesco MA, et al. Molecular epidemiology of Clostridium difficile strains from nosocomial-acquired infections. Folia Microbiol (praha) 2014;59:173–179. doi: 10.1007/s12223-013-0281-3. PubMed DOI
Crobach MJT, Planche T, Eckert C, et al. European Society of Clinical Microbiology and Infectious Diseases: update of the diagnostic guidance document for Clostridium difficile infection. Clin Microbiol Infect. 2016;22:S63–S81. doi: 10.1016/j.cmi.2016.03.010. PubMed DOI
Czepiel J, Dróżdż M, Pituch H, et al. Clostridium difficile infection: review. Eur J Clin Microbiol Infect Dis. 2019;38:1211–1221. doi: 10.1007/s10096-019-03539-6. PubMed DOI PMC
Delmée M, Van Broeck J, Simon A, et al. Laboratory diagnosis of Clostridium difficile-associated diarrhoea: a plea for culture. J Med Microbiol. 2005;54:187–191. doi: 10.1099/jmm.0.45844-0. PubMed DOI
Huber CA, Foster NF, Riley TV, Paterson DL. Challenges for standardization of Clostridium difficile typing methods. J Clin Microbiol. 2013;51:2810–2814. doi: 10.1128/JCM.00143-13. PubMed DOI PMC
Janezic S, Potocnik M, Zidaric V, Rupnik M. Highly divergent Clostridium difficile strains isolated from the environment. PLoS ONE. 2016;11:e0167101. doi: 10.1371/journal.pone.0167101. PubMed DOI PMC
Krutova M, Kinross P, Barbut F, et al. How to: surveillance of Clostridium difficile infections. Clin Microbiol Infect. 2018;24:469–475. doi: 10.1016/j.cmi.2017.12.008. PubMed DOI
Krutova M, Matejkova J, Kuijper EJ et al (2016) Clostridium difficile PCR ribotypes 001 and 176 - the common denominator of C. difficile infection epidemiology in the Czech Republic, 2014. Euro Surveill Bull Eur Sur Mal Transm Eur Commun Dis Bull 21. 10.2807/1560-7917.ES.2016.21.29.30296 PubMed
Krutova M, Matejkova J, Nyc O. C. difficile ribotype 027 or 176? Folia Microbiol (praha) 2014;59:523–526. doi: 10.1007/s12223-014-0323-5. PubMed DOI
Krůtová M, Nyč O. Updated Czech guidelines for the laboratory diagnosis of Clostridium difficile infections. Epidemiol Mikrobiol Imunol Cas Spolecnosti Epidemiol Mikrobiol Ceske Lek Spolecnosti JE Purkyne. 2018;67:92–95. PubMed
Lawson PA, Citron DM, Tyrrell KL, Finegold SM. Reclassification of Clostridium difficile as Clostridioides difficile (Hall and O’Toole 1935) Prévot 1938. Anaerobe. 2016;40:95–99. doi: 10.1016/j.anaerobe.2016.06.008. PubMed DOI
Novakova E, Stefkovicova M, Kopilec MG, et al. The emergence of Clostridium difficile ribotypes 027 and 176 with a predominance of the Clostridium difficile ribotype 001 recognized in Slovakia following the European standardized Clostridium difficile infection surveillance of 2016. Int J Infect Dis. 2020;90:111–115. doi: 10.1016/j.ijid.2019.10.038. PubMed DOI PMC
Nyc O, Krutova M, Kriz J, et al. Clostridium difficile ribotype 078 cultured from post-surgical non-healing wound in a patient carrying ribotype 014 in the intestinal tract. Folia Microbiol (praha) 2015;60:541–544. doi: 10.1007/s12223-015-0392-0. PubMed DOI
Persson S, Jensen JN, Olsen KEP. Multiplex PCR method for detection of Clostridium difficile tcdA, tcdB, cdtA, and cdtB and internal in-frame deletion of tcdC. J Clin Microbiol. 2011;49:4299–4300. doi: 10.1128/JCM.05161-11. PubMed DOI PMC
Persson S, Torpdahl and M, Olsen KEP, New multiplex PCR method for the detection of Clostridium difficile toxin A (tcdA) and toxin B (tcdB) and the binary toxin (cdtA/cdtB) genes applied to a Danish strain collection. Clin Microbiol Infect. 2008;14:1057–1064. doi: 10.1111/j.1469-0691.2008.02092.x. PubMed DOI
Rupnik M, Janezic S. An update on Clostridium difficile toxinotyping. J Clin Microbiol. 2016;54:13–18. doi: 10.1128/JCM.02083-15. PubMed DOI PMC
Smits WK, Lyras D, Lacy DB, et al. Clostridium difficile infection. Nat Rev Dis Primer. 2016;2:16020. doi: 10.1038/nrdp.2016.20. PubMed DOI PMC
Vaverková K, Kracík M, Ryšková L, et al. Effect of restriction of fluoroquinolone antibiotics on Clostridioides difficile infections in the University Hospital Hradec Králové. Antibiotics. 2021;10:519. doi: 10.3390/antibiotics10050519. PubMed DOI PMC
Is shorter also better in the treatment of Clostridioides difficile infection?