haloalkane Dotaz Zobrazit nápovědu
An enzyme's substrate specificity is one of its most important characteristics. The quantitative comparison of broad-specificity enzymes requires the selection of a homogenous set of substrates for experimental testing, determination of substrate-specificity data and analysis using multivariate statistics. We describe a systematic analysis of the substrate specificities of nine wild-type and four engineered haloalkane dehalogenases. The enzymes were characterized experimentally using a set of 30 substrates selected using statistical experimental design from a set of nearly 200 halogenated compounds. Analysis of the activity data showed that the most universally useful substrates in the assessment of haloalkane dehalogenase activity are 1-bromobutane, 1-iodopropane, 1-iodobutane, 1,2-dibromoethane and 4-bromobutanenitrile. Functional relationships among the enzymes were explored using principal component analysis. Analysis of the untransformed specific activity data revealed that the overall activity of wild-type haloalkane dehalogenases decreases in the following order: LinB~DbjA>DhlA~DhaA~DbeA~DmbA>DatA~DmbC~DrbA. After transforming the data, we were able to classify haloalkane dehalogenases into four SSGs (substrate-specificity groups). These functional groups are clearly distinct from the evolutionary subfamilies, suggesting that phylogenetic analysis cannot be used to predict the substrate specificity of individual haloalkane dehalogenases. Structural and functional comparisons of wild-type and mutant enzymes revealed that the architecture of the active site and the main access tunnel significantly influences the substrate specificity of these enzymes, but is not its only determinant. The identification of other structural determinants of the substrate specificity remains a challenge for further research on haloalkane dehalogenases.
- MeSH
- Agrobacterium tumefaciens enzymologie genetika metabolismus MeSH
- aktivace enzymů MeSH
- biologické modely MeSH
- Bradyrhizobium enzymologie genetika metabolismus MeSH
- Escherichia coli genetika metabolismus MeSH
- fylogeneze MeSH
- hydrolasy klasifikace genetika metabolismus fyziologie MeSH
- mutantní proteiny klasifikace genetika metabolismus MeSH
- Mycobacterium bovis enzymologie genetika metabolismus MeSH
- Mycobacterium smegmatis genetika metabolismus MeSH
- Rhodococcus enzymologie genetika metabolismus MeSH
- Sphingobacterium enzymologie genetika metabolismus MeSH
- substrátová specifita MeSH
- Xanthobacter enzymologie genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Haloalkane dehalogenases degrade halogenated compounds to corresponding alcohols by a hydrolytic mechanism. These enzymes are being intensively investigated as model systems in experimental and in silico studies of enzyme mechanism and evolution, but also hold importance as useful biocatalysts for a number of biotechnological applications. Haloalkane dehalogenases originate from various organisms including bacteria (degraders, symbionts, or pathogens), eukaryotes, and archaea. Several members of this enzyme family have been found in marine organisms. The marine environment represents a good source of enzymes with novel properties, because of its diverse living conditions. A number of novel dehalogenases isolated from marine environments show interesting characteristics such as high activity, unusually broad substrate specificity, stability, or selectivity. In this chapter, the overview of haloalkane dehalogenases from marine organisms is presented and their characteristics are summarized together with an overview of the methods for their identification and biochemical characterization.
- MeSH
- aldehydy metabolismus MeSH
- alkany metabolismus MeSH
- biokatalýza MeSH
- biotechnologie metody MeSH
- enzymatické testy metody MeSH
- halogeny metabolismus MeSH
- hydrolasy chemie izolace a purifikace metabolismus MeSH
- substrátová specifita MeSH
- technologie zelené chemie metody MeSH
- vodní organismy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Haloalkane dehalogenases (EC 3.8.1.5, HLDs) are α/β-hydrolases which act to cleave carbon-halogen bonds. Due to their unique catalytic mechanism, broad substrate specificity and high robustness, the members of this enzyme family have been employed in several practical applications: (i) biocatalytic preparation of optically pure building-blocks for organic synthesis; (ii) recycling of by-products from chemical processes; (iii) bioremediation of toxic environmental pollutants; (iv) decontamination of warfare agents; (v) biosensing of environmental pollutants; and (vi) protein tagging for cell imaging and protein analysis. This review discusses the application of HLDs in the context of the biochemical properties of individual enzymes. Further extension of HLD uses within the field of biotechnology will require currently limiting factors - such as low expression, product inhibition, insufficient enzyme selectivity, low affinity and catalytic efficiency towards selected substrates, and instability in the presence of organic co-solvents - to be overcome. We propose that strategies based on protein engineering and isolation of novel HLDs from extremophilic microorganisms may offer solutions.
Haloalkane dehalogenases are enzymes that catalyze the cleavage of the carbon-halogen bond by a hydrolytic mechanism. Genomes of Mycobacterium tuberculosis and M. bovis contain at least two open reading frames coding for the polypeptides showing a high sequence similarity with biochemically characterized haloalkane dehalogenases. We describe here the cloning of the haloalkane dehalogenase genes dmbA and dmbB from M. bovis 5033/66 and demonstrate the dehalogenase activity of their translation products. Both of these genes are widely distributed among species of the M. tuberculosis complex, including M. bovis, M. bovis BCG, M. africanum, M. caprae, M. microti, and M. pinnipedii, as shown by the PCR screening of 48 isolates from various hosts. DmbA and DmbB proteins were heterologously expressed in Escherichia coli and purified to homogeneity. The DmbB protein had to be expressed in a fusion with thioredoxin to obtain a soluble protein sample. The temperature optimum of DmbA and DmbB proteins determined with 1,2-dibromoethane is 45 degrees C. The melting temperature assessed by circular dichroism spectroscopy of DmbA is 47 degrees C and DmbB is 57 degrees C. The pH optimum of DmbA depends on composition of a buffer with maximal activity at 9.0. DmbB had a single pH optimum at pH 6.5. Mycobacteria are currently the only genus known to carry more than one haloalkane dehalogenase gene, although putative haloalkane dehalogenases can be inferred in more then 20 different bacterial species by comparative genomics. The evolution and distribution of haloalkane dehalogenases among mycobacteria is discussed.
