Oxidative damage of U937 human leukemic cells caused by hydroxyl radical results in singlet oxygen formation
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25730422
PubMed Central
PMC4346403
DOI
10.1371/journal.pone.0116958
PII: PONE-D-14-32014
Knihovny.cz E-zdroje
- MeSH
- elektronová paramagnetická rezonance MeSH
- hydroxylový radikál toxicita MeSH
- karbonylace proteinů účinky léků MeSH
- kometový test MeSH
- konfokální mikroskopie MeSH
- leukemie metabolismus patologie MeSH
- lidé MeSH
- malondialdehyd analýza MeSH
- nádorové buněčné linie MeSH
- oxidační stres účinky léků MeSH
- peroxid vodíku toxicita MeSH
- peroxidace lipidů účinky léků MeSH
- singletový kyslík metabolismus MeSH
- viabilita buněk účinky léků MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- železo toxicita MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- Fenton's reagent MeSH Prohlížeč
- hydroxylový radikál MeSH
- malondialdehyd MeSH
- peroxid vodíku MeSH
- singletový kyslík MeSH
- železo MeSH
The exposure of human cells to oxidative stress leads to the oxidation of biomolecules such as lipids, proteins and nuclei acids. In this study, the oxidation of lipids, proteins and DNA was studied after the addition of hydrogen peroxide and Fenton reagent to cell suspension containing human leukemic monocyte lymphoma cell line U937. EPR spin-trapping data showed that the addition of hydrogen peroxide to the cell suspension formed hydroxyl radical via Fenton reaction mediated by endogenous metals. The malondialdehyde HPLC analysis showed no lipid peroxidation after the addition of hydrogen peroxide, whereas the Fenton reagent caused significant lipid peroxidation. The formation of protein carbonyls monitored by dot blot immunoassay and the DNA fragmentation measured by comet assay occurred after the addition of both hydrogen peroxide and Fenton reagent. Oxidative damage of biomolecules leads to the formation of singlet oxygen as conformed by EPR spin-trapping spectroscopy and the green fluorescence of singlet oxygen sensor green detected by confocal laser scanning microscopy. It is proposed here that singlet oxygen is formed by the decomposition of high-energy intermediates such as dioxetane or tetroxide formed by oxidative damage of biomolecules.
Zobrazit více v PubMed
Han D, Williams E, Cadenas E (2001) Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem J 353: 411–416. PubMed PMC
Lambert AJ, Brand MD (2004) Superoxide production by NADH: ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane. Biochem J 382: 511–517. PubMed PMC
Garry BR Molecular targets of photosensitization—some biological chemistry of singlet oxygen. Free radical and Radiation Biology & ESR Facility, MEd labs B180. Iowa City: The University of Iowa.
Coudray C, Rachidi S, Favier A (1993) Effect of zinc on superoxide-dependent hydroxyl radical production in vitro. Biol Trace Elem Res 38: 273–287. PubMed
Kanofsky JR (2011) Measurement of Singlet Oxygen In Vivo: Progress and Pitfalls. Photochem Photobiol 87: 14–17. 10.1111/j.1751-1097.2010.00855.x PubMed DOI
Lloyd DR, Phillips DH (1999) Oxidative DNA damage mediated by copper(II), iron(II) and nickel(II) Fenton reactions: evidence for site-specific mechanisms in the formation of double-strand breaks, 8-hydroxydeoxyguanosine and putative intrastrand cross-links. Mutat Res-Fund Mol M 424: 23–36. PubMed
Winterbourn CC (1995) Toxicity of iron and hydrogen peroxide: The Fenton reaction. Toxicol Lett 82-3: 969–974. PubMed
Apel K, Hirt H (2004) Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55: 373–399. PubMed
Britigan BE, Coffman TJ, Adelberg DR, Cohen MS (1988) Mononuclear phagocytes have the potential for sustained hydroxyl radical production—use of spin-trapping techniques to investigate mononuclear phagocyte free-radical production. J Exp Med 168: 2367–2372. PubMed PMC
Halliwell B, Gutteridge JMC (2007) Free radical in biology and medicine New York: Oxford University Press; 704 p. 10.1093/jxb/erm028 DOI
Wu TY, Rifai N, Roberts LJ, Willett WC, Rimm EB (2004) Stability of measurements of biomarkers of oxidative stress in blood over 36 hours. Cancer Epidem Biomar 13: 1399–1402. PubMed
Gutteridge JMC (1995) Lipid-peroxidation and antioxidants as biomarkers of tissue-damage. Clin Chem 41: 1819–1828. PubMed
Russell GA (1957) Deuterium-isotope Effects in the Autoxidation of Aralkyl Hydrocarbons. Mechanism of the Interaction of Peroxy Radicals. J Am Chem Soc 79: 3871–3877.
