Chemoselective Electrochemical Cleavage of Sulfonimides as a Direct Way to Sulfonamides
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38198698
PubMed Central
PMC10845148
DOI
10.1021/acs.joc.3c01932
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
A new method for selective cleavage of sulfonimides into sulfonamides in high yields using a simple electrochemical approach is shown. As revealed by the electrochemical study, the aromatic sulfonimides can be selectively cleaved by electrolysis of the starting compound at a given potential (only -0.9 V vs SCE for the nosyl group). The high chemoselectivity was confirmed by preparative electrolysis, and the results were supported with DFT calculations of a set of substances bearing different sulfonimide functions. Moreover, various experimental setups together with other attempts to simplify the procedure were tested. Finally, the removal of the p-nosyl group from the corresponding sulfonimides proceeds smoothly regardless of the number of nosyl groups and the overall shape of the complex molecule. Thus, the method is interesting for use in the field of multifunctional molecules such as calix[n]arenes.
Zobrazit více v PubMed
Apaydın S.; Török M. Sulfonamide derivatives as multi-target agents for complex diseases. Bioorg. Med. Chem. Lett. 2019, 29 (16), 2042–2050. 10.1016/j.bmcl.2019.06.041. PubMed DOI
Mondal S.; Malakar S. Synthesis of sulfonamide and their synthetic and therapeutic applications: Recent advances. Tetrahedron 2020, 76 (48), 131662.10.1016/j.tet.2020.131662. DOI
Ovung A.; Bhattacharyya J. Sulfonamide drugs: structure, antibacterial property, toxicity, and biophysical interactions. Biophys. Rev. 2021, 13 (2), 259–272. 10.1007/s12551-021-00795-9. PubMed DOI PMC
Chan M.; Lao F. S.; Chu P. J.; Shpigelman J.; Yao S.; Nan J.; Sato-Kaneko F.; Li V.; Hayashi T.; Corr M.; Carson D. A.; Cottam H. B.; Shukla N. M. Structure-Activity Relationship Studies To Identify Affinity Probes in Bis-aryl Sulfonamides That Prolong Immune Stimuli. J. Med. Chem. 2019, 62 (21), 9521–9540. 10.1021/acs.jmedchem.9b00870. PubMed DOI PMC
Chen L.; Berry S. N.; Wu X.; Howe E. N. W.; Gale P. A. Advances in Anion Receptor Chemistry. Chem 2020, 6 (1), 61–141. 10.1016/j.chempr.2019.12.002. DOI
Pal S.; Ghosh T. K.; Ghosh R.; Mondal S.; Ghosh P. Recent advances in recognition, sensing and extraction of phosphates: 2015 onwards. Coord. Chem. Rev. 2020, 405, 213128.10.1016/j.ccr.2019.213128. DOI
Manna U.; Das G. An overview of anion coordination by hydroxyl, amine and amide based rigid and symmetric neutral dipodal receptors. Coord. Chem. Rev. 2021, 427, 213547.10.1016/j.ccr.2020.213547. DOI
Batool M.; Afzal Z.; Junaid H. M.; Solangi A. R.; Hassan A. Sulfonamides as Optical Chemosensors. Crit. Rev. Anal. Chem. 2022, 1–28. 10.1080/10408347.2022.2105135. PubMed DOI
Lukin O.; Gramlich V.; Kandre R.; Zhun I.; Felder T.; Schalley C. A.; Dolgonos G. Designer Dendrimers: Branched Oligosulfonimides with Controllable Molecular Architectures. J. Am. Chem. Soc. 2006, 128 (27), 8964–8974. 10.1021/ja061606b. PubMed DOI
Lukin O.; Schubert D.; Müller C.; Corda M.; Kandre R. Persulfonylation of Amines Applied to the Synthesis of Higher Generation Dendrimers. J. Org. Chem. 2008, 73 (9), 3562–3565. 10.1021/jo800179m. PubMed DOI
Schubert D.; Corda M.; Lukin O.; Brusilowskij B.; Fiškin E.; Schalley C. A. A Topological View of Isomeric Dendrimers. Eur. J. Org Chem. 2008, 2008 (24), 4148–4156. 10.1002/ejoc.200800408. DOI
Bondareva J.; Rozhkov V.; Kachala V. V.; Fetyukhin V.; Lukin O. An optimized divergent synthesis of sulfonimide-based dendrimers achieving the fifth generation. Synth. Commun. 2019, 49 (24), 3536–3545. 10.1080/00397911.2019.1676909. DOI
Bondareva J.; Kolotylo M.; Rozhkov V.; Burilov V.; Lukin O. A convergent approach to sulfonimide-based dendrimers and dendrons. Tetrahedron Lett. 2020, 61 (25), 152011.10.1016/j.tetlet.2020.152011. DOI
Mondal S. Sulfonamide synthesis under green conditions. Synth. Commun. 2021, 51 (7), 1023–1044. 10.1080/00397911.2020.1870238. DOI
Kim D. H.; Yun B. H.; Choi E. W.; Oh S. M.; Alam M.; Lee K. T.; Lee Y. S. Synthesis and Cytotoxic Effects of Sulfonamide-Substituted 5,6,7-Trimethoxyflavones on Human Cancer Cell Lines. Bull. Korean Chem. Soc. 2013, 34 (8), 2507–2510. 10.5012/bkcs.2013.34.8.2507. DOI