- MeSH
- bakteriální proteiny genetika chemie izolace a purifikace metabolismus MeSH
- financování organizované MeSH
- hydrolasy genetika chemie izolace a purifikace metabolismus MeSH
- klonování DNA MeSH
- koncentrace vodíkových iontů MeSH
- lidé MeSH
- Mycobacterium bovis enzymologie genetika MeSH
- Mycobacterium enzymologie genetika klasifikace MeSH
- sekvenční analýza DNA MeSH
- skot MeSH
- stabilita enzymů MeSH
- teplota MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- skot MeSH
- zvířata MeSH
Haloalkane dehalogenases (HLDs) have recently been discovered in a number of bacteria, including symbionts and pathogens of both plants and humans. However, the biological roles of HLDs in these organisms are unclear. The development of efficient HLD inhibitors serving as molecular probes to explore their function would represent an important step toward a better understanding of these interesting enzymes. Here we report the identification of inhibitors for this enzyme family using two different approaches. The first builds on the structures of the enzymes' known substrates and led to the discovery of less potent nonspecific HLD inhibitors. The second approach involved the virtual screening of 150,000 potential inhibitors against the crystal structure of an HLD from the human pathogen Mycobacterium tuberculosis H37Rv. The best inhibitor exhibited high specificity for the target structure, with an inhibition constant of 3 μM and a molecular architecture that clearly differs from those of all known HLD substrates. The new inhibitors will be used to study the natural functions of HLDs in bacteria, to probe their mechanisms, and to achieve their stabilization.
- MeSH
- hydrolasy antagonisté a inhibitory chemie MeSH
- inhibitory enzymů chemie izolace a purifikace metabolismus MeSH
- konformace proteinů MeSH
- molekulární modely MeSH
- molekulární struktura MeSH
- Mycobacterium tuberculosis enzymologie MeSH
- simulace molekulární dynamiky MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Heterologous expression of the bacterial enzyme haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26 in methylotrophic yeast Pichia pastoris is reported. The haloalkane dehalogenase gene linB was subcloned into the pPICZalphaA vector and integrated into the genome of P. pastoris. The recombinant LinB secreted from the yeast was purified to homogeneity and biochemically characterized. The deglycosylation experiment and mass spectrometry measurements showed that the recombinant LinB expressed in P. pastoris is glycosylated with a 2.8 kDa size of high mannose core. The specific activity of the glycosylated LinB was 15.6 +/- 3.7 micromol/min/mg of protein with 1,2-dibromoethane and 1.86 +/- 0.36 micromol/min/mg of protein with 1-chlorobutane. Activity and solution structure of the protein produced in P. pastoris is comparable with that of recombinant LinB expressed in Escherichia coli. The melting temperature determined by the circular dichroism (41.7+/-0.3 degrees C for LinB expressed in P. pastoris and 41.8 +/- 0.3 degrees C expressed in E. coli) and thermal stability measured by specific activity to 1-chlorobutane were also similar for two enzymes. Our results show that LinB can be extracellularly expressed in eukaryotic cell and glycosylation had no effect on activity, protein fold and thermal stability of LinB.
- MeSH
- cirkulární dichroismus MeSH
- denaturace proteinů MeSH
- financování organizované MeSH
- glykosylace MeSH
- hydrolasy genetika chemie izolace a purifikace metabolismus MeSH
- kinetika MeSH
- klonování DNA MeSH
- konformace proteinů MeSH
- Pichia genetika MeSH
- regulace genové exprese enzymů MeSH
- regulace genové exprese u bakterií MeSH
- rekombinantní proteiny chemie izolace a purifikace metabolismus MeSH
- Sphingomonas enzymologie genetika MeSH
- stabilita enzymů MeSH
A haloalkane dehalogenase, DpcA, from Psychrobacter cryohalolentis K5, representing a novel psychrophilic member of the haloalkane dehalogenase family, was identified and biochemically characterized. DpcA exhibited a unique temperature profile with exceptionally high activities at low temperatures. The psychrophilic properties of DpcA make this enzyme promising for various environmental applications.
- MeSH
- bakteriální proteiny chemie genetika metabolismus MeSH
- fyziologická adaptace MeSH
- hydrolasy chemie genetika metabolismus MeSH
- kinetika MeSH
- koncentrace vodíkových iontů MeSH
- nízká teplota MeSH
- Psychrobacter enzymologie genetika růst a vývoj fyziologie MeSH
- substrátová specifita MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Ancestral sequence reconstruction (ASR) represents a powerful approach for empirical testing structure-function relationships of diverse proteins. We employed ASR to predict sequences of five ancestral haloalkane dehalogenases (HLDs) from the HLD-II subfamily. Genes encoding the inferred ancestral sequences were synthesized and expressed in Escherichia coli, and the resurrected ancestral enzymes (AncHLD1-5) were experimentally characterized. Strikingly, the ancestral HLDs exhibited significantly enhanced thermodynamic stability compared to extant enzymes (ΔTm up to 24 °C), as well as higher specific activities with preference for short multi-substituted halogenated substrates. Moreover, multivariate statistical analysis revealed a shift in the substrate specificity profiles of AncHLD1 and AncHLD2. This is extremely difficult to achieve by rational protein engineering. The study highlights that ASR is an efficient approach for the development of novel biocatalysts and robust templates for directed evolution.