Ahmad R, Tripathi AK, Tripath P, Singh S, Singh R, et al. (2008) Malondialdehyde and protein carbonyl as biomarkers for oxidative stress and disease progression in patients with chronic myeloid leukemia. In Vivo 22: 525–528. PubMed
Dean RT, Fu SL, Stocker R, Davies MJ (1997) Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 324: 1–18. PubMed PMC
Miyamoto S, Ronsein GE, Prado FM, Uemi M, Correa TC, et al. (2007) Biological hydroperoxides and singlet molecular oxygen generation. Iubmb Life 59: 322–331. PubMed
Von Sonntag C (1987) The chemical basis of radiation biology London: Taylor and Francis; 515 p.
Pogozelski WK, Tullius TD (1998) Oxidative strand scission of nucleic acids: Routes initiated by hydrogen abstraction from the sugar moiety. Chem Rev 98: 1089–1107. PubMed
Schlesinger JJ, Brandriss MW (1980) Antibody-mediated Enhancement of yellow-fever virus (YFV) replication in a macrophage-like cell-line, U937—role of the FC and viral receptors. Clin Res 28: A644–A644. PubMed
Pike MC, Fischer D, Koren H, Synderman R (1980) A human monocyte cell-line (U937) develops chemotactic and secretory responses following the appearance of a chemotactic factor receptor. Clin Res 28: A507–A507.
Pou TE, Murphy OJ, Young V, Bockris JO, Tongson LL (1984) Passive films on iron—the mechanism of breakdown in chloride containing solutions. J Electrochem Soc 131: 1243–1251.
Moan J, Wold E (1979) Detection of singlet oxygen production by ESR. Nature 279: 450–451. PubMed
Pilz J, Meineke I, Gleiter CH (2000) Measurement of free and bound malondialdehyde in plasma by high-performance liquid chromatography as the 2,4-dinitrophenylhydrazine derivative. J Chromatogr B 742: 315–325. PubMed
Wei SH, Zhou JH, Huang DY, Wang XS, Zhang BW, et al. (2006) Synthesis and Type I/Type II photosensitizing properties of a novel amphiphilic zinc phthalocyanine. Dyes Pigments 71: 61–67.
Goldstein S, Meyerstein D, Czapski G (1993) The Fenton reagents. Free Radical Bio Med 15: 435–445. PubMed
Halliwell B, Chirico S (1993) Lipid-peroxidation—its mechanism, measurement, and significance. Am J Clin Nutr 57: S715–S725. PubMed
Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272: 20313–20316. PubMed
Minisini MP, Kantengwa S, Polla BS (1994) DNA-damage and stress protein-synthesis induced by oxidative stress proceed independently in the human premonocytic line U937. Mutat Res-DNA Repair 315: 169–179. PubMed
Sagripanti JL, Kraemer KH (1989) Site-specific oxidative DNA damage at polyguanosines produced by copper plus hydrogen-peroxide. J Biol Chem 264: 1729–1734. PubMed
Wiseman H, Halliwell B (1996) Damage to DNA by reactive oxygen and nitrogen species: Role in inflammatory disease and progression to cancer. Biochem J 313: 17–29. PubMed PMC
Cadet J, Wagner JR (2013) DNA Base Damage by Reactive Oxygen Species, Oxidizing Agents, and UV Radiation. Cold Spring Harbor Perspectives in Biology 5 10.1101/cshperspect.a019836 PubMed DOI PMC
Shen Y, Lin HY, Huang ZF, Chen DF, Li BH, et al. (2011) Indirect imaging of singlet oxygen generation from a single cell. Laser Phys Lett 8: 232–238.
Gollmer A, Arnbjerg J, Blaikie FH, Pedersen BW, Breitenbach T, et al. (2011) Singlet Oxygen Sensor Green (R): Photochemical Behavior in Solution and in a Mammalian Cell. Photochem Photobiol 87: 671–679. 10.1111/j.1751-1097.2011.00900.x PubMed DOI
Prado FM, Oliveira MCB, Miyamoto S, Martinez GR, Medeiros MHG, et al. (2009) Thymine hydroperoxide as a potential source of singlet molecular oxygen in DNA. Free Radical Bio and Med 47: 401–409. 10.1016/j.freeradbiomed.2009.05.001 PubMed DOI
Adam W, Cilento G (1982) Chemical and biological generation of excited states New York: Academic Press;
Timmins GS, dosSantos RE, Whitwood AC, Catalani LH, Di Mascio P, et al. (1997) Lipid peroxidation-dependent chemiluminescence from the cyclization of alkylperoxyl radicals to dioxetane radical intermediates. Chem Res Toxicol 10: 1090–1096. PubMed
Miyamoto S, Martinez GR, Rettori D, Augusto O, Medeiros MHG, et al. (2006) Linoleic acid hydroperoxide reacts with hypochlorous acid, generating peroxyl radical intermediates and singlet molecular oxygen. P Natl Acad Sci USA 103: 293–298. PubMed PMC
Sun S, Bao Z, Ma H, Zhang D, Zheng X (2007) Singlet oxygen generation from the decomposition of alpha-linolenic acid hydroperoxide by cytochrome c and lactoperoxidase. Biochemistry 46: 6668–6673. PubMed
Niu EP, Mau AWH, Ghiggino KP (1991) Dye-sensitized photooxidation of anthracene and its derivatives in nafion membrane. Aust J Chem 44: 695–704.