Yasuhara A.; Kameda M.; Sakamoto T. Selective Monodesulfonylation of N, N-Disulfonylarylamines with Tetrabutylammonium Fluoride. Chem. Pharm. Bull. 1999, 47 (6), 809–812. 10.1248/cpb.47.809. DOI
Torti E.; Protti S.; Merli D.; Dondi D.; Fagnoni M. Photochemistry of N-Arylsulfonimides: An Easily Available Class of Nonionic Photoacid Generators (PAGs). Chem.—Eur. J. 2016, 22 (47), 16998–17005. 10.1002/chem.201603522. PubMed DOI
Klein M.; König B. Synthesis and thermal cyclization of an enediyne-sulfonamide. Tetrahedron 2004, 60 (5), 1087–1092. 10.1016/j.tet.2003.11.078. DOI
Senboku H.; Nakahara K.; Fukuhara T.; Hara S. Hg cathode-free electrochemical detosylation of N,N-disubstituted p-toluenesulfonamides: mild, efficient, and selective removal of N-tosyl group. Tetrahedron Lett. 2010, 51 (2), 435–438. 10.1016/j.tetlet.2009.11.056. DOI
Viaud P.; Coeffard V.; Thobie-Gautier C.; Beaudet I.; Galland N.; Quintard J.-P.; Le Grognec E. Electrochemical Cleavage of Sulfonamides: An Efficient and Tunable Strategy to Prevent β-Fragmentation and Epimerization. Org. Lett. 2012, 14 (3), 942–945. 10.1021/ol300003f. PubMed DOI
Kossai R.; Jeminet G.; Simonet J. Cathodic behaviour of p-toluenesulfonamides in organic solvents. Electrochim. Acta 1977, 22 (12), 1395–1402. 10.1016/0013-4686(77)85150-5. DOI
Liška A.; Řezanková M.; Klíma J.; Urban J.; Budka J.; Ludvík J. Electrochemical, EPR, and quantum chemical study of reductive cleavage of cone-Calix [4] arene nosylates-New electrosynthetic approach. Electrochem. Sci. Adv. 2022, 3, e210022110.1002/elsa.202100221. DOI
Civitello E. R.; Rapoport H. The regioselective cleavage of aryl tosylates by electrochemical reduction. J. Org. Chem. 1992, 57 (3), 834–840. 10.1021/jo00029a010. DOI
Huang B.; Guo L.; Xia W. A facile and versatile electro-reductive system for hydrodefunctionalization under ambient conditions. Green Chem. 2021, 23 (5), 2095–2103. 10.1039/D1GC00317H. DOI
Maia H. L. S.; Medeiros M. J.; Montenegro M. I.; Court D.; Pletcher D. Deprotection by electrolysis: Part I. The application of homogeneous redox catalysis to the study of the reduction of tosyl esters and amides. J. Electroanal. Chem. Interfacial Electrochem. 1984, 164 (2), 347–361. 10.1016/S0022-0728(84)80217-X. DOI
Fry A. J.The Electrochemistry of Nitro, Nitroso, and Related Compounds. In PATAI’S Chemistry of Functional Groups; Wiley, 1996; pp 837–856.
Squella J. A.; Bollo S.; Nunez-Vergara L. Recent Developments in the Electrochemistry of Some Nitro Compounds of Biological Significance. Curr. Org. Chem. 2005, 9, 565–581. 10.2174/1385272053544380. DOI
Huang L.-Z.; Hansen H. C. B.; Bjerrum M. J. Electrochemical reduction of nitroaromatic compounds by single sheet iron oxide coated electrodes. J. Hazard. Mater. 2016, 306, 175–183. 10.1016/j.jhazmat.2015.12.009. PubMed DOI
Salvadori K.; Ludvík J.; Šimková L.; Matějka P.; Cuřínová P. Nitro group as a redox switch in urea-based receptors of anions. J. Electroanal. Chem. 2021, 902, 115816.10.1016/j.jelechem.2021.115816. DOI
Brillas E.; Farnia G.; Severin M.; Vianello E. Self-protonation effects in the electrochemical reduction mechanism of p-nitrobenzoic acid. Electrochim. Acta 1986, 31 (7), 759–766. 10.1016/0013-4686(86)85004-6. DOI
Asirvatham M. R.; Hawley M. D. Electrochemical studies of the formation and decomposition of p-nitrobenzenesulfonamide radical anions. J. Electroanal. Chem. Interfacial Electrochem. 1974, 53 (2), 293–305. 10.1016/S0022-0728(74)80142-7. DOI
Saji T.; Ito N. The Electrochemical Cleavage of Carbon-Halogen Bonds of Haloferrocenes. Bull. Chem. Soc. Jpn. 1985, 58, 3375–3376. 10.1246/bcsj.58.3375. DOI
Luca O. R.; Gustafson J. L.; Maddox S. M.; Fenwick A. Q.; Smith D. C. Catalysis by electrons and holes: formal potential scales and preparative organic electrochemistry. Org. Chem. Front. 2015, 2 (7), 823–848. 10.1039/C5QO00075K. DOI
Elgrishi N.; Rountree K. J.; McCarthy B. D.; Rountree E. S.; Eisenhart T. T.; Dempsey J. L. A Practical Beginner’s Guide to Cyclic Voltammetry. J. Chem. Educ. 2018, 95 (2), 197–206. 10.1021/acs.jchemed.7b00361. DOI
Gutsche C. D.Calixarenes Revisited; The Royal Society of Chemistry: Thomas, Graham House, Cambridge, 1998.
