-
Something wrong with this record ?
Substrate specificity of haloalkane dehalogenases
T. Koudelakova, E. Chovancova, J. Brezovsky, M. Monincova, A. Fortova, J. Jarkovsky, J. Damborsky,
Language English Country England, Great Britain
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
21294712
DOI
10.1042/bj20101405
Knihovny.cz E-resources
- MeSH
- Agrobacterium tumefaciens enzymology genetics metabolism MeSH
- Enzyme Activation MeSH
- Models, Biological MeSH
- Bradyrhizobium enzymology genetics metabolism MeSH
- Escherichia coli genetics metabolism MeSH
- Phylogeny MeSH
- Hydrolases classification genetics metabolism physiology MeSH
- Mutant Proteins classification genetics metabolism MeSH
- Mycobacterium bovis enzymology genetics metabolism MeSH
- Mycobacterium smegmatis genetics metabolism MeSH
- Rhodococcus enzymology genetics metabolism MeSH
- Sphingobacterium enzymology genetics metabolism MeSH
- Substrate Specificity MeSH
- Xanthobacter enzymology genetics metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
An enzyme's substrate specificity is one of its most important characteristics. The quantitative comparison of broad-specificity enzymes requires the selection of a homogenous set of substrates for experimental testing, determination of substrate-specificity data and analysis using multivariate statistics. We describe a systematic analysis of the substrate specificities of nine wild-type and four engineered haloalkane dehalogenases. The enzymes were characterized experimentally using a set of 30 substrates selected using statistical experimental design from a set of nearly 200 halogenated compounds. Analysis of the activity data showed that the most universally useful substrates in the assessment of haloalkane dehalogenase activity are 1-bromobutane, 1-iodopropane, 1-iodobutane, 1,2-dibromoethane and 4-bromobutanenitrile. Functional relationships among the enzymes were explored using principal component analysis. Analysis of the untransformed specific activity data revealed that the overall activity of wild-type haloalkane dehalogenases decreases in the following order: LinB~DbjA>DhlA~DhaA~DbeA~DmbA>DatA~DmbC~DrbA. After transforming the data, we were able to classify haloalkane dehalogenases into four SSGs (substrate-specificity groups). These functional groups are clearly distinct from the evolutionary subfamilies, suggesting that phylogenetic analysis cannot be used to predict the substrate specificity of individual haloalkane dehalogenases. Structural and functional comparisons of wild-type and mutant enzymes revealed that the architecture of the active site and the main access tunnel significantly influences the substrate specificity of these enzymes, but is not its only determinant. The identification of other structural determinants of the substrate specificity remains a challenge for further research on haloalkane dehalogenases.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc12027837
- 003
- CZ-PrNML
- 005
- 20121210105633.0
- 007
- ta
- 008
- 120817s2011 enk f 000 0#eng||
- 009
- AR
- 024 7_
- $a 10.1042/bj20101405 $2 doi
- 035 __
- $a (PubMed)21294712
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Koudelakova, Tana $u Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in Environment, Faculty of Science, Masaryk University, Kamenice 5/A13, 62500 Brno, Czech Republic.
- 245 10
- $a Substrate specificity of haloalkane dehalogenases / $c T. Koudelakova, E. Chovancova, J. Brezovsky, M. Monincova, A. Fortova, J. Jarkovsky, J. Damborsky,
- 520 9_
- $a An enzyme's substrate specificity is one of its most important characteristics. The quantitative comparison of broad-specificity enzymes requires the selection of a homogenous set of substrates for experimental testing, determination of substrate-specificity data and analysis using multivariate statistics. We describe a systematic analysis of the substrate specificities of nine wild-type and four engineered haloalkane dehalogenases. The enzymes were characterized experimentally using a set of 30 substrates selected using statistical experimental design from a set of nearly 200 halogenated compounds. Analysis of the activity data showed that the most universally useful substrates in the assessment of haloalkane dehalogenase activity are 1-bromobutane, 1-iodopropane, 1-iodobutane, 1,2-dibromoethane and 4-bromobutanenitrile. Functional relationships among the enzymes were explored using principal component analysis. Analysis of the untransformed specific activity data revealed that the overall activity of wild-type haloalkane dehalogenases decreases in the following order: LinB~DbjA>DhlA~DhaA~DbeA~DmbA>DatA~DmbC~DrbA. After transforming the data, we were able to classify haloalkane dehalogenases into four SSGs (substrate-specificity groups). These functional groups are clearly distinct from the evolutionary subfamilies, suggesting that phylogenetic analysis cannot be used to predict the substrate specificity of individual haloalkane dehalogenases. Structural and functional comparisons of wild-type and mutant enzymes revealed that the architecture of the active site and the main access tunnel significantly influences the substrate specificity of these enzymes, but is not its only determinant. The identification of other structural determinants of the substrate specificity remains a challenge for further research on haloalkane dehalogenases.
- 650 _2
- $a Agrobacterium tumefaciens $x enzymologie $x genetika $x metabolismus $7 D016960
- 650 _2
- $a Bradyrhizobium $x enzymologie $x genetika $x metabolismus $7 D020369
- 650 _2
- $a aktivace enzymů $7 D004789
- 650 _2
- $a Escherichia coli $x genetika $x metabolismus $7 D004926
- 650 _2
- $a hydrolasy $x klasifikace $x genetika $x metabolismus $x fyziologie $7 D006867
- 650 _2
- $a biologické modely $7 D008954
- 650 _2
- $a mutantní proteiny $x klasifikace $x genetika $x metabolismus $7 D050505
- 650 _2
- $a Mycobacterium bovis $x enzymologie $x genetika $x metabolismus $7 D009163
- 650 _2
- $a Mycobacterium smegmatis $x genetika $x metabolismus $7 D020102
- 650 _2
- $a fylogeneze $7 D010802
- 650 _2
- $a Rhodococcus $x enzymologie $x genetika $x metabolismus $7 D012240
- 650 _2
- $a Sphingobacterium $x enzymologie $x genetika $x metabolismus $7 D045249
- 650 _2
- $a substrátová specifita $7 D013379
- 650 _2
- $a Xanthobacter $x enzymologie $x genetika $x metabolismus $7 D020584
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Chovancova, Eva
- 700 1_
- $a Brezovsky, Jan
- 700 1_
- $a Monincova, Marta
- 700 1_
- $a Fortova, Andrea
- 700 1_
- $a Jarkovsky, Jiri
- 700 1_
- $a Damborsky, Jiri
- 773 0_
- $w MED00009308 $t The Biochemical journal $x 1470-8728 $g Roč. 435, č. 2 (2011), s. 345-54
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/21294712 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y m
- 990 __
- $a 20120817 $b ABA008
- 991 __
- $a 20121210105710 $b ABA008
- 999 __
- $a ok $b bmc $g 949879 $s 785183
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2011 $b 435 $c 2 $d 345-54 $i 1470-8728 $m Biochemical journal (London. 1984) $n Biochem J $x MED00009308
- LZP __
- $a Pubmed-20120817/11/03