Gutsche C. D.; Chemistry R. S. o.. Calixarenes: An Introduction; The Royal Society of Chemistry: Thomas, Graham House, Cambridge, 2008.
Mandolini L.; Ungaro R.. Calixarenes in Action; World Scientific Publishing Company, 2000.
Vicens J.; Harrowfield J.; Baklouti L.. Calixarenes in the Nanoworld; Springer: Dordrecht, 2007.
Li H.; Jiang H.; Liu C.; Zhu C.; Zhu X. P. Electrochemical Oxidation of Sulfonamides with Boron-Doped Diamond and Pt Anodes. ChemistryOpen 2019, 8 (12), 1421–1428. 10.1002/open.201900250. PubMed DOI PMC
Salvadori K.; Šimková L.; Císařová I.; Sýkora J.; Ludvík J.; Cuřínová P. Sulphonamidic Groups as Electron-Withdrawing Units in Ureido-Based Anion Receptors: Enhanced Anion Complexation versus Deprotonation. ChemPlusChem 2020, 85 (7), 1401–1411. 10.1002/cplu.202000326. PubMed DOI
Chen L.; Lang H.; Fang L.; Zhu M.; Liu J.; Yu J.; Wang L. Nickel-Catalyzed One-Pot Suzuki-Miyaura Cross-Coupling of Phenols and Arylboronic Acids Mediated by N,N-Ditosylaniline. Eur. J. Org Chem. 2014, 2014 (23), 4953–4957. 10.1002/ejoc.201402475. DOI
Chen L.; Lang H.; Fang L.; Yu J.; Wang L. Nickel-Catalyzed Desulfitative Suzuki-Miyaura Cross-Coupling of N,N-Disulfonylmethylamines and Arylboronic Acids. Eur. J. Org Chem. 2014, 2014 (29), 6385–6389. 10.1002/ejoc.201402919. DOI
Debnath S.; Mondal S. Synthesis of a Series of 2-Aminodiarylsulfones by Brønsted Acid Mediated Regioselective Fries Type Rearrangement of N-Alkyl-N -arylbenzenesulfonamides. ChemistrySelect 2018, 3 (15), 4129–4132. 10.1002/slct.201800435. DOI
Pan C.; Cheng J.; Wu H.; Ding J.; Liu M. Cu(OAc)2-Catalyzed N-Arylation of Sulfonamides with Arylboronic Acids or Trimethoxy(phenyl)silane. Synth. Commun. 2009, 39 (12), 2082–2092. 10.1080/00397910802638495. DOI
Kato T.; Okamoto I.; Tanatani A.; Hatano T.; Uchiyama M.; Kagechika H.; Masu H.; Katagiri K.; Tominaga M.; Yamaguchi K.; Azumaya I. Spontaneous Resolution of Aromatic Sulfonamides: Effective Screening Method and Discrimination of Absolute Structure. Org. Lett. 2006, 8 (22), 5017–5020. 10.1021/ol061731s. PubMed DOI
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; Li X.; Caricato M.; Marenich A. V.; Bloino J.; Janesko B. G.; Gomperts R.; Mennucci B.; Hratchian H. P.; Ortiz J. V.; Izmaylov A. F.; Sonnenberg J. L.; Williams-Young D.; Ding F.; Lipparini F.; Egidi F.; Goings J.; Peng B.; Petrone A.; Henderson T.; Ranasinghe D.; Zakrzewski V. G.; Gao J.; Rega N.; Zheng G.; Liang W.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Throssell K.; Montgomery J. A. Jr.; Peralta J. E.; Ogliaro F.; Bearpark M. J.; Heyd J. J.; Brothers E. N.; Kudin K. N.; Staroverov V. N.; Keith T. A.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A. P.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Millam J. M.; Klene M.; Adamo C.; Cammi R.; Ochterski J. W.; Martin R. L.; Morokuma K.; Farkas O.; Foresman J. B.; Fox D. J.. Gaussian 16 Rev. C.01; Gaussian, Inc.: Wallingford, CT, 